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Abstract
Gesture recognition is a common method of text in-

put on handheld and other pen-based computing devices.
Xstroke is a full-screen gesture recognition program for
the X Window System.

The touchscreen of a typical pen-based device is di-
vided into two regions, a primary region for application
display and interaction, and a secondary region for ges-
ture input. Full-screen gesture recognition improves on
the typical implementation by sharing the entire screen
for both purposes. Applications benefit as more screen
real estate is available. Recognition performance im-
proves due to increased information from larger ges-
tures. Usability increases as less time is lost switching
attention between two separate screen regions.

Full-screen gesture recognition presents several user-
interface design challenges. Conventional GUI interac-
tion is pointer driven. This makes it difficult for sys-
tems with single-button pointer devices to distinguish
between GUI interaction and character input. Several
solutions to this problem are examined.

The simple feature-based recognition engine at the
heart of Xstroke has proven capable of resolving gesture
sets of 100 different gestures with up to 95% accuracy.
Xstroke is freely available and has become the predom-
inant gesture recognition system for X-based handheld
devices.

1 Introduction
Gestures, or marks entered with a stylus or mouse to
invoke commands, have become an increasingly rele-
vant aspect of user interfaces over the past few years.
Gestures are an efficient means of command input since
a gesture can simultaneously indicate both the opera-
tor and operand for a command. On the desktop, ges-
tures have long been present in specialized fields such
as CAD, but have recently begun to appear in general-
purpose applications including text editors [3] and web
browsers [13, 8].

Outside the desktop arena, gestures are perhaps more
compelling since many handheld and other mobile com-
puting devices provide a stylus as a primary input device.
With these devices, software is required to allow the user
to efficiently input text using the stylus. Gestural text in-
put is possible if the gesture recognition system supports

a gesture set large enough to cover every desired charac-
ter. It is also desirable if the recognition system is capa-
ble of recognizing gestures that are similar to character
shapes in their natural forms.

Xstroke is a gesture recognition system designed to
add gestures to the desktop and to provide efficient char-
acter input for pen-based computers running the X Win-
dow System. The X Window System is the standard
graphical user for UNIX and UNIX-like operating sys-
tems. The XFree86 project [15] distributes an imple-
mentation of the X Window System including a tiny X
server known as kdrive [14] which is suitable for use on
handheld computers.

xstroke has several distinguishing features:

Full-screen recognition xstroke allows gestures to be
entered anywhere on the screen, directly on top of
the program to receive the gesture command. The
current stroke is drawn in translucent “ink” above
other programs.

Extensible recognition xstroke includes a simple
feature-based recognition engine, and can be
extended with more sophisticated recognition
engines through dynamically loaded libraries.

Adaptive slant correction xstroke automatically
adapts its recognition to account for changes in the
slant or rotation of input gestures.

Configurable alphabet xstroke includes a default ges-
ture set designed to allow efficient use of xstroke as
a keyboard replacement. The gesture→action map-
ping can be customized and custom gestures may
be added to the gesture set.

1.1 Related Work
Gesture recognition can be added to user interface envi-
ronments at several different layers including direct im-
plementation within an application, recognition within
a library or toolkit, or recognition through an external
program. Each strategy has different implications on the
effort needed to integrate the recognition support into
applications.

Open source/free software programs directly support-
ing gestures include emacs/xemacs [3] and mozilla [8].
In both of these programs, the recognition engine is in-
cluded as an integrated part of the application and is not
available to other programs.
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Figure 1: xstroke in window mode

If the recognition engine is placed within a library, it
can be used by multiple applications. James Kempf de-
veloped a generic library interface [11] for handwriting
recognition engines, which has not achieved widespread
use. Mark Willey’s recognizer, libstroke [16], is an ex-
ample of a specific recognizer implemented as a library.
Incorporating gesture support at this level requires mod-
ifying the application to pass gestures to the recognition
library and act on the recognized results. libstroke has
been used in modified versions of ggv, gEDA, and the
FVMW window manager.

Several efforts at providing system-level gesture sup-
port implement recognition within the user-interface
toolkit. This is the approach taken in SATIN [10] with
a Java toolkit; Artkit [9], a custom toolkit support-
ing gestures; and in a modified version of the Garnet
toolkit [12]. The benefit of toolkit integration is that the
gestures become available to all applications using the
toolkit, without any gesture-specific code required in the
application. Naturally, applications designed without us-
ing the toolkit do not get the gesture support. Neither of
the popular modern open source/free software toolkits,
(KDE [5] and GNOME [6]), offer gesture support.

The final approach for integrating gesture recognition
with the user interface is as a peer application. The ben-
efit of this approach is that gesture support can be pro-
vided to applications without modification to those pro-
grams. Existing programs using this approach include
xscribble and wayV [4].

The author’s experience, (and frustration), with
xscribble led directly to this work. Recognition per-
formance was poor and there were no readily available
documentation on how to re-train the recognizer. These
frustrations led directly to the fact that all of the gesture
definitions for xstroke are in human readable form and
can be modified online with no need for external tools
beyond the ability to edit a text file.

The author was unaware of wayV until after xstroke
had been written. Like xstroke, wayV is a full-screen
gesture recognition program for the X Window System.

Figure 2: xstroke in full-screen mode

Gesture recognition is distinguished from conventional
pointer interaction by the use of a modifier key or a
specific pointer button. Configurable gesture actions
include program execution and generation of keypress
events.

2 Full-screen Recognition

Initial versions of xstroke required gestures to be entered
into a window belonging to xstroke. Figure 1 shows
xstroke being used in this way to enter text into a cal-
endar application. Entering gestures into a separate win-
dow has several drawbacks:

• On small displays, the recognition window steals
precious screen real estate from the active applica-
tion. Typical handheld computers that run xstroke
have a display size of 320×240 pixels. Application
developers are hard-pressed to get all the informa-
tion they would like into those pixels without one
fourth of them being used for input and unavailable
for output.

• Restricting gesture recognition to a window places
a maximize size on the gestures that can be input.
Smaller gestures make it harder for the recognition
engine to extract the desired features.

• Gestures in a separate window cannot achieve their
full expressive power. A gesture in a window can
indicate an operation by its shape, but cannot indi-
cate the operand for the operation by its position.

Current versions of xstroke allow gestures to be en-
tered anywhere on the screen as shown in Figure 2. This
has benefits that are the opposite of each of the draw-
backs listed above: the entire display is available for
active applications, gestures may be entered as large as
desired leading to more accurate recognition, and the po-
sition of gestures may be used to indicate operands for
gesture commands.
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2.1 Resolving Pointer Ambiguity
Full-screen gesture input is a compelling feature, but
it also provides some significant challenges in the user
interface design. The main problem is that full-screen
gesture recognition introduces an ambiguity in the han-
dling of pointer motion events. Namely, does a sequence
of pointer motion events indicate a gesture for recogni-
tion, or is intended for direct manipulation of graphical
elements of the user interface, (ie. standard mouse in-
teraction)? xstroke implements several complementary
mechanisms for resolving this ambiguity.

2.1.1 Reserved Button
If multiple pointer buttons are available, xstroke can be
configured to perform recognition only when a specific
button is pressed. If a button can be dedicated to xstroke
this approach is sufficient and can be quite satisfactory.
However, for many handheld systems, the only pointer
device is a simple touchscreen which acts as a single-
button pointer device. In that case, other mechanisms
are necessary for managing when recognition occurs.

2.1.2 Manual Toggling
xstroke provides a small control window with a button
that can be used to toggle recognition. When recogni-
tion is enabled, xstroke intercepts all pointer motion be-
tween button-down and button-up and performs recog-
nition on the resulting gesture. When recognition is dis-
abled, all pointer events are handled as if xstroke was
not present. This toggle capability provides the neces-
sary mechanism to allow the user to control the handling
of pointer events, but it is far from convenient. Moving
the pointer back and forth from the active application
where gestures are being performed to the control win-
dow is wasted user time. This is especially costly when
the display is large, (causing the control window to be
far from the active application), or when toggling recog-
nition is frequent, (such as the need to continually scroll
a document while writing large amounts of text).

2.1.3 Automatic Toggling
The author regards manual toggling of recognition as a
feature of last resort. Gestures are powerful enough that
full-screen recognition should always be enabled. In-
stead of requiring the user to turn recognition off to use
a button or a scrollbar, the system should “know” that
recognition is not desired on those elements and should
automatically disable recognition when appropriate.

For the case of buttons, a simple solution proves quite
effective. In the default configuration, xstroke recog-
nizes a single pen tap as a gesture associated with an
action to synthesize a button press event. Because of
this, GUI buttons can be used directly without having to
disable recognition.

The only remaining problem then is how to automat-
ically disable recognition for GUI elements that require

pointer motion while the button is pressed, (ie. click-
and-drag events), for example, a scrollbar. The prob-
lem was solved for buttons by recognizing a gesture,
then synthesizing pointer events. That approach does
not work here since the gesture is not recognized until
the pen is lifted, while the user will expect the scrollbar
to respond while the button remains pressed.

We experimented with automatically disabling recog-
nition based on a heuristic for determining if the win-
dow under the stroke “expected” recognition or not. The
heuristic is to examine the event mask of the window at
which the gesture begins to see if it has selected for Key-
Press events. The rationale is that most gestures are used
to send synthetic keypress events, so if a window has not
selected for keypress events, then recognition can be dis-
abled and pointer events can be passed through directly.
This idea had some success. With xterm, xstroke could
be used for recognition within the terminal window and
for operating the scrollbar. With GTK+ applications,
scrollbars and menus could be used without manually
disabling recognition.

But, at the same time, the complex window hierar-
chies within some application cause this heuristic to fail,
sometimes with disastrous results. For example, with Qt
applications, the scrollbars and menus are still not us-
able without manually disabling recognition. This fail-
ure mode is acceptable.

However, with the window hierarchy of rxvt, for ex-
ample, the child window does not select for KeyPress
events, (instead a parent window does). In this case the
xstroke heuristic disables recognition for the entire win-
dow, and xstroke cannot be used to input text into rxvt. A
similar problem happens with some GTK+ dialog boxes
with multiple text boxes. Recognition is disabled for the
majority of the dialog box, except for strokes that actu-
ally began inside one of the text boxes.

These failure modes are so bad, and the heuristic fails
often enough that it was decided that attempting context-
sensitive enabling/disabling of stroke recognition based
on heuristics is infeasible.

Context-sensitive recognition would still be very
powerful—if it could be done reliably. One possibil-
ity is that a convention could be developed so that win-
dows could explicitly state whether recognition should
be enabled on each window or not. It is not anticipated
that many applications will be modified to provide these
hints. Rather, it is expected that toolkits will provide
these hints for those classes of windows which require
them, (such as scrollbars). A more general solution that
would also be very desirable is if toolkits would provide
some indication of the widget-class of each window, (eg.
menu, button, scrollbar). Xt implements a feature like
this with the MIT OBJ CLASS name, but most mod-
ern toolkits provide no such indication.

With a few carefully placed (and standardized) hints
in place within the toolkits, the pen should just do the
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right thing—allowing full-screen recognition, but also
enabling scrollbars, menus, and other GUI widgets to
still be manipulated.

2.1.4 Tap-and-hold
Finally, there is one more class of window that still needs
to be discussed. Some windows want recognition events,
but also act on click-and-drag pointer events. The most
common example is a text widget which could use ges-
ture recognition for text input, but also allows click-and-
drag to select text. A simple hint controlling whether
recognition should occur or not is not sufficient here. For
this case, xstroke has another toggle mechanism that is
considerably faster than the global toggle button in the
control window. If a gesture begins with a tap-and-hold
motion, (that is, if there is little or no pointer motion
within a short timeout period following a button-down
event), then xstroke will disable stroke recognition for a
single gesture.

With this mechanism in place, the text widget be-
comes quite usable. In the most frequent usage, ges-
tures are used on the text widget to input text. Then,
when an occasional text selection is required, a quick
tap-and-hold, (by default .75 seconds and naturally con-
figurable), is all that is needed to make the pointer select
text rather than recognize a gesture. xstroke also changes
the pointer cursor, (from a pencil for recognition to the
text selection bar), to indicate that the timeout has ex-
pired and the user can begin the selection operation.

3 Recognition
Within xstroke, gestures are recognized with a simple
feature-based engine. An input gesture is captured as a
sequence of time-stamped pen positions. It is then con-
verted into a sequence of discrete feature values with the
goal of selecting the correct target gesture.

The gesture feature vector is then compared with
each configured gesture class. When the input gesture
matches a gesture class exactly for each feature, that ges-
ture class is returned as the recognized class.

The currently implemented feature recognizers are
quite limited. But, the recognizer interface is well-
defined so that it can easily be extended. New recogniz-
ers can be added as dynamically loaded modules for ease
in experimenting. The following sections describe in de-
tail the feature recognizers currently available in xstroke.

3.1 Grid Recognizer
The primary feature implemented in xstroke is the grid
feature. This feature was inspired by the algorithm used
in libstroke[16] though xstroke features a custom imple-
mentation with some improvements. The grid feature is
based on a 3 × 3 grid numbered from 1 to 9. The grid
is centered on the gesture and is generally scaled inde-
pendently in the X and Y dimensions to fit the bounding
box of the gesture as shown in Figure 3.

1 2 3

4 5 6

7 8 9

3214789

1 2 3

4 5 6

7 8 9

369654789

1 2 3

4 5 6

7 8 9

14785258963

Figure 3: Grid fit to 3 different gestures

The automatic fitting of the grid allows for consistent
recognition in spite of gesture variation in scale or in
stretching in one dimension or the other. However, for
some strokes that are very wide or very tall, the deforma-
tion introduced by scaling the grid will have a negative
impact on recognition. For example, this grid scaling
would introduce an ambiguity between a gesture consist-
ing of a 45◦ line and a gesture of a very nearly horizontal
line. To avoid these errors, the following rule is applied.
Whenever the bounding box of a gesture is more than 4
times larger in one dimension than the other, the grid is
fit to the smallest square containing the gesture. This is
demonstrated in Figure 4.

1 2 3

4 5 6

7 8 9

456

1 2 3

4 5 6

7 8 9

258

Figure 4: Grids constrained to be square for wide and
tall gestures

Once the grid has been fit to the gesture, the fea-
ture value is determined by simply traversing the ges-
ture points in time order and recording the number of
each grid cell as the gesture passes through it. For ex-
ample, the horizontal line in Figure 4 has a value of 456
while the ‘C’-shaped stroke of Figure 3 has a value of
3214789.

There are two details in the extraction of the grid cell
sequence worth noting. First, depending on the sampling
rate of the input device and the speed of the gesture in-
put, there may be gaps between samples large enough
to cause a cell to be missed. To avoid this problem
xstroke uses linear interpolation between every sample
point, (using a Bresenham algorithm), and examines the
cell of every interpolated point.

Second, the gesture may pass through a cell so briefly
that perhaps that cell value should be considered noise
and discarded. Libstroke [16] attempts to solve this
problem by disregarding cells which are passed through
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by some small percentage of the total number of sample
points. Early experiments using libstroke within xstroke
demonstrated two problems with this approach. First,
discarding cells can result in an “impossible” digit se-
quence with the gesture jumping from one cell to a non-
adjacent cell. Second, as gestures become more com-
plex, the static threshold results in a greater number of
cells being discarded. With extremely long gestures, an
empty digit sequence may be generated.

In order to avoid discarding useful information de-
scribing the shape of the gesture, xstroke does not at-
tempt to filter the grid digit sequence. As a result xstroke
must be able to match sequences with more noise, (and
hopefully more information), than those provided by
libstroke. The sequence matching technique used in
xstroke is described below.

3.2 Regex Sequence Matching
After generating a digit sequence for a gesture, libstroke,
(as well as early versions of xstroke), uses exact string
comparison to match the sequence with configured ges-
tures. This approach can be problematic. Consider a
gesture that is a diagonal line from the upper-right to the
lower-left, (this is the default gesture in xstroke for the
Return key). The ideal digit sequence for this gesture
would be 357, but since the ideal stroke passes near cell
intersections in the grid, significant variation in the digit
sequence can result in practice. Figure 5 demonstrates
two of the many possible digit sequences that might re-
sult.

1 2 3

4 5 6

7 8 9

32547

1 2 3

4 5 6

7 8 9

36587

Figure 5: Similar strokes with different digit sequences

In order to reliably recognize this gesture with exact
string matching, the recognizer would have to be con-
figured with all likely variations of the digit sequence:
357, 3257, 3657, 3547, 3587, 32547, 32587,
36547, 36587.

For this very simple gesture class, it is necessary to
store 9 separate strings in the recognizer! This gets te-
dious very quickly, especially since an increase in stroke
complexity yields an exponential increase in the number
of possible sequences, (generally 3N possible sequences
for a stroke passing near N cell intersections). Clearly,
this is not a scalable approach.

The solution in xstroke is that the grid feature value
for a class of gestures is represented by a regular expres-

sion. For the case above, the default xstroke configu-
ration contains the following specification: Return =
grid("3[26]?5[48]?7") This regular expression
provides an efficient way to store the class of 9 differ-
ent sequences. The matching of a gesture sequence with
a class is also efficient as regular expression matching is
generally provided by a highly optimized system library.

This same technique can be used to encode robust
gesture classes for sophisticated shapes. As a rather
extreme example, the following regular expression
represents a robust class of ‘B’ shapes for xstroke:
b=grid("([12]*[45][78]|[12][45]+[78]
?)?[78]*[4]*(1?[2][369]+|1[25][369]*)
([369]+[25]+8?[147]?[258]*[369]+|[25]
*8?[147]+[258]+[369]*)([369]*[58][74]
+|[369]+[58][74]*)"). This single expression
describes the three ideal variations of the ‘B’ shape
shown in Figure 6 along with the myriad sequences that
may result when these gestures are input.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Figure 6: Three ideal ‘B’ shapes

The expression above can be daunting to read, (let
alone attempt to understand). Its existence demonstrates
that xstroke did not achieve all of its original goals — it
had been hoped that the xstroke configuration file would
always be easy to read and edit.

But the complex ‘B’-shape expression also proves an
interesting result. The author originally chose the grid
recognizer since it would be so easy to implement. It was
never expected that it would be able to handle anything
beyond the most simple gestures. But, with expressions
such as the one above, this simple recognizer is capa-
ble of distinguishing some rather sophisticated gestures.
The grid recognizer has been so successful that investi-
gation into other recognizers has proceeded slowly since
the grid recognizer is often good enough.

3.3 Anchor Recognizer

xstroke contains a special-purpose recognizer known as
the anchor recognizer. This recognizer cannot distin-
guish much of the shape of a gesture, but is used to “an-
chor” a gesture in absolute position and scale. For exam-
ple, this allows xstroke to distinguish a gesture made in
the middle of a touchscreen from a gesture of a similar
shape that begins and ends at the screen edges. The an-
chor recognizer is based on the grid recognizer but has
two important differences.

First, for the anchor recognizer the 3×3 grid has cells
of non-uniform size. The center cell is enlarged to fill
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most of the grid area (roughly 80as very small rectangles
positioned in each corner. The second difference is that
the anchor grid is not scaled to fit the bounding box of
the gesture but is scaled to cover the entire gesture area.

Figure 7 shows two gestures of similar shape; the grid
recognizer returns the same digit sequence for each ges-
ture. However the absolute position of the gestures is
different and this is distinguished by the anchor recog-
nizer. In practice, users of xstroke have found these
global edge-to-edge gestures useful for strokes useful
for invoking various operations. For example, a gesture
from the bottom of the screen to the top might launch a
program to display the currently configured xstroke ges-
ture, or a diagonal slash from one corner of the screen
to the other might close the current application. Using
anchor, the gesture shapes for each letter in the alphabet
can be reused for new operations besides their standard
use for character input. For example, an edge-to-edge
‘e’ shape might be used to launch an email program.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

grid:32547�anchor:5

1 2 3

4 5 6

7 8 9

grid:32547�anchor:32547

Figure 7: Anchor recognizer distinguishes absolute po-
sition and scale

3.4 Adaptive Slant Correction
There is a significant amount of variation in gesture ori-
entation from one user to the next. In addition to the nat-
ural differences of slant due to different writing styles,
there is added slant when xstroke is used on a hand-
held computer. Typically, one hand holds the computer
while the other hand holds the pen. Due to the physi-
cal arrangement of human shoulders and arms, the most
natural way to hold the computer in this way does not
lend itself to precisely upright character entry. [XXX: It
might be interesting to measure the natural slant in var-
ious users simply holding the device in a comfortable
way].

Uncorrected slant leads to misrecognition as many de-
sirable strokes differ only in orientation. Initial testing of
xstroke without slant correction showed some users un-
able to achieve acceptable recognition rates. The need
for slant correction has been shown in various other
character recognition systems as well [7].

To correct for this, xstroke allows an OrientationCor-
rection action to be associated with any gesture. The

OrientationCorrection action accepts a numeric argu-
ment giving the ideal orientation of the gesture that was
recognized. For example, the left-to-right gesture used
for Space in the default alphabet has an OrientationCor-
rection of 0 degrees while the right-to-left gesture used
for BackSpace has an OrientationCorrection of 180 de-
grees. All of the simple one-line strokes have similar
OrientationCorrection actions associated with them.

Whenever xstroke correctly recognizes a gesture with
an OrientationCorrection action, it measures the actual
angle from the first point of the stroke to the final point.
It subtracts from this angle the ideal angle giving in the
OrientationCorrection action to computes the expected
slant at which the user is holding the device. xstroke
uses an average of the last 5 values computed in this
way as an estimate for the current gesture orientation.
Then, as each gesture is performed, before the gesture
is passed to the recognition engine, it is rotated by the
current orientation estimate to compensate for any slant.

This system has proved quite effective at helping to
alleviate problems with recognition from holding the de-
vice at various angles. This system gets great bene-
fit from the fact that the Space gesture, the most com-
mon character in text, provides orientation information.
Also, in the presence of recognition errors due to mis-
estimated orientation, the Backspace gesture will often
be performed to correct the errors, and will provide the
needed information for orientation correction as well.

It may seem strange that the orientation correction
actions only occur after characters are correctly recog-
nized. If the current orientation estimate is incorrect,
how will the system correctly recognize a gesture in or-
der to get an OrientationCorrection action to improve
the estimate? From casual observance of users, it ap-
pears that when users struggle with repeated recognition
problems, they naturally write more carefully and more
upright. Then, as xstroke adapts to their preferred orien-
tation, the user can drift into a more comfortable position
for holding the device.

4 Customization
Like many successful open systems, xstroke is designed
to be modified and extended. The goal has been to de-
sign a system with sane defaults in which all policy de-
cisions can me customized by the user. Several aspects
of the user-interface can be configured such as which
button triggers recognition and whether recognition is
limited to a single window or is available full-screen.
xstroke also allows the customization of the gesture set
and extension of the set of feature recognizers. These
aspects are discussed in detail below.

4.1 Default Gesture Set
The current release of xstroke contains pre-defined ges-
tures for all printable ASCII characters, (eg. letters a-
z, digits 0-9, and punctuation). It also includes addi-
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tional gestures necessary to function as a full keyboard
replacement Space, BackSpace, Return, Tab, Escape,
Shift, Control, Meta, etc.

The default gesture set is available in two forms.
In the “Basic Set” , (as illustrated in Figures 8-11),
the gestures for letters, numbers, and punctuation are
each made available as independent gesture sets called
modes. There are also additional mode-changing ges-
tures to change the current mode either for a single
stroke, (ie. a single punctuation character), or until the
next mode change, (ie. to input a large set of num-
bers). The most commonly used gestures such as Space,
BackSpace, Return are available in a “Global Mode” that
is always active.

The basic gesture set does include several variations
for many letters. These are intended to accommodate
multiple writing styles and to improve efficiency. For
example, the vertical bar on may letter shapes, (eg. B,
D, R), is optional which allows faster gesture entry.

RET CTRL META SPC Button 1

↑ ↓ →

Abc 123 !@#

Figure 8: Global Gestures

0 0 1 2 3

4 4 5 5 6

7 7 8 9

Figure 10: Basic Gestures: Numbers

The second form, the “Advanced Set”, does not re-
quire separate modes. A single gesture set contains ges-
tures for all letters, numbers, and punctuation. This be-
gan as an experiment to determine if a single gesture set
could include enough independent gestures to act as a
keyboard replacement. The author was pleasantly sur-
prised to find that the simple grid recognizer is capable
of distinguishing such a large set of gestures.

Cramming every key on the keyboard into a single
gesture set requires some creativity to avoid several

. , ’ ” <

> [ [ ] ]

- / ? ! {

{ } } # (

) ) \ + =

* | ; :

Tab ESC ˜ at at

% % & ˆ ‘

Figure 11: Basic Gestures: Punctuation

0 1 2 3 4 5

6 7 8 8 9 9

Figure 12: Advanced Gestures: Numbers in letter mode

ESC Tab . , : !

- = ? | [

] { } < > (

) ) ‘ ” ; /

% ˆ # ˜ & at

Figure 13: Advanced Gestures: Punctuation in letter
mode
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a a b b b b c d d d d d

d e e f f f g g g h i j

k l m m m n n o p p p q

q r r r s t u u v v v w

x y y z

Figure 9: Basic Gestures: Letters

clashes of similar shapes (eg. ‘O’ vs. ‘0’, ‘S’ vs. ‘5’,
etc.). The “advanced” gesture set solves these problems
by including gestures for each number that are drawn in
the opposite direction, (eg. the gesture for the letter ‘O’
is drawn in a counter-clockwise direction while that for
the number ‘0’ is drawn clockwise, ‘S’ is drawn from top
to bottom while ‘5’ is drawn from bottom to top, etc.).

The advanced gesture set is a strict superset of the ba-
sic set, so the advanced set is enabled by default in the
current system. The only reason to distinguish between
the two sets is that the documentation for the basic set is
simpler and more suitable for new users.

4.2 Customizing Gestures
The gesture set for xstroke is contained in a plaintext
configuration file to make it easy to customize gestures
and their associated actions. One common customiza-
tion desired by many users is the ability to input accented
characters. A simple approach is to change the gestures
for standard punctuation symbols into their “dead key”
equivalents. This enables multi-stroke combinations to
be used to input accented characters in the exact same
manner as on a keyboard.

There is a significant potential problem caused by
allowing the end-user to customize the actual gesture
shapes, (as opposed to the gesture actions). Namely,
good gesture set design is a difficult task.

One aspect of the difficulty of gesture design is that
visual similarity of gestures can make it hard for users
to remember gestures correctly [1]. The author does not
claim to be an expert in gesture set design nor does he
claim understanding of human perception of similarity.
It is hoped that exposing customizable gestures will al-
low users to choose gestures that are easy to remember
for themselves individually. In fact, a survey of PDA
users found that in spite of problems with gesture mem-
orability, users actually want to be able to design new

gestures [2].
A second difficulty in gesture set design is the need

to understand the gesture recognition engine in order to
be able to determine if two different strokes can be re-
liably distinguished. An intentional design decision of
the feature recognizers within xstroke can help with this
problem. For all xstroke recognizers, the features were
designed so that feature values would be meaningful and
useful to humans.

This allows the possibility for the recognition system
to reason about ambiguities in the gesture set and report
them in a way that is meaningful to the user. This has
already proven useful in improving several misclassifi-
cation problems in xstroke, (such as the difficult distinc-
tion between ’v’ and ’u’).

4.3 Extending the Recognizer
The emphasis on human involvement in the training pro-
cess is not meant to suggest that automated techniques
should not be used. It would be very convenient for
users to be able to specify new gestures by example,
and xstroke could benefit greatly from machine learn-
ing techniques to adapt to the user. However, limitations
may exist within a feature set that no amount of machine
learning can overcome. This is one reason xstroke has
a well-defined mechanism for loading additional feature
recognizers through dynamic libraries.

As a concrete example, consider Figure 14 which
shows two ‘h’-shaped gesture and an ‘L’-shaped gesture.
The second ‘h’ is misclassified as an ‘L’ since the hump
is not larger than 1/3 the height of the gesture. This is
one of the most common current misclassification prob-
lems experienced by the author with xstroke.

This misclassification could not be fixed through re-
training. If a user retrained the misclassified ‘h’ as an
‘L’ all subsequent ‘L’-shapes would be misclassified as
‘h’. This would not be obvious to a user dealing exclu-
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Figure 14: Misclassification of ‘h’ as ’L’

sively at the level of gestures. But when looking at the
grid feature values the problem is immediately apparent,
and it is obvious that no quick fix is available since two
distinct shapes both have a feature value of 14789.

The only solution to this problem is to introduce a new
feature which could distinguish between these shapes.
xstroke currently has an experimental direction recog-
nizer intended to address this problem. Just as the grid
recognizer creates a short string based on quantizing 2D
position into 9 values, the direction recognizer creates a
string based on quantizing the stroke direction at each
point into 8 directions. With the addition of this recog-
nizer, the ‘h’ and ‘L’ strokes could then be easily distin-
guished:

h = grid(14789) ∩ direction(↓↗→↘)
L = grid(14789) ∩ direction(↓→)

5 Evaluation
Evaluating a new recognition system such as xstroke is
a difficult task. It would be ideal to have access to a
large database of multi-user gesture input data. Some
large databases of gesture and handwriting samples are
available commercially, but the data could not be redis-
tributed, so those databases are not feasible for an open
source project such as xstroke. It would be an interest-
ing project to assemble an open corpus of stroke data,
(which is especially feasible since in recent years there
has been a great increase in the number of users of open
source software that have access to touchscreen devices).

The custom gesture set in xstroke also complicates
testing since it may be difficult to separate measurements
of the performance of the recognizer from measurements
of the level of expertise that the users have with the cus-
tom gesture set.

The author must certainly be considered an expert
user having designed the gesture set. The author’s own
gestures were also the primary source of data for the
manual training of the recognizers. The author typically
achieves successful recognition of 95% of gestures in-
put. Of the unsuccessfully recognized gestures roughly
half are misclassified and half are rejected.

xstroke has supplanted xscribble as the standard char-
acter recognition program in the X11-based distributions

from handhelds.org. There is anecdotal evidence to sug-
gest that some users find xstroke to have more reliable
recognition than character recognition software on pop-
ular commercial PDAs.

This paper has introduced several issues such as the
user-interface issues of Section 2 and the advanced ges-
ture set of Section 4.1. It would be very interesting to
see a usability study investigating these issues, but such
a study is beyond the scope of the current work.

6 Future Work
As discussed in Section 1.1 there are several approaches
that can be used for integrating gesture recognition into a
user-interface. The current mechanism of xstroke as an
independent application requires the least modification
to other programs, but also fails to provide tight integra-
tion with applications. It would be extremely useful to
preserve the capabilities of the current xstroke interface
but to split the actual recognition engine into a library
that could also be used by other applications and toolk-
its.

Tighter integration with other applications would al-
low those applications to act on aspects of the gesture
itself, rather than just the synthetic event triggered by
recognition. For example, a scribble gesture might be
used to indicate the deletion of the text covered by the
gesture.

A significant limitation of the current user-interface is
that only single-stroke gestures are collected for recog-
nition. There is no inherent limitation in the recogni-
tion engine that would prevent it from recognizing multi-
stroke gestures. This capability would allow much more
natural letter forms to be used.

It would be very beneficial to have new tools for the
configuration, training, and user adaptation of the recog-
nizer. The extensible feature recognition system allows
further research into more sophisticated recognizers. It
would be very useful to implement a machine learning
algorithm within xstroke.

7 Availability
xstroke is free software distributed under the terms of the
GNU General Public license (GPL). It is available from
http://www.xstroke.org.
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