
USENIX Association

Proceedings of the
General Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

2003 USENIX Annual Technical ConferenceUSENIX Association 85

A Multi-User Virtual Machine
Grzegorz Czajkowski Laurent Daynès Ben Titzer

Sun Microsystems Laboratories
2600 Casey Avenue

Mountain View, CA 94043, USA

S3 Lab, Purdue University
1398 Computer Sciences Bldg.
West Lafayette, IN 47906, USA

grzegorz.czajkowski@sun.com laurent.daynes@sun.com titzer@purdue.edu

ABSTRACT
Recent efforts aimed at improving the scalability of
the JavaTM platform have focused primarily on the safe
collocation of multiple applications in the virtual
machine. This is often beneficial for various
performance metrics, but ultimately leads to a single-
user multitasking environment. The lack of multi-user
capabilities forms a barrier to the scalability of
multitasking virtual machines, as it requires one per
user. In this paper we demonstrate how to enhance a
multitasking virtual machine with multi-user support.
In particular, users can securely manipulate their
private files, load their own native libraries without
endangering other computations, and use all standard
APIs. Auxiliary processes are needed to provide
multiple operating system resource and user contexts,
but no modifications are needed to the operating
system itself.

1 INTRODUCTION
Program execution environments based on safe
languages have become an important part of the
computing landscape, as demonstrated by a growing
number of middleware systems taking advantage of
the Java platform [GJS+00]. The scalability of the
underlying virtual machines is key to efficient
resource utilization and consequently to widespread
acceptance of safe languages. Several recent projects
have demonstrated that scalability can be improved by
re-architecting the run-time system or by program
transformations that enable execution of multiple
applications in a single instance of the virtual machine
with certain degrees of application isolation [HCC+98,
BV99,BHL00,CD01]. Although the results of these
efforts differ considerably with respect to features
available and performance, they are invariably
multitasking single-user environments.

The single-user behavior manifests itself in several
ways. First, since the run-time system executes as a
single operating system (OS) process, with a single set
of user privileges and session attributes, private files
of only the user whose effective user id the virtual
machine process has can be accessed. Typically
'running as root' to address this problem is not an

option, as it is dangerous from the security viewpoint.
Setting the effective user id affects the whole process,
which would only be correct if all file access
operations performed by the virtual machine were
serialized. The second issue concerns user-supplied
native libraries. Most multitasking systems based on
safe languages do not allow such code, since a
malfunction might jeopardize the whole environment
and all the applications in it. Finally, the correct
execution of certain core components of the safe
language platform, such as the windowing subsystem,
is not guaranteed in presence of multiple users, or
even when a single user runs multiple applications that
require such components. The issue here is the
interference of unrelated computations via global state
of core native libraries.

Our previous work has demonstrated that collocating
of computations in a multitasking virtual machine
combined with aggressive sharing of run-time data
structures can improve performance and significantly
decrease start-up time and memory footprint [CD01].
To fully realize its potential, this approach must
address the multi-user issues mentioned above. A case
in point is thin-client environments where stateless
desktop consoles access a shared pool of
computational resources in one or more powerful
servers [SLN99]. At peak times the number of active
users on a single Sun RayTM installation can reach
hundreds. If every user runs just a single application in
a dedicated Java virtual machine (JVMTM), the
combined resource requirements severely stress the
system and negatively impact the user experience. The
bottom line is that a single multi-user multitasking
virtual machine offers the potential to utilize resources
better than a collection of single-user multitasking
virtual machines, just as a single-user multitasking
virtual machine scales better than a collection of
virtual machines each executing a single application.

This paper demonstrates that it is possible to construct
a complete and fully compliant multitasking multi-
user virtual machine for executing programs written in
the JavaTM programming language. Our solutions take
advantage of the existing OS infrastructure and do not
require high engineering effort. In particular, we

2003 USENIX Annual Technical Conference USENIX Association86

enhance the Multitasking Virtual Machine (or MVM)
[CD01] with the ability to execute applications of
different users. This includes correct maintaining of
user identity, including access control of users' private
files, the ability to run user-supplied native code
safely, and a mechanism to ensure correct operation of
core native libraries in the presence of multiple users.
The last feature is based on a novel technique that
transparently replicates the global state of shared
libraries. The first two enhancements take advantage
of the ability to pass open file descriptors among
processes and improve on MVM's ability to isolate
native code.

The rest of the paper is structured as follows. Section 2
contains an overview of the architecture, Sections 3-5
describe the handling of user identity, user-supplied
native code, and core native libraries, respectively,
along with performance details. A discussion of design
alternatives and related work is given in Section 6.

2 ARCHITECTURE OVERVIEW
The proposed multi-user virtual machine architecture,
dubbed MVM-2, is described later on, after an
introduction to MVM (this term will consistently refer
to the previous version of the system [CD01]).

2.1 Background on MVM
MVM is a general-purpose virtual machine for
executing multiple applications, written in the Java
programming language, on behalf of a single user. It is
based on the Java HotSpotTM virtual machine (referred
to from now on as HSVM) [Sun00a] and its client
compiler, version 1.3.1 for the SolarisTM Operating
Environment [MM01]. In experiments described in the
following three sections version 2.9 of the operating
environment was used, running on a Sun EnterpriseTM

3500 server with four UltraSPARCTM II processors
and 4GB of main memory.

Applications executing in MVM are referred to as
isolates [JCP01]. MVM-aware applications, such as
application server engines, can use the provided API
to control the life-cycle (e.g., creation and
asynchronous termination) of other isolates. The main
(first) isolate does not have to be a server – it can be
any application written in the Java programming
language. A simple example of the API is the creation
of an isolate, which will execute MyClass with a single
argument “abc”:
new Isolate(“MyClass”, new String[] {“abc”}).start(...);

The key design principle of MVM was to examine
each component of the JVM and determine whether
sharing it among isolates can lead to any interference
among them. Non-shareable components are either
replicated on a per-isolate basis or made isolate re-
entrant, that is, usable by many isolates without

causing any inter-isolate interference. They include
static fields, class initialization state, and instances of
java.lang.Class.

Shareable components that require modification to
become isolate re-entrant include the constant pool,
the interpreter, the dynamic compiler, and the code it
produces. An arbitrary number of isolates in MVM
can share the code (bytecode and compiled) of both
core and application classes. Runtime modifications
make the replication of non-shareable components
transparent. In effect, each application “believes” it
executes in its own private JVM, as there is no
interference due to mutable run-time data structures
visible directly or indirectly by the application code.
Similarly, certain Java Development Kit (JDKTM)
classes, such as System and Runtime had to be modified
to make operations such as System.exit() apply only to
the calling isolate.

The heaps of isolates are logically disjoint. The
separation of isolates’ data sets in MVM implies that
isolates cannot directly share objects, and the only way
for isolates to communicate is to use copying
communication mechanisms, either standard ones,
such as sockets, or low-level custom protocols
[PCD+02]. Another option is to use links, which are a
low-level isolate-to-isolate communication mechanism
introduced by the isolate API [JCP01].

In MVM most of the class representation is shared,
and so is the class loading, linking, and run-time
compilation effort. In particular, only when a class is
loaded into MVM for the first time the actual file
fetching, parsing, verification, building of a main-
memory run-time representation of the class, and
several other steps are performed. They do not need to
be repeated when another isolate uses the same class.

2.2 Process Model
Essential to bringing multi-user capabilities to MVM
is a process model that encapsulates the ideas of
protection and access control. In our design, a single
instance of MVM-2 exists as one process. It contains
multiple isolates. Isolates may be started within the
JVM by different users through a separate login
program called Jlogin, written in C. Jlogin
corresponds to a notion of a user session, and is used
to start a single isolate – the user simply types in the
name of the main class and its arguments, similarly to
running the standard “java” command.

After session initialization, Jlogin serves as a daemon
process that services certain requests issued by the
initial isolate in the session; these requests are related
to (i) user identity – this breaks down into several sub-
cases: accessing the file system, accessing
environment information related to the user session
(i.e., an instance of Jlogin), and maintaining user

2003 USENIX Annual Technical ConferenceUSENIX Association 87

identity and session attributes across process creation
via the Runtime.exec() method, and (ii) interacting with
user-supplied native code. The Jlogin process has the
effective user id and associate privileges of the actual
user, regardless of process attributes of MVM-2
(Figure 1).

The initial isolate has its standard input/output/error
streams connected appropriately to its Jlogin process;
these streams may be shared with descendent isolates
(isolates created in the course of the program
execution, and not by spawning another Jlogin
process) if the initial one sets them so. Each isolate,
regardless of how it was created, has its own instance
of Jlogin (lazily created for non-initial isolates), so that
a failure of native code associated with one isolate
does not affect the others. Optimizations to this basic
scheme, such as optional association of multiple
isolates with a single Jlogin process, are not further
pursued in this paper.

Each user can have multiple sessions. To simplify
further discussion let us assume that the initial process
does not spawn further isolates and that there is only
one Jlogin per user.

The first isolate of MVM-2 is a simple application
called Mserver that listens on a socket for connections
from Jlogin processes. Each new Jlogin connects to
Mserver and the two exchange information such as
relevant environment variables and user settings.
Jlogin then sends a request to Mserver to create an
isolate to run the application the user specified when
starting that Jlogin instance. The isolate connects to its
Jlogin's standard input, output, and error streams.

Multiple Jlogin processes from different users can
connect to the Mserver to launch their applications
within the same instance of MVM-2.

3 USER IDENTITY
In MVM-2 the user identity and session attributes of
Jlogin are associated with isolates. In particular, users
are able to access their private files securely, and at the
same time are not able to elevate their own privilege
or circumvent the OS access control mechanisms.
Moreover, user identity is properly preserved across
process creation. These issues are discussed below.

3.1 File Access
A straightforward approach to enable secure file
access for multiple users might be to modify the JVM
so that it performs explicit access control checks for
file operations that are at least as restrictive as the
underlying OS. Upon a user request, the JVM would
first decide whether a file system operation was
permitted for that user and if so, perform that
operation. This scheme would work successfully if the
JVM itself had the right to perform all the operations
requested by all users – if it was running as root on a
UNIX(R) system, for example. However, running the
JVM itself with the highest privilege could damage the
system if the JVM itself crashes or is compromised.
Moreover, properly emulating the underlying system's
access rights checks seems quite complex.

To address these issues we have designed the Remote
File Access (RFA) subsystem of MVM-2. RFA
forwards certain file system operations, such as file
opening or deleting, to the Jlogin process associated
with the requesting isolate. To accomplish this, open
file descriptors must be passed between the MVM-2
and Jlogin processes. This feature is available in
several UNIX inter-process communication (IPC)
mechanisms, such as unnamed stream pipes, UNIX
domain sockets, or streams [Stev90]. Our
implementation of RFA uses doors [MM01], a high-
performance IPC mechanism available on the Solaris
Operating Environment. Operations such as read,
write, seek, and close need not be done remotely, since
they are just operations on opened file descriptors
local to the virtual machine and are not subject to
access control checks. Thus such performance-critical
operations as reading, writing, and seeking do not
incur the cost of IPC. Doors allow for examining
clients' credentials. In particular, the process id of the
caller can be obtained. This information is used by
Jlogin to verify that RFA requests are issued by the
given instance of MVM-2.

As Jlogin runs with the access privileges of the user
who started the isolate, the OS access control
mechanism for this process enforces the correct
privilege level for the corresponding isolate. In this

Jlogin
user id: usr1

Jlogin
user id: usr2

Jlogin
user id: usr3

 MVM Mserver

Task 1

Mediating in
file access

Handling
native code

Accessing OS
environment

Mediating in
file access

Handling
native code

Accessing OS
environment

Mediating in
file access

Handling
native code

Accessing OS
environment

Task 1 Task 1

Mediating in
process creation

Mediating in
process creation

Mediating in
process creation

Figure 1. Three users execute applications in
MVM-2; each of them has an instance of the Jlogin
process.

2003 USENIX Annual Technical Conference USENIX Association88

way, no elevation of privilege occurs and access to the
user's private files is permitted correctly, in
accordance with the UNIX access control semantics. It
is not required that MVM-2 run at the highest
privilege level. It can be started by any non-privileged
user. The Java security model is unmodified –
appropriate permissions (i.e., instances of
java.io.FilePermission) are still a necessary prerequisite to
file access.

As MVM-2 is JDK 1.3.1-compliant, it does not have
the New I/O (NIO) APIs [Sun02], introduced in JDK
1.4. One of the classes defined there,
java.nio.channels.FileChannel, allows application code to
create file locks held on behalf of the entire JVM (e.g.,
implemented through the fcntl() system call). This is a
potential interference point for multiple computations
collocated in the same instance of the JVM. Similarly
to how MVM-2 gives each isolate secure access to all
of the corresponding user's files, a 1.4-compliant
MVM-2 would forward file locking operations to
Jlogin to provide locking semantics indistinguishable
from a model in which each application executes in a
dedicated virtual machine process.

The commands implemented in the RFA protocol are
the following: RFA_open (open a file given a
pathname), RFA_mkdir (create a directory), RFA_mode
(get the access mode bits), RFA_getmtime (get the
modified time of a pathname), RFA_length (get the
length of a file), RFA_access (check access to a given
pathname), RFA_list (return a list of files in a given
directory), RFA_setmtime (change the modified time of
a file), RFA_remove (remove a given pathname),
RFA_protect (write-protect a given pathname), and
RFA_rename (rename a given pathname). These
commands form a basic set of operations needed to
implement the semantics of the java.io classes that
operate on files.

3.2 Process Creation
Another issue related to user identity is creating new
processes. The Java programming language allows
applications to execute arbitrary programs as new
processes via the exec() method of the java.lang.Runtime
class, and to kill or wait for these processes via the
methods of the java.lang.Process class. Standard
implementations of the JVM utilize the fork/exec
capabilities of the underlying OS to provide this
functionality.

MVM-2 ensures that a process started by an
application running on behalf of a particular user
inherits not just the privilege of that user, but also the
environment of the process that launched that
application. Running MVM-2 with root privileges and
then “fork-exec-ing” it combined with using setuid()
would not adequately address this issue, as the
environment attributes would be of the MVM-2

process and not of the appropriate Jlogin process. Our
solution is similar to the way MVM-2 deals with file
accesses: requests to spawn a new process, to wait for
its completion, or to kill it are forwarded to Jlogin of
the current isolate. This guarantees that the new
processes runs with both the correct user identity and
inherits the appropriate environment properties (e.g.,
current directory, environment variables, etc.).

3.3 Accessing Environment Properties
Even though the Java platform does not provide an
API to perform an equivalent of getenv() and setenv()
available on the UNIX platforms, internally the JDK
accesses the environment, for example to obtain the
values of the TZ (time zone) and DISPLAY variables.
MVM-2 forwards these requests to Jlogin.

3.4 Changes to the JVM and the JDK
RFA required only one minor change to HSVM: the
file opening operation had to be modified to select the
correct Jlogin process to forward the RFA request to.
This operation, used internally by the native code of
some core classes, is encapsulated in the internal JVM
file opening call, which ultimately calls the OS.

Changes were required to classes in the java.io
package. The non-public abstract class FileSystem
encapsulates the functionality of the file system for
other classes in the package. It has a static method
used to retrieve an object that represents the correct
underlying file system, for example an instance of
UnixFileSystem. The only change to FileSystem was to
make this static method return an instance of
RFAFileSystem instead. RFAFileSystem extends
UnixFileSystem making remote RFA calls to forward
requests to the appropriate instance of Jlogin.

Supporting the required behavior of Runtime.exec() and
the Process class requires modifications of the native
methods of the sub-class of Process that implements
process support for a particular OS. The modifications
consist of forwarding the request for fork()/exec(), wait(),
and kill() to the Jlogin process. Input, output, and error
streams are properly set for the new process. Finally,
minor changes were required for forwarding queries
about environment attributes from MVM-2 to Jlogin.

3.5 Performance
There is no performance impact on file operations that
do not require an IPC to Jlogin, such as reads and
writes. Also, socket operations do not suffer any of the
IPC overhead, since the original JDK java.net code did
not have to be modified for MVM-2.

Table 1 summarizes the overheads of RFA on
java.io.File operations that need to be mediated by
Jlogin. The additional cost is between 81% for mkdir()
and 268% for lastModified(). The variance in relative

2003 USENIX Annual Technical ConferenceUSENIX Association 89

overheads are explained
by different costs of these
operations when they are
not forwarded to Jlogin:
more expensive operations
such as mkdir() and list()
incur relatively lower
overhead than the cheaper
ones, such as length().
Moreover, open() incurs an
additional cost of passing
an open file descriptor via
a door call, which is more
expensive than "plain"
door calls. Even though
the other operations do not
need to pass open file
descriptors between Jlogin

and MVM-2, they still need to be forwarded to Jlogin.
Otherwise, insufficient level of privilege may prevent,
for example, listing of a directory.

The impact of these operations on the actual file
manipulation depends on how many of them are
issued relative to the number of reads and writes. For
instance, opening a file (remote operation) followed
by a hundred 80-byte FileOutputStream.write(byte[])
operations and a close (all local operations) is 27%
more expensive than when run with an unmodified
HSVM, while the same sequence with a thousand
writes is 2.8% more expensive. Another micro-
example can be the creation of a properties object
from a file:
new Properties().load(new FileInputStream(fileName));

The overheads depend on the size of the named file.
For the flavormap.properties distributed with the JDK
1.3.1 (size: 929 bytes) the overhead when compared to
HSVM is 18%. For psfontj2d.properties (size: 10669
bytes) the overhead is 7.7%.

How this translates into application execution time
overheads depends on the intensity of using RFA-
mediated file operations. For example, the
performance impact of RFA on the file system
intensive javac benchmark from the SpecJVM98
benchmark suite [Spec98], is less than 0.5%.

4 USER-SUPPLIED NATIVE CODE
The coexistence of programs written in a safe
language with user-supplied, unsafe (native) code is
convenient, as it enables direct access to hardware, OS
resources, and legacy code and can improve
performance. But the inherent lack of memory safety
in native code may break the contract offered by a safe
language. In the case of a single application executing
in the JVM, a bug in an application (user-level) native
library will disrupt or abnormally terminate this

particular application only. The consequence of an
errant native library carelessly loaded into MVM-2
can be much more serious. In addition to causing the
loading application to malfunction, such a library may
corrupt the data of other applications, perform
arbitrary operations with the privilege level of the
virtual machine, or crash the whole virtual machine,
causing denial of service.

Memory safety is not the only issue, though.
Guaranteeing the conflict-free use of system resources
by the JVM and native code is equally important.
Native code is written against two interfaces: the Java
Native Interface (JNI) [Lian99], which is the sole
interaction point between the JVM and the application,
and the host OS interfaces, involving the usual
libraries for I/O, threading, math, networking, etc.
The latter is also the interface against which the JVM
is written. The problem is that the JVM makes certain
decisions regarding the use of the host OS interface
and of available resources, and these decisions may
conflict with their use by the user-supplied native
code. For example, signal handlers may have to be
instantiated to handle exceptions that are part of the
operation of the JVM (e.g., to detect memory access
and arithmetic exceptions). Another example is the
JVM's choice of a memory management regime for
purposes such as the allocation of thread stacks. In
each of these cases an arbitrary use of any of these
resources by user-supplied native code can cause the
virtual machine to malfunction.

MVM dealt with these issues by automatically and
transparently executing user-supplied native libraries
in a separate process. Each isolate that needs it and has
the necessary permissions has one such process. This
means that the only interface between the JVM and
native libraries becomes JNI. There is then no implicit
contract concerning memory management, threading,
signal handling, and other issues. This refactoring
solves the composability problem neatly. The native
code in a separate process has full control of its own
resources. There are no unexpected interactions with
MVM via memory, signals, threads, and so on.
However, the design of MVM's native code isolation
was not suitable for multiple users. The problems are
described in Sec. 4.2, which is followed by the
description of the new design. First, the essential
information on JNI is given.

4.1 JNI Essentials
JNI interacts with the JVM via downcalls (when a
Java method calls a native method) and upcalls (when
a native method requests a service from the JVM).
Upcalls enable accessing static and instance fields and
array elements, invoking methods, entering and
exiting monitors, creating new objects, using
reflection, and throwing and catching exceptions.

Operation Overhead

open() 261%

length() 257%

lastModified() 268%

renameTo() 125%

setReadOnly() 146%

isFile() 178%

canWrite() 242%

list() 141%

mkdir() 81%

Table 1. RFA overheads
on java.io.File operations.

2003 USENIX Annual Technical Conference USENIX Association90

Downcalls result in calls to C or C++ functions, whose
names are generated by the javah tool from the names
of methods declared as native. The naming convention
is Java_packageName_className_methodName. An
optional signature may also be appended to the end of
the name to support C++ or to disambiguate
overloaded method names. The JVM uses this naming
convention to bind the address of an exported function
to that of the native method at invocation time.

Upcalls are invoked via a JNI environment interface, a
pointer to which is always passed as the first argument
to all JNI upcalls and downcalls. Objects, classes,
fields, and methods are never accessed directly, but
rather via appropriate opaque references or identifiers.
These references are meaningful only to the JNI
functions, and shield native code from the details of
particular implementations of JNI.

4.2 Previous Native Code Isolation
Native code isolation (NCI) is achieved in MVM by
generating ahead of time a proxy library for each
specified library holding native methods. For each
function in the original library there is a function with
the same name in the corresponding proxy library. The
JVM's environment variable LD_LIBRARY_PATH is
manipulated such that the virtual machine will load
proxy libraries with the same name; the original
(unmodified) libraries are loaded into a remote NCI
process. From that point on, the proxy library and the
NCI process orchestrate, transparently to the original
native code, the forwarding of native method
invocations and JNI upcalls across process boundaries.

The functions in proxy libraries are redefined to
forward their arguments, along with information
uniquely identifying the function, to a dedicated,
transparently created process. Upon receipt of such a
request, the process executes the required function
with the supplied arguments. Just before the execution
of the function, the first received argument is replaced
with a custom JNI environment pointer. This custom
JNI environment redefines all JNI upcalls so that each
of them ships all of its arguments along with its unique
identifier back to MVM, where the upcall is
dispatched to the JVM's actual implementation of the
JNI call. Upcalls are always executed in the same
thread that issued the original downcall. For instance,
an exception thrown in an upcall has to be dispatched
to the thread that caused the downcall.

However, the proxy library approach proved to be
inflexible for MVM-2 because: (i) it requires manual
intervention to generate the proxy libraries before
executing the application, (ii) loading multiple
libraries in the same remote process is not dynamic,
(iii) allocation of method identifiers is static and not
unique across the JVM, (iv) the proxy library would

have to be redesigned to dispatch to different instances
of Jlogin based on an isolate identifier.

4.3 New Design
As in previous design, in MVM-2 user-supplied native
libraries are loaded into a separate process – in our
current implementation Jlogin serves this purpose. All
invocations of native methods and of JNI upcalls are
executed remotely via door calls transparently to both
Java methods and user-supplied native code. If an
error occurs during the native method invocation, for
instance if the Jlogin process aborts due to a bus error
caused by a user-supplied native library, MVM-2
throws a Java exception in the invoking thread. The
exception is unchecked so that existing code is not
broken, but still can be caught by applications coded
to deal with unexpected failures. Just as in the proxy
approach, a custom JNI environment pointer is used
to ensure proper forwarding of upcalls back to
MVM-2.

Even though in MVM-2 multiple isolates transparently
share class and method representations, different
isolates from different users are unaffected by the
behavior and bindings of each other's native methods.
This includes correct handling of pathological cases
such as different isolates resolving the same method of
the same class to different native methods in different
native libraries. To this end two identifiers are
introduced: a global (JVM-unique) method id and an
isolate-unique library id.

A JVM-unique method id is assigned to each native
method at class load time. This id is used in the Jlogin
process to bind a native method id to the actual native
code that should be called. The binding is performed
in Jlogin which guarantees that a particular isolate's
bindings do not affect the bindings of any other
isolate.

An isolate-unique id is assigned to each loaded library
(during System.loadLibrary()), identifying a particular
library in an isolate's Jlogin for the purposes of method
resolution and unloading. This assignment is done at
library load time by Jlogin, and the id is later used
only between an isolate and its Jlogin.

These two unique identifiers are sufficient to support
library loading and unloading as well as method
resolution and invocation with the required semantics
of giving each isolate an illusion of being the only one
in the entire virtual machine.

4.4 Changes to the JVM
Some modifications to the JVM itself were necessary
in order to accomplish the goals of the new NCI
protocol. MVM was modified to track per-isolate
information needed to locate Jlogin for each isolate
and to forward load and unload requests to the correct

2003 USENIX Annual Technical ConferenceUSENIX Association 91

remote Jlogin process. Similarly, the native method
dispatching mechanism of the JVM was modified to
forward the native call to the correct Jlogin process.

Library loading modifications included decisions as to
whether a native library should be loaded locally
within the JVM itself and which libraries to load in the
Jlogin processes. Libraries loaded by core classes
should not be isolated, and native libraries needed for
the actual implementation of NCI must not be isolated.
In MVM-2 both of these cases are handled in the same
way and are loaded into the virtual machine's process.

On the other hand, user-supplied native libraries must
be isolated. In our implementation of the JDK,
instances of ClassLoader track the currently native
loaded libraries for each class. This required
modifications to determine which libraries to load
remotely and which libraries are “trusted” system
code. Finally, the HSVM code that builds run-time
representations of methods from class files has been
modified to assign JVM-unique method ids to native
methods of loaded classes.

4.5 Performance
Much like the overheads of RFA, the performance
impact of NCI depends on how often it is used.
Isolates that do not invoke user-supplied native
methods do not incur any performance penalties.
Programs frequently issuing JNI calls may suffer
significant overheads. For instance, an empty static
downcall through NCI is about 588 times slower than
the same call in an unmodified JVM (in absolute
terms, the difference is between tens of microseconds
versus tens of nanoseconds). Upcalls incur smaller yet
significant penalties – a static method upcall is about
45 times slower through NCI than in HSVM. The
difference between the NCI's downcall and upcall
overheads when compared to HSVM is explained by
the fact that in HSVM upcalls are much more
expensive than downcalls, and MVM-2 introduces the
same overhead to both downcalls and upcalls.
However, a vast majority of programs do not issue
such a volume of JNI downcalls and/or upcalls related
to non-core native libraries to make performance
degradation due to this technique noticeable.

5 VIRTUALIZING CORE LIBRARIES
Core native libraries contain the implementations of
native methods from core packages, distributed with
the JDK. These libraries were typically coded without
much thought directed toward safe in-JVM
multitasking, let alone multiple users, and contain a
substantial amount of static (global) state. To ensure
isolation, each isolate needs to have its own copy of
such state.

It would seem desirable to handle core native libraries
in the same way user-supplied native libraries are
executed in MVM-2 – in a separate process. This
would provide each isolate with its own copy of core
native libraries, and in particular with its own instance
of their data segments. We experimented with this
approach but soon discovered that certain components
of the Java platform make extensive use of their native
libraries, and the traffic across the JNI boundary may
be heavy. Performance overheads made the use of this
technique particularly unattractive for executing
native code of core classes associated with the
Abstract Window Toolkit (AWT). For example,
during the start-up of the Notepad demo application
distributed with the JDK there are 2592 downcalls and
156 upcalls. NCI overheads (Sec. 4.4) increase start-
up time by an order of magnitude.

Core native libraries are as trusted and robust as the
virtual machine itself, and are under full control (i.e.,
can be modified) of the JVM developers. This
observation suggested that only a single instance of
each of them may need to be loaded into the virtual
machine, provided that the libraries are modified in
two ways: their static state is (manually) replicated,
and any interaction with the underlying OS is
examined to guarantee the absence of inter-isolate
interference. This approach still was not satisfactory,
since depending on the JDK's implementation the
amount of changes required to completely analyze and
modify the core native libraries may be substantial.
Moreover, the modifications would not extend to the
X Window libraries, which are distributed with the
operating system and not with the JDK; AWT native
code depends on these libraries. GUI-enabled isolates
would thus still interfere through the static state of, for
example, libX11.

The solution we eventually adopted has none of these
performance and engineering disadvantages. It is
based on a technique that allows for loading multiple
instances of the same dynamic library into a single
process. In particular, the advantages are (i) memory
footprint related to core native libraries does not
increase relative to HSVM, and (ii) only minor
modifications to the JDK (about 20 lines of code) were
required to apply this technique to the AWT
subsystem to provide per-isolate static native state.
The applicability to Swing/AWT is particularly
interesting, as these JDK components generate large
amounts of meta-data (loaded classes, compiled
method, etc.). Since meta-data is shared in MVM-2,
the ability to execute GUI-enabled isolates increases
the scope of memory footprint savings and at the same
time applies MVM-2's start-up time reduction to
interactive applications.

2003 USENIX Annual Technical Conference USENIX Association92

5.1 Basic Technique
The Solaris Operating Environment supports a
runtime linker auditing interface. Audit libraries can
monitor and modify certain operations, such as
mapping of shared binary objects into memory and the
binding of symbols in a customized way [Sun00b].
Note that we use the term shared binary object to refer
to a concatenation of relocatable objects (.o files) that
provides services that might be bound to a dynamic
executable at runtime. A shared binary object may
have dependencies on other shared object. In the
linker/loader literature the typically used term is
shared object, which may be confusing when used
along the concepts from object-oriented programming.

In order to isolate audit libraries from the symbol
binding requirements of the audited applications and
shared binary objects, the interface employs its own
link-map list, with each entry on the list describing a
single shared binary object within the process. The
symbol search mechanism required to bind shared
binary objects for an application traverses this list of
link-maps. Thus, the link-map list provides the name-
space for process symbol resolution.

The runtime linker itself is also described by a link-
map, which is maintained on a different list from that
of the application objects. Having the linker reside in
its own unique name space prevents any direct binding
of the application to services within the linker. The
audit interface allows for the creation of an additional
link-map list, so that audit libraries are also isolated
from the symbol binding requirements of the
application.

We have taken advantage of this infrastructure to load
multiple copies of a library into a single OS process.
Each such library is loaded by the dlmopen() function
[Sun00b] on a new link-map list and at a virtual
address different from any other instance of itself in
the same process. However, text segments of all
instances of the library, regardless of what process's
virtual memory they are mapped into, are backed by
the same physical memory pages.

5.2 Application to AWT
The technique described above has been applied to
MVM-2 and AWT-related libraries. Arguably out of
all JDK components with native libraries AWT is the
most complex one. For instance, it starts its own
threads to handle events and depends on X11 and
other related libraries (e.g., Motif), which are in
themselves quite complex.

In a nutshell, the approach is to group together the
entire set of AWT-related shared libraries as well as
the libraries they depend on (such as libX11, etc.) into
a unit, called from now on the AWT context (or simply
context). All libraries in the same contex share the

same unique link-map list. Due to the name-space
isolation provided by separate link-map lists each
AWT context can be loaded multiple times within the
same OS process without the danger of interference
with other contexts. The above is insufficient,
however, to provide each isolate with independent
AWT capabilities. The major issues that needed to be
addressed to make this scheme work are: (i) managing
the interface between the virtual machine and multiple
AWT contexts, (ii) handling the dependencies of the
libraries in AWT contexts on the virtual machine, and
(iii) preventing conflicting use of OS resources by
multiple AWT contexts.

5.2.1 The JVM-core native libraries interface
Maintaining one AWT context per isolate requires
dispatching each invocation of an AWT native method
to the AWT context associated with the current isolate.

The JVM (and MVM-2) interface with native code via
JNI, and thus the names of core native methods
conform to the same stylized naming scheme as an
ordinary native library. A simple script based on the
standard nm utility (listing the symbol tables of shared
binary objects) and on javap (disassembing classes) is
sufficient to generate a list of all such methods, along
with their signatures, from the libraries comprising the
AWT context. The list is then used to generate
libawt_proxy.so. At boot time MVM-2 loads a single
instance of this library in the main context (i.e., JVM's
context). Each function defined there forwards its
invocation to an appropriate per-isolate instance of an
automatically generated libawt_context.so. A new
instance of this library is loaded by libawt_proxy.so,
using dlmopen(), whenever a new isolate is started. The
library is a part of the AWT context, and contains all
of the AWT-related JDK and X11 libraries in its list of
shared binary object dependencies. Thus loading an
instance of libawt_context.so loads a new set of
instances of these libraries as well, that is, the entire
context.

Invocation forwarding does not require any changes to
the JDK or the runtime system. Whenever a native
method is called, the runtime system finds the required
name in libawt_proxy.so and calls it (Fig. 2, left side).
Only there the actual look-up of the isolate identifier
and the associated AWT context takes place. For
example here is a method from libawt_proxy.so:
void Java_java_awt_Color_initIDs(JNIEnv *env, jclass cls) {
 int iid = get_isolate_id();
 context ctx = contexts[iid];
 (*ctx).Java_java_awt_Color_initIDs(env, cls);
}

5.2.2 Dependencies on the JVM
AWT native methods invoke Java methods (both
application callbacks and services offered by the JDK
libraries) exactly as any other native code does: by

2003 USENIX Annual Technical ConferenceUSENIX Association 93

invoking the JNI functions of the JNI environment a
reference to which is always a first argument to any
native method. Although these JNI upcalls are defined
in the library that implements the JVM (libjvm.so),
they are exported to native methods as function
pointers. Due to this, JNI functions do not create a
dynamic linker dependence from AWT native libraries
on libjvm.so.

This is however not the case with JNI utility (JNU)
functions, which are also defined in libjvm.so.
Introduced for convenience, each JNU function groups
a common sequence of JNI upcalls. An example of a
JNU function is invoking a static Java method by its
(string) name, class name, and signature.
Accomplishing this with JNI requires six upcalls,
including appropriate error checking. In contrast to
plain JNI upcalls, JNU functions are called directly
(i.e., without a function pointer indirection) by AWT
native methods, which makes AWT native libraries
depend on libjvm.so. Such dependencies are
undesirable, as loading an instance of
libawt_context.so would also cause the loading of a
new instance of the JVM's libraries along with the new
AWT context. In the best case this would only waste
memory; in the worst, it can lead to a process crash if
a conflict occurs among multiple JVM contexts. For

example, each of them may zero out the heap during
initialization.

In MVM-2 such dependencies are prevented by
avoiding direct references to the JNU functions.
Instead, function pointers are used, much like in the
case of the JNI upcalls. In order to achieve this while
avoiding the modifications of the original AWT
libraries, a new shared library, libjnu+system.so, is
interposed between the libraries of an AWT context
and the JVM. The new library defines all the JNU
functions that are used by AWT contexts, and stores
the addresses of their original (i.e., defined in the
loaded instance of libjvm.so) implementations in a
vector of addresses vm_context. Each such interposing
function simply consists of calling the corresponding
JNU function of the JVM via the function pointer
listed in vm_context. The vector is passed to an
initialization routine in libjnu+system.so when a new
instance of libawt_context.so is loaded.

5.2.3 System calls
Loading multiple AWT contexts can cause inter-
isolate interference because the contexts share the
system call interface. For example, while calls to
getpid() from different contexts are not dangerous, the
same cannot be said about sbrk(). Each context's sbrk()
would initialize the amount and initial address of

space allocated for the process's data
segment to the same value.
Subsequent memory allocations
through for example malloc() invoked
from different contexts would return
the same address, leading to memory
corruption. It is thus vital to neutralize
all potentially conflicting uses of
system calls.

This issue is solved by extending the
technique described in Sec. 5.2.2,
where a vector of JNU functions is
passed down to an AWT context so
that their invocations are properly
forwarded back to the virtual
machine's context. For this purpose
vm_context is extended with addresses
of (i) system functions (e.g., sbrk()),
(ii) derivative library functions (e.g.,
malloc()), and (iii) other library
functions the use of which must be
confined to the virtual machine's
context (e.g., dlmopen()). By itself this
does not guarantee that the OS
interface is used in an interference-
free way, but at least introduces a
point of programmable control over
potentially dangerous behavior. For
example, malloc() and free() behave as

Figure 2. Forwarding of AWT native method invocations to the
appropriate AWT context (left) and forwarding system and library calls
from an AWT context back to the virtual machine's context.

Libawt_context.soLibawt_context.so

Isolate2

Isolate1

Java_java_awt_Color_initIDs() {
....

}

 libjnu+system.so

libawt, libmawt, libsunjdga, libfontmanager, ...

libX11, libXt, libXm, ...

Java_java_awt_Color_initIDs(..) {

...
}

Pixels = malloc(sizeof(Pixel) * size)

void *malloc(...) {
...
}

void *malloc(...) {
...
}

libawt_context.so (Isolate 1)

libawt_proxy.so

libc.so

 libjnu+system.so

libawt, libmawt, libsunjdga, libfontmanager, ...

libX11, libXt, libXm, ...

Java_java_awt_Color_initIDs(..) {

...
}

Pixels = malloc(sizeof(Pixel) * size)

void *malloc(...) {
...
}

libawt_context.so (Isolate 2)

2003 USENIX Annual Technical Conference USENIX Association94

expected in this scheme, while the usage of signal()
system call may have to be modified, for example by
injecting transparent chaining of signal handlers and
ensuring the chaining will be respected by all contexts.
In MVM-2 this has not been necessary for the AWT
subsystem. Figure 2 (right side) shows the forwarding
of system calls and virtual machine utility functions.

Another way to approach the forwarding of system
calls to the main context is to take advantage of the
runtime linker auditing interface's ability to intercept
requests for loading a new library. This way, a request
to load a context-private instance of libc.so could
return a library with the necessary redirections, similar
to libjnu+system.so. This technique avoids loading an
instance of libc.so along with each context. In MVM-2
a new AWT context contains an instance of libc.so,
which is never used. As the segments of libc.so are
mostly read-only, this does not increase the overall
memory footprint, but unnecessarily wastes virtual
memory, which may be an issue for 32-bit virtual
machines.

5.2.4 JDK modifications
No changes to the virtual machine were needed to
enable the replication of the AWT subsystem. Several
minor JDK modifications were necessary, though.

In the original AWT native libraries XOpenDisplay() is
invoked with a null argument. This means that X11
will call getenv(“DISPLAY”) to obtain the value of the
DISPLAY variable defined in the environment of the
virtual machine. MVM-2 obtains this value by
contacting the Jlogin process and then passes it to
XOpenDisplay() so that each user session has its own
value of DISPLAY.

Other modifications concern JNI_OnLoad. Several
native libraries that comprise the AWT context define
this optional function, which is invoked during the
loading of the library to properly initialize it. In
MVM-2 the names of all these occurrences of
JNI_OnLoad are changed to <libname>_JNI_OnLoad to
avoid name clashes. Then, libawt_proxy.so invokes all
of these methods in the original order when loading a
new instance of libawt_context.so.

5.2.5 Performance and start-up time
Execution time overhead of the presented technique is
negligible (we were unable to detect any during our
measurements). The reason is that MVM-2 adds only a
few machine instructions to JNI downcalls, and even
fewer for JNU upcalls and system calls. MVM-2
enjoys the same performance improvements as MVM,
since the effort necessary to load classes and compile
methods is saved due to meta-data sharing.

In MVM-2 start-up time of GUI applications improves
dramatically relative to HSVM. Table 2 summarizes

the results for two
demo programs
distributed with the
JDK: Notepad and
SwingSet2. The first
one is generally
deemed more
representative of

desktop applications. The second one creates a large
number of Java objects during its start-up, and thus the
improvements are relatively smaller, although still
very much noticeable by the users. Let us note that we
have used the following definition of start-up time for
AWT applications: it is the time elapsed between
invoking the main method of the application and
draining of the AWT event queues. The “first” column
reports the time, relative to HSVM, necessary to start
up the first instance of the application in MVM-2. The
“second” column reports start-up time of the second
instance (relative to HSVM's start-up time, which is
the same for any instance of the benchmark, as it
includes starting a new process, JVM bootstrap, etc.)
Start-up times of subsequent (third and later) instances
are similar to the start-up time of the second instance.
This latter number is more typical of the actual user
experience, as most of the start-up time decrease is
attributed to having already loaded Swing and AWT
classes.

Because of the adopted start-up time definition,
bootstrap of the virtual machine is not included in the
measurements. If it was, the gains would be even
higher, as in MVM the time required for preparation
of an isolate to run application code, including running
static initializers of bootstrap classes, is only 4% of the
time required to boot HSVM. Still, the improvements
remove between 62-71% of the start-up time
overhead, which translates into shaving off hundreds
to thousands of milliseconds.

The barely measurable improvement for the first
instance is due to the fact that some classes normally
loaded in HSVM during the start-up Notepad and
SwingSet2 have already been loaded in MVM-2 by
the Mserver isolate manager (Sec. 2.2) before the
benchmarks are executed.

Any improvements to the JDK classes will have a
direct impact on start-up time in MVM-2, as all static
initializers of classes needed by an application are run
in the same order in an isolate as they are in HSVM.

5.2.6 Memory footprint
There are several components of the memory footprint
of an application executing in MVM-2: (i) Java
objects created on the heap, (ii) space occupied by the
user-supplied native libraries, (iii) meta-data, such as
bytecodes, constant pools, and compiled methods, and
(iv) space occupied by core native libraries. The

First Second

Notepad 99.3% 28.7%

SwingSet2 99.5% 37.6%
Table 2. Start-up time in
MVM-2, relative to HSVM.

2003 USENIX Annual Technical ConferenceUSENIX Association 95

amount of memory used by the first two is the same in
HSVM and in MVM-2.

The size of memory required by native libraries
related to AWT in MVM-2 is summarized in Table 3.
The size of libawt_proxy.so is 576KB, most of which
is read-only. This library is not a part of the AWT
context and is loaded once by MVM-2.

The total size of the AWT context, loaded for each
isolate that uses AWT, is 4920KB, of which 1312KB
is attributed to the JDK's native libraries, 32KB to
libawt_context.so (it includes libjnu+system.so), and
the rest to X11, Xm, Xt, etc. The read-only portion of
the AWT context is 3856KB. It is backed by virtual
memory pages shared among contexts. Thus, a new
isolate that needs to use Swing/AWT will increase the
physical memory footprint by up to 1064KB due to the
new AWT context's writeable memory. A process
executing HSVM would consume the same amount of
writeable memory for AWT.

Due to separate virtual addresses for each library, an
AWT context requires almost 5MB of virtual memory.
For single-user desktop systems, where a virtual
machine would not typically execute many
applications, this does not appear to be problematic
with 32-bit JVMs. However, using this technique to
run a large number of GUI programs requires 64-bit
implementations of the JVM.

Memory footprint reductions due to meta-data sharing
can be large, as Figure 3 indicates. The first bar shows
the size of meta-data generated during the bootstrap of
MVM-2. The next three bars show the amount of
meta-data in MVM-2 after starting up one instance of
Notepad (second bar), two instances of Notepad (third
bar), and three instances of Notepad (fourth bar). The
last three bars show meta-data size for the SwingSet2
demo. Meta-data is split up into the following
components: (i) permanent generation (runtime
representation of classes, including bytecodes and
constant pools), (ii) code cache (size of dynamically
compiled methods), (iii) static state (size of storage for
mutable class components), and (iv) class mirrors
(data associated with an instance of a class on behalf
of an isolate).

The first two components are the same in HSVM and
in MVM-2. However, only in MVM-2 they are
(transparently) shared among isolates. Thus, running
concurrently three instances of Notepad in three
instances of HSVM generate about 13.5MB worth of
meta-data memory footprint (4.5MB for each
instance). In MVM-2 the footprint is less than 5.1MB.
In addition to 4.5MB generated in HSVM to run one
instance of Notepad, this includes a slightly growing
code cache (since more methods get compiled),
constant amount of static state (explained below) and
38KB of class mirrors per isolate executing Notepad.
For SwingSet2, which generates more than 7MB of
metadata, the memory footprint reduction due to
sharing in MVM-2 is even more pronounced.

In MVM-2 access to static fields is indirected through
an array indexed by an isolate identifier. The size of
these arrays is set to the maximum number of
concurrent isolates MVM-2 can execute. This value is
a command-line parameter of MVM-2, and in our
experiments is set to 32. All such arrays comprise
“static state” of an isolate. The static state component
remains constant for subsequent executions of the
programs if no new classes are loaded. This was the
case in our experiments (Figure 3).

It is important to note that the amount of meta-data
shared among different applications can be substantial,
especially when they use a large JDK component. For
example, Notepad run after SwingSet2 generates only

Libraries Read-only Read-write

JDK (e.g., libmawt) 1208 104

X Window (e.g., X11) 2624 952

libawt_context.so 24 8

libawt_proxy.so 544 32

Table 3. Size (in KB) of components of AWT-related
shared libraries in MVM-2. Underlined boldface
indicates additional memory required for a new AWT
context.

Figure 3. Memory footprint (in KB) related to meta-
data of Notepad and SwingSet2.

M
V

M
-2

 b
oo

t _

N
o

te
pa

d
(1

)

N
o

te
pa

d
(2

)

N
o

te
pa

d
(3

) _

S
w

in
gS

et
 (

1)

S
w

in
gS

et
(2

)

S
w

in
gS

et
(3

)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Class mirrors
Static state
Code Cache
Permanent gen

2003 USENIX Annual Technical Conference USENIX Association96

about 100KB of additional meta data, as both
applications rely heavily on Swing and SwingSet2
utilizes a large part of Swing.

Finally, the space occupied by the Jlogin processes
must also be taken into account when analyzing
memory footprint of MVM-2. The memory-resident
image of a single instance of Jlogin that has not loaded
any user-supplied native library takes 3.45 MB,
1.55MB of which are shared segments of libraries
commonly used by most processes (i.e., libc,
libsocket, etc.). Thus, each Jlogin process adds 1.9MB
to the overall footprint. 80% of this additional space
consumption is caused by the NCI library (Sec. 4),
which allocates a large data structure on the process's
heap. We are looking into ways of minimizing this
overhead.

Interested readers are referred to [Spec98] for selected
details of HSVM's performance.

5.3 Portability
The technique described in this section takes
advantage of the audit libraries functionality available
on the Solaris Operating Environment to map read-
only segments of the library's instances to the same
physical memory pages. We are not aware of any
other OS with a similar functionality and a convenient
interface.

On UNIX and win32 systems a library can be renamed
and then loaded into a process under a different name.
Thus, multiple instances of the same shared library can
exist in a single process, but under different names.
Their text segments will not be backed by the same
physical storage. This approach can emulate our
technique on modern OSes, but at a cost of enlarging
memory footprint. In our settings the additional
memory overhead per GUI-enabled isolate would be
3856KB (the first three entries in the “read-only”
column in Table 2).

6 DISCUSSION & RELATED WORK
Our experience with the system described above is
very positive: it is efficient, robust, full-featured, and
fully compliant with the 1.3.1 version of the JDK.

Other projects re-architected the JVM to achieve safe
multitasking, but to our best knowledge none of them
offered multi-user support. KaffeOS [BHL00] is
similar to MVM in its design, but much less
aggressive in what data is shared. Alternative designs
aimed at sharing certain meta-data among virtual
machines, each of which executes in a separate
process [DBC+00,CDN02]. This addresses the multi-
user issue, but scales much more poorly than a single
multitasking virtual machine.

In contrast to MVM-2, which simultaneously maps
multiple “logical” JVMs onto a single OS process,
another approach to the affinity between the virtual
machine and the OS process it runs in is exploited in
SAP's Process Attachable Virtual Machine (PAVM)
[KKL+02]. When a user session starts, an instance of
PAVM is created. It has a private session memory
block, which stores the complete computational state
of the session, as well as run-time data structures such
as thread stacks and heap area needed by the session.
This organization allows PAVM instances to mapped
into any work process and then unmapped, made
persistent, and eventually mapped back into the same
or another work process, since the session state is
completely encapsulated in the session memory.
Thread scheduling is cooperative, which is beneficial
for maximizing batch processing throughput. Special
care has been taken to properly handle bindings to
external resources by sessions.

The .NET platform [Micr02] defines application
domains, similar to the notion of isolates. Instances of
System.AppDomain are virtual processes isolating
applications from one another. Multiple application
domains can exist in a single OS process. There is no
multi-user support – all collocated application
domains execute on behalf of the same user.
Moreover, unlike MVM-2's isolates, .NET's
application domains cannot safely use arbitrary native
code.

Several approaches could be applied to make native
code memory-safe. However, the techniques such as
augmenting native code with safety-enforcing
software checks [WLA+93], statically analyzing it and
proving it safe [NL96], or designing a low-level,
statically typed target language to compile native code
to [MCG+99] are unsuitable for our purposes. The
major problem is these mechanisms add memory
safety only, and do not address the issue of conflicting
use of OS resources. Moreover, they either introduce
non-negligible performance overheads, require source
code for re-compilation, or are not general enough for
complex native code. An approach applicable to
MVM-2 to remove IPC costs introduced by NCI is
Protected Shared Libraries [BTC97]. A protected
shared library may have, within the process that
loaded it, its own protection domain. Having such
functionality in an OS would elegantly addresses the
problem of collocating the JVM and untrusted native
libraries. Our solutions, based on peer native processes
to isolate untrusted code and the ability to load the
same set of libraries multiple times with the same
process for trusted code, are dictated by a pragmatic
consideration: using the features available on a
mainstream operating system.

2003 USENIX Annual Technical ConferenceUSENIX Association 97

An interesting design alternative is to re-implement an
OS in the Java programming language. This would
subsume certain functionality that currently requires
peer native processes (e.g., instances of Jlogin) in
MVM-2. For example, file access could be done
entirely in the safe language. This can lead to savings
and optimizations, e.g., file access permissions would
be checked only once, via Java security. Hardware
protection would not be required, so a part of the
overhead currently due to process switching would not
be incurred.

Several OSes have been implemented entirely or
almost entirely in a safe language. Earlier systems,
such as Cedar [SZB+86], were typically single-user.
An exception is Project Oberon, which associated user
identities with executing programs. However, such
support was minimal, as the premise of that system
was that the Oberon server “operates in a harmonious
environment” ([WG92], p. 324). A more recent
example is the SPIN operating system [BSP+95],
implemented in Modula-3. JavaOSTM [SM99] was a
first attempt to offer the complete OS functionality
entirely in the Java programming language. However,
the system was single-user and consisted of a single
protection domain. A more complete and ambitious
environment is the JX operating system [GFW+02],
also written in the Java programming language.

Comparing MVM-2 with JX illustrates several points.
JX does not rely at all on hardware protection. This
implies that a arbitrary user-supplied native library can
jeopardize the whole kernel and all applications, and is
thus disallowed. In MVM-2 native code executes in a
separate process, but a virtual machine bug can corrupt
or abort all the current computations. The reliability of
the virtual machine can improve and eventually
become as robust as a kernel of a commodity OS,
while a decision to entirely eliminate memory
protection from the OS prevents native code from ever
being run (unless the need for native code does not
exist at all). Designs such as JX or JavaOS are
promising but only for applications coded entirely in
the Java programming language. Purity has significant
advantages, though – for example, if the AWT
subsystem was implemented without any native code
in our base JDK, as it is done by the Remote Abstract
Window Toolkit [IBM98], the issue of virtualizing
core native libraries would be much less important in
the development of MVM-2.

7 CONCLUSIONS
We have implemented extensions to a multitasking
virtual machine that allow it to safely host isolated
computations from various users. MVM-2 builds on
the safety of the Java programming language to
collocate multiple programs within a single-address
space. The identities of users are preserved with

respect to operations that need them. The virtual
machine is transparently shared among computations,
with improved resource utilization. Any standard API
of the Java platform including file access, native code,
and the graphical subsystem can be used by any
computation from any user with an illusion of having
the JVM all to itself.

The performance penalties for using user-supplied
native code and file access operations are proportional
to how often the application uses those features; in the
case of remote file access only certain operations incur
overhead, while reading and writing to files do not
suffer any performance impact. Using the graphical
subsystem does not result in any performance
overhead and at the same time significantly lowers
both the start-up time and the memory footprint.

In this paper we have not described any resource
control mechanisms of MVM-2. This is partially due
to space constraints and partially because this work is
still in progress [CHS+02]. Certainly such facilities
are needed before we could call MVM-2 a multi-user
platform akin to an OS for isolates.

Our approach takes to the extreme the concept of the
virtual machine executing on top of a commodity OS.
Auxiliary processes are needed to provide multiple
operating system resource and user contexts, but no
modifications are required to the OS itself and at the
same time no feature of Java platform is missing or
compromised. We view MVM-2 as a step towards
gradual blending of the functionality and
implementations of virtual machines and operating
systems.

Acknowledgments. The authors are grateful to Ciaran
Bryce, Dave Dice, Mick Jordan, Doug Lea, Miles
Sabin, Glenn Skinner, Alex Snoeren, Pete Soper, Pat
Tullmann, Jan Vitek, and Mario Wolczko for their
comments, suggestions and help. Special thanks are
due to Rod Evans for explaining details of linkers and
loaders and to Fred Oliver for sharing his insights
about start-up time measurements.

Trademarks. Sun, Sun Microsystems, Inc., Java,
JVM, Enterprise JavaBeans, HotSpot, and Solaris are
trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other
countries. SPARC and UltraSPARC are a trademarks
or registered trademarks of SPARC International, Inc.
in the United States and other countries. UNIX is a
registered trademark in the United States and other
countries, exclusively licensed through X/Open
Company, Ltd.

8 REFERENCES
[BHL00] Back, G., Hsieh, W., and Lepreau, J.

Processes in KaffeOS: Isolation, Resource

2003 USENIX Annual Technical Conference USENIX Association98

Management, and Sharing in Java. 4th OSDI, San
Diego, CA, 2000.

[BTC97] Banerji, A., Tracey, J., Cohn, D. Protected
Shared Libraries: A New Approach to Modularity
and Sharing. USENIX Annual Technical
Conference, Anaheim, CA, January 1997.

[BSP+95] Bernshad, B., Savage, S., Pardyak, P., Sirer,
E., Fiuczynski, M., Becker, D., Eggers, S., and
Chambers, C. Extensibility, Safety and
Performance in the SPIN Operating System. 15th

ACM SOSP, Copper Mountain, CO, December
1995.

[BV99] Bryce, C. and Vitek, J. The JavaSeal Mobile
Agent Kernel. 3rd International Symposium on
Mobile Agents, Palm Springs, CA, October 1999.

[CD01] Czajkowski, G., and Daynes, L. Multitasking
without Compromise: A Virtual Machine
Evolution. ACM OOPSLA'01, Tampa, FL.

[CDN02] Czajkowski, G., Daynes, L., and Nystrom,
N. Code Sharing among Virtual Machines.
ECOOP'02, June 2002, Malaga, Spain.

[CHS+02] Czajkowski, G., Hahn, S., Skinner, G., and
Soper, P. Resource Consumption Interfaces for
Java Application Programming - A Proposal.
ECOOP'02 Workshop on Resource Management
for Safe Languages, Malaga, Spain, June 2002.

[DBC+00] Dillenberger, W., Bordwekar, R., Clark,
C., Durand, D., Emmes, D., Gohda, O., Howard,
S., Oliver, M., Samuel, F., and St. John, R.
Building a Java virtual machine for server
applications: The JVM on OS/390. IBM Systems
Journal, Vol. 39, No 1, 2000.

[GFW+02] Golm, M., Felser, M., Wawersich, C.,
Kleinoder, J. The JX Operating System. The
USENIX Annual Technical Conference,
Monterey, CA, June 2002.

[GJS+00] Gosling, J., Joy, B., Steele, G. and Bracha,
G The Java Language Specification. 2nd Edition.
Addison-Wesley, 2000.

[HCC+98] Hawblitzel, C., Chang, C-C., Czajkowski,
G., Hu, D. and von Eicken, T. Implementing
Multiple Protection Domains in Java. USENIX
Annual Conference, New Orleans, LA, June 1998.

[IBM98] IBM Corp. Remote AWT For Java.
alphaworks.ibm.com/tech/remoteawtforjava.

[JCP01] Java Community Process. JSR-121:
Application Isolation API Specification.
http://jcp.org/jsr/detail/121.jsp.

[KKL+02] Kuck, N., Kuck, H., Lott, E., Rohland, C,
and Schmidt, O. SAP VM Container: Using
Process Attachable Virtual Machines to Provide
Isolation and Scalability for Large Servers. Work-

in-Progress Session, Java Virtual Machine
Research and Technology Symposium, San
Francisco, August 2002.

[Lian99] Liang, S. The Java Native Interface.
Addison-Wesley, June 1999.

[MM01] Mauro, J., and McDougall, R. Solaris
Internals – Core Kernel Architecture. Prentice
Hall, 2001.

[Micr02] Microsoft Corp. .NET Web Page.
http://www.microsoft.com/net. 2002.

[MCG+99] Morrisett, G., Crary, K., Glew, N.,
Grossman, D., Samuels, R., Smith, F., Walker, D.,
Weirich, S., and Zdancewic, S. TALx86: A
Realistic Typed Assembly Language. ACM
SIGPLAN Workshop on Compiler Support for
System Software, Atlanta, GA, May 1999.

[NL96] Necula, G., and Lee, P. Safe Kernel
Extensions without Runtime Checking. 2nd

Symposium on Operating Systems Design and
Implementation, Seattle, WA 1996.

[PCD+02] Palacz, K., Czajkowski, G., Daynes, L., and
Vitek, J. Incommunicado: Efficient
Communication for Isolates. ACM OOPSLA'02,
Seattle, WA, November 2002.

[SM99] T. Saulpaugh and C. Mirho. Inside the
JavaOS Operating System. Addison-Wesley 1999.

[SZB+86] Swinehart, D., Zellweger, P., Beach, R.,
and Hangmann, R. A Structural View of the Cedar
Programming Environment. ACM Transactions
on Computer Languages and Systems, Vol. 8. No.
4, October 1986.

[SLN99] Schmidt, B., Lam, M., and Northcutt, D. The
Interactive Performance of SLIM: a Stateless,
Thin-Client Architecture. 17th ACM SOSP,
Kiawah Island, SC, 1999.

[Spec98] Standard Performance Evaluation
Corporation. http://www.spec.org.

[Stev90] Stevens, R., UNIX Network Programming.
Prentice Hall, 1990.

[Sun00a] Sun Microsystems, Inc. Java HotSpot™
Technology. http://java.sun.com/products/hotspot.

[Sun00b] Sun Microsystems, Inc. Linker and
Libraries Guide. http://docs.sun.com.

[Sun02] Sun Microsystems, Inc. New I/O APIs.
http://java.sun.com/j2se/1.4/docs/guide/nio.

[WLA+93] Wahbe, R., Lucco, S., Anderson, T., and
Graham, S. Efficient Software Fault Isolation. 14th

ACM SOSP, Asheville, NC, December 1993.

[WG92] Wirth, N. and Gutknecht, J. Project Oberon.
Addison-Wesley, 1992.

