USENIX Association

Proceedings of the
FREENIX Track:
2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

USENIX Association

Network Programming for the Rest of Us

Glyph Lefkowitz
Twisted Matriz Labs
glyph@twistedmatrix.com, http://www.twistedmatrix.com/users/glyph

Itamar Shtull-Trauring
Zoteca
itamar@zoteca.com, http://www.itamarst.org/

Abstract

Twisted is a high-level networking framework that
is built around event-driven asynchronous I/0. It
supports TCP, SSL, UDP and other network trans-
ports. Twisted supports a wide variety of network
protocols (including IMAP, SSH, HTTP, DNS). It
is designed in a way that makes it easy to use
with other event-driven toolkits such as GTK+, Qt,
Tk, wxPython and Win32. Implemented mostly in
Python, Twisted makes it possible to create net-
work applications without having to worry about
low-level platform specific details. However, unlike
many other network toolkits, Twisted still allows de-
velopers to access platform specific features if nec-
essary. Twisted has been used to develop a wide
variety of applications, including messaging clients,
distributed hash tables, web applications and both
open source projects and commercial applications.

1 Introduction

Networked infrastructure development currently ex-
hibits a curious asymmetry. Very high-level infras-
tructure, such as web servers, and very low-level in-
frastructure, such as OS-level I/O, have both been
actively developed. However, there is no popular
middle layer between the two; each high-level ab-
straction implements all the infrastructure from the
base OS level all the way up to its application needs
in a specific way.

Development in the area of high performance mul-
tiplexing has continued on many platforms, yield-
ing ever-increasing performance. These mechanisms

are many and varied: /dev/poll, epoll, select, poll,
kqueue[l], completion ports, and POSIX AIO, to
name a few. On the other end of the spectrum,
many frameworks provide high-level constructs for
specific application domains. For example, web ap-
plication servers provide infrastructure for develop-
ing HTTP-based applications. There are few frame-
works that provide access to both the low-level and
high-level infrastructure required in real network-
ing applications. Web application servers don’t pro-
vide access to their low-level networking event loop
for extension with new protocols, while low-level li-
braries require far too much work to be usable out
of the box.

Twisted is a networking framework suitable for
building a wide range of networked servers and
clients. Twisted provides portability by using high-
level abstractions of protocols, various transports
(such as TCP and UDP) and an event loop, allow-
ing deployment of the same code across multiple
platforms, primarily Unix and Windows NT.

However, access to platform-specific functionality is
a real requirement for many applications. For ex-
ample, without the ability to access file descriptors
directly, it isn’t possible to write programs that in-
tegrate access to the serial port into the event loop.

Twisted provides low-level access to operating sys-
tem and event loop specific functionality. On UNIX,
for example, it is possible to register file descriptors
with select and poll, even though this functional-
ity is not available on Windows. At the same time,
one can use the Win32 API to access a serial port
through different mechanisms when using Windows.
Twisted makes it possible for a user to abstract such
a feature themselves if the framework does not pro-

FREENIX Track: 2003 USENIX Annual Technical Conference

77

78

vide it already.

Twisted also provides many high-level facilities com-
monly used by networking applications. A mail
server shares a large number of requirements with
a web server, such as I/0, protocol parsing, logging
and daemonization. In addition, many standard-
ized protocols are shared between applications, e.g.:
web mail requires both HTTP and SMTP. Includ-
ing basic implementations of such protocols saves
the developers the need of developing them from
scratch.

By providing the full spectrum of functionality for
networking applications, both low-level and high-
level, developing networking applications is a far
simpler task, allowing the developer to concentrate
on developing their application rather than reinvent-
ing the wheel. Twisted also provides a middle layer
so that high-level networking applications may take
advantage of low-level advances in functionality and
scalability.

This approach contrasts to the two main approaches
taken by most networking frameworks. One ap-
proach is to use a low-level framework and language
(C or C++). The low-level approach gives access
to all of the capabilities and APIs provided by the
operating system, and if done correctly can result
in a very fast program. On the other hand, per-
vasively using platform-specific functionality results
in a platform-specific program, so portability is hin-
dered. Unless carefully audited, C and C++ code is
more prone to buffer overflows and system-crashing
bugs than their high-level counterparts. This re-
sults either in a much longer development process
as testing locates all the problems, or in a more
fragile system.

Another approach is to provide functionality which
only provides access to the lowest common de-
nominator between all supported platforms. This
approach is taken by most high-level frameworks.
While the “lowest common denominator” approach
makes the framework very portable, it means one
can’t do many basic tasks that only work on spe-
cific platforms. For example, the Java platform,
which takes this approach, does not support run-
ning a server as a daemon on UNIX or an NT Ser-
vice on Windows, since neither of these features are
available on other platforms. This decision pleases
no-one by trying to please everyone.

High performance is not a major goal of the Twisted

FREENIX Track: 2003 USENIX Annual Technical Conference

framework. While efficiency and scalability are
taken into account during development, flexibility
and clean design are more important. This focus
stems from the belief that in the real world, as long
as performance meets the user’s requirements, other
factors are more important when choosing a plat-
form. For example, there are a large number of
open source and commercial web servers and aca-
demic papers describing architectures all of which
are significantly faster than the Apache web server.
Nevertheless, as of February 2003 Apache runs more
than 60% of the sites on the web[3].

To achieve scalable performance that will meet most
user’s requirements, Twisted uses multiplexing for
all I/O operations, and a single thread for almost
all computation. As the progression of the Java
language has shown[2], blocking, threaded I/O li-
braries simply do not scale to meet more than the
most basic demand. In addition, performance costs
associated with context-switching and synchroniza-
tion, which are exacerbated by Python’s global
interpreter lock, are eliminated. As others have
shown[11], threading is useful only in certain cir-
cumstances and should be regarded as a low-level
tool. As with all such tools, Twisted has a high-
level wrapper that provides a portable and conve-
nient way to integrate threaded code with the event
loop when necessary.

Twisted is implemented mostly in Python, with a
few parts also available as C extension modules for
performance reasons. Python is a very high-level
programming language with a great deal of run-time
flexibility that allows rapid development of dynamic
systems. Despite its high-level nature, it offers ac-
cess to many system calls necessary for networking,
such as select(), socket() and poll(). It provides an
excellent base for porting Twisted’s functionality to
new operating systems.

Thanks to the facilities provided by Python,
Twisted is rather small: at the time of this writing
Twisted has only 89,000 lines of code in Python, in-
cluding all of its protocol implementations. The C
portion, which only duplicates certain performance-
critical python functionality, is even smaller, only
4,000 lines of code in C.

Twisted is currently at version 1.0.3, and is being
used by a variety of commercial and open source
applications. It is a mature project with a large
and active community.

USENIX Association

USENIX Association

2 The Python Programming Lan-
guage

Python is a high-level object-oriented programming
language, with runtimes written in C and Java (and
an experimental .NET CLR runtime). Python is
highly portable, and runs on a large number of
operating systems — including UNIX and UNIX-
like systems, Windows and others. However, un-
like Java, Python does not go down the path of the
the lowest common denominator. Instead, Python
supports platform specific features in addition to
common functionality. On Windows, Python can
be used with COM and Win32 APIs. On UNIX,
Python has access to a large range of the POSIX
functionality, from fork() to signals. At the same
time, where necessary Python provides common
wrappers for low-level functionality — threads in
Python use a common API that provides the same
functionality on different platforms.

Because of its high-level orientation, Python alle-
viates the need to deal with memory allocation,
array bounds checking and pointers, speeding de-
velopment and preventing common security issues.
Moreover, Python scales upwards when designing
complex systems, allowing well designed libraries
to provide powerful functionality with simple inter-
faces.

Twisted builds on Python’s flexibility, power and
clean design. Python wraps GTK+, Qt, Tk, wx-
Python and Win32 GUI toolkits, and thus allows
Twisted to integrate with these toolkits’ event loops.
Python’s support for sockets, select() and other low-
level APIs are wrapped to create Twisted’s network-
ing core. Additional Python libraries which wrap
C code are also used for various functionality (Py-
OpenSSL for SSL and TLS, PyCrypto for crypto-
graphic algorithms and so on). Additional low-level
functionality is easy to integrate due to the simplic-
ity of extending Python with C or C++.

3 The Event Loop

The event loop is the core of Twisted. It imple-
ments a pluggable interface to OS-level function-
ality such as networking, timers and certain com-
monly available utilities such as SSL encryption.
There are two ways of implementing networking

event loops. In one approach, event handlers are
called in response to readable or writable events on
sockets and then an attempt is made to read or write
as much as possible. This method is commonly
used with non-blocking sockets. The other approach
used is fully asynchronous I/O, where event notifica-
tion happens when a read or write is finished (e.g.
POSIX AIO or Windows’ I/O Completion Ports).
Currently Twisted implements several non-blocking
event loops. The event loop APIs are designed to
accommodate fully asynchronous I/O as well, but
as yet, no implementations have been released.

An object that implements an event loop in Twisted
is called a “reactor”. Twisted provides reactors that
run on top of select(), poll(), kqueue and Win32
Events. Additionally, it provides reactors that use
these same low-level mechanisms, but access them
through the APIs of the graphical toolkits, such as
GTK+ and Qt. This enables Twisted to run within
a graphical application written with these toolkits
with no performance impact.

For toolkits which do not provide networking APIs,
such as Tk and wxWindows, Twisted provides sup-
port modules which will run any reactor at brief
intervals as the GUI event loop is running.

On Jython (an implementation of Python written
in Java) Twisted provides a Java API based reactor
that emulates an event loop using threads.

The reactor implementation may be chosen at run-
time, depending on which ones are available and
what functionality is required. A Twisted reactor
object implements functionality for working with at
least some of the following systems:

e TCP

e SSL/TLS

¢ UDP

e multicast

o Unix sockets

e generic file descriptors
o Win32 events

e process running

o scheduling

e threading.

FREENIX Track: 2003 USENIX Annual Technical Conference

79

80

For example, all of these interfaces are supported on
Unix when using the default select() based reactor,
except Win32 event support. However, when run-
ning on Windows, the same reactor will not support
generic file descriptors and Unix sockets.

This support for reactor-specific functionality does
not mean that all applications written with Twisted
are not portable. The programmer can choose to
use platform specific functionality (e.g. use the file
descriptor support on Unix to write a curses-based
console interface), or to use only those interfaces
that are cross-platform and supported in all reac-
tors (e.g. use TCP support to write a telnet-based
console interface). The choice is made by the pro-
grammer, not the framework.

4 Networking

Twisted has a small networking core,
twisted.internet (a Python package), which aims
to provide a highly portable socket multiplexing
API. This API is based around four fundamental
principles.

1. All methods should be named in platform neu-
tral, self consistent and semantically clear ways.

2. The API should be as small and abstract as
possible.

3. Low-level functionality should not be disabled
or obscured in any way.

4. The same events should be provided from mul-
tiple different sources, to allow the same objects
to communicate with any semantically identical
objects.

Each of these four features has an important im-
pact on the resulting framework’s ease of use and
implementation. Each will be explored in detail.

4.1 Method Naming

While this may sound like a small detail, clear
method naming is important to provide an API that
developers familiar with event-based programming
can pick up quickly. Obscure names like “kqueue”

FREENIX Track: 2003 USENIX Annual Technical Conference

and “/dev/poll” litter the multiplexing landscape,
which can make the already-intimidating concept of
event-based programming seem even more arcane.

Since the idea of a method call maps very neatly
onto that of a received event, all event handlers
are simply methods named after past-tense verbs.
All class names are descriptive nouns, designed to
mirror the is-a relationship of the abstractions they
implement. All requests for notification or trans-
mission are present-tense imperative verbs (see Fig.

1).

The naming is platform neutral. There is no ref-
erence to select, poll, kqueue, completion ports, or
even multiplexing. This means that the names are
equally appropriate in a wide variety of environ-
ments, as long as they can publish the required
events.

It is self-consistent. Things that deal with TCP
use the acronym TCP, and it is always capitalized.
Dropping, losing, terminating, and closing the con-
nection are all referred to as “losing” the connection.
This symmetrical naming allows developers to eas-
ily locate other API calls if they have learned a few
related to what they want to do.

It is semantically clear. The semantics of
dataReceived are simple: there are some bytes
available for processing. The semantics remain the
same even if the lower-level machinery to get the
data is highly complex.

4.2 Small, Abstract API

The methods described above are all extremely
abstract, high-level versions of their OS-centric
cousins. This allows Twisted to support a wide
range of platforms, even those that differ on such
fundamental details as statefulness of the low-level
API. Application authors are encouraged to only
subscribe to events that are relevant to their appli-
cation, which almost never involves low-level net-
working events.

By keeping the API small, end-user code is also kept
small, by allowing simple ideas to be expressed in
very few lines of code. Concise expression can be
seen in the canonical example of an extremely brief
echo server (see Fig. 2), which uses several of the
methods and classes described above. While compa-

USENIX Association

| Notification | Method |
Data received from | dataReceived(data)
peer.
Connection estab- | connectionMade()
lished with peer.
Previously- connectionLost(reason)
established con-

nection dropped.

Request

Method Name

Send data.

write(data)

Listen on TCP port,
produce a protocol
when connections es-

listenTCP (port, factory)

in an a loop until it is
stopped.

tablished.

Connect to remote | connectTCP(host, port,
TCP port. factory)

Drop a previously- | loseConnection()
established connec-

tion.

Run the main reactor | run()

| Abstract Object

| Class Name |

parser with extensions
for POSIX processes.

Stream-oriented protocol | Protocol
parser.
Stream-oriented protocol | ProcessProtocol

HTTP request object.

| http.Request

Reactor Pattern inter-
face for TCP operations.

IReactorTCP

Figure 1: Examples of Naming

USENIX Association

from twisted.internet import protocol
from twisted.internet import reactor

protocol implementation, writes
what it receives
class Echo(protocol.Protocol):
def dataReceived(self, data):
self.transport.write(data)

protocol factory, used for state that
needs to be shared between protocol
instances. here, that isn’t much.
class EchoFactory(protocol.ServerFactory):
def buildProtocol(self, addr):
return Echo()
listen on port 9990 using TCP - listenSSL
could be used for SSL or TLS
reactor.listenTCP (9990, EchoFactory())
start the event loop
reactor.run()

Figure 2: Echo server

rable servers in other frameworks or languages may
be as short or as simple, the authors believe that
more complex servers will benefit to a larger degree,
as in the Conch server (see Section 8).

4.3 Make Low-Level Information Avail-
able

While Twisted provides a great deal of wrapping to
allow portability, certain low-level features are often
required. Twisted attempts to provide a multi-level
approach to accessing this information. For exam-
ple, connection failures are described by an excep-
tion type. However, sometimes the exact errno is
more useful information than the exception type.
So, developers may detect, in order of specificity:

e That a connection failed.

e How the connection failed, in a general and
portable manner.

e What exact error the operating system re-
ported, if the underlying APT provides it.

4.4 Similar Events, Different Sources

Run-time polymorphism is a basic feature of object-
oriented programming that is too rarely utilized to

FREENIX Track: 2003 USENIX Annual Technical Conference

81

82

provide flexible interfaces.

Twisted takes advantage of Python’s dynamic typ-
ing to minimize the number of different types
of events (method calls) that are necessary. At
the lowest level, this allows Twisted to gener-
ate dataReceived calls from both non-blocking-
and true asynchronous-style low-level APIs. Sim-
ilarly, Protocol implementors can ignore most of
the distinctions between a TLS and TCP connec-
tion, or even a TCP socket and an in-memory
class used for testing purposes. All three of
these transport types generate connectionMade,
dataReceived and connectionLost events, and ac-
cept write and loseConnection events.

Users of the framework can take advantage of
this architecture by creating wrappers that indirect
these events by supporting the wrapped object’s in-
terface. This can be used to establish bandwidth
throttling, connection limiting and other such fea-
tures that are portable both across any implementa-
tion of the reactor object and any kind of protocol.

5 Concurrency

5.1 Threading

Despite previously-mentioned problems with
Python’s threading, sometimes using threads
is necessary. It can be especially useful when
managing threaded C code, since that code need
not be affected by the global interpreter lock. An
event handler (i.e. a method handling an event)
can not run for more than a very short period,
since this will stop all service from other clients
of the server, freeze the GUI and so on. Since an
event handler must not block, blocking or long
running operations have to be delegated to threads.
Support for threading does have a price, though —
without threads there is no real need to make APIs
thread-safe. Once threading is introduced, a whole
new set of potential problems need to be dealt with
to insure such things as race conditions, deadlocks,
etc. do not occur.

Twisted provides a set of threading APIs designed
to minimize these issues and isolate potential prob-
lem spots as much as possible. Operations that need
to be run in a thread are added to a queue, which

FREENIX Track: 2003 USENIX Annual Technical Conference

from twisted.internet import reactor

c=1
this trivial example function is
not thread-safe
def increment(x):
global c
c=c+x

def threadTask():
run non-threadsafe function
in thread-safe way -- increment(7)
will be called in event loop thread
reactor.callFromThread (increment, 7)

add a number of tasks to thread pool
for i in range(10):
reactor.callInThread(threadTask)

Figure 3: Using threads

is then fed to a thread pool. If a thread needs to
call a method that is not thread-safe, it can queue
the operation via the reactor, and the operation will
run in the event loop’s thread in the next iteration
of the event loop. This gives threads access to all
of Twisted’s APIs without having to worry about
thread-safety issues.

For example, RDBMS access, including Python’s
generic database access (DB-API), is almost always
blocking. Twisted provides a wrapper around DB-
API that uses the thread-pool support to allow easy
RDBMS use from Twisted applications, hiding the
blocking aspect of the API from the user.

5.2 Deferreds

In a threading framework, there is only one way to
request data: make a function call, get a result as
the return value. In an event driven framework,
however, functions are divided into two categories;
those whose result will be provided immediately as
the return value and those whose result will pro-
vided later, as an incoming event.

For example, though a naive programmer may want
to structure a request for an HT'TP URL as a single
blocking call, this would require each HTTP request
to spawn a new thread. This approach does not
scale beyond a few concurrent requests.

USENIX Association

USENIX Association

blocking style
try:
r = blockUntilResult ()
except:
print ‘‘An error has occurred’’
else:
print r

callback style -- notice lack of
error handling
def gotResult(r):
print r
callWhenResult (gotResult)

Deferred style
def gotResult(r):

print r
def gotError(e):

print ‘‘An error has occurred’’
deferred = doSomething()
gotError will also be called on
exceptions in gotResult:
deferred.addCallback(gotResult)
deferred.addErrback(gotError)

Figure 4: Example of Deferred vs.
styles

other coding

5.2.1 Don’t Call Us, We’ll Call You

The standard solution for this issue is to refactor
a function so that instead of blocking until data
is available, it returns immediately, and the caller
passes a callback function that will be called once
the data eventually arrives. There are several things
missing from this simplistic solution. There is no
way to know if the data never comes back; no mech-
anism for handling exceptions. There is no way to
distinguish between different calls to the callback
function from different sessions. The Deferred class
solves these problems, by creating a single, unified
way to deal with deferred results — results that are
not immediately available. Deferred encapsulates
and extends the concept of a callback.

A Deferred instance is a promise that a function
will at some point in the future have a result, and
so a Deferred is returned from the function instead
of the actual result. Callback functions can be at-
tached to a Deferred object, and once it gets a result
these callbacks will be called. In addition Deferreds
allow the developer to register a callback for an er-
ror, with the default behavior of logging the error.

This is an asynchronous equivalent of the common
idiom of blocking until a result is returned or until
an exception is raised. As was mentioned previously,
multiple callbacks can be added to a Deferred. The
first callback in the Deferred’s callback chain will
be called with the result, the second with the result
of the first callback, and so on. Why is this neces-
sary? Consider a Deferred returned by the Twisted
RDBMS wrapper - the result of a SQL query. A
web widget might add a callback that converts this
result into HTML, and pass the Deferred onwards,
where the callback will be used by Twisted to return
the result to the HTTP client.

The Deferred abstraction is very powerful in that it
allows code that looks quite similar to its blocking
equivalent, thus making the code easier to under-
stand and maintain. Even more important is the
fact that by using the same abstraction for “block-
ing” results in all parts of the framework, integrat-
ing the various systems together is far easier.

For example, methods published via XML-RPCJ7]
may not be able to calculate the result of the
method immediately. Since the XML-RPC frame-
work supports Deferreds, a method published us-
ing the XML-RPC framework can simply return a
Deferred that will eventually have the result of the
method. Since the RDBMS wrapper also returns
Deferreds on the result of e.g. a SELECT query, a
XML-RPC method can do a SQL SELECT, attach
a callback on the resulting Deferred that massages
the result and then returns it. The resulting code is
almost identical to the equivalent code in a frame-
work that allows blocking.

6 Application Facilities

In addition to the lower-level facilities for imple-
menting networked clients and servers, Twisted
builds on this functionality to provide higher level
libraries required in many applications. This pa-
per will only mention some of the services provided
by Twisted, but in addition Twisted provides de-
ployment tools, object/relational mapping, RDBMS
event loop integration, directory-based dbm-like
storage, bandwith throttling, utility Python li-
braries and much more.

FREENIX Track: 2003 USENIX Annual Technical Conference

83

84

Protocol

HTTP
SSH
SMTP
IRC
Telnet
SOCKSv4
NNTP
FTP
POP3
XML-RPC[7]
SOAPI[g]
OSCAR (AIM and ICQ)
IMAP

| Client | Server |

K R 2] =< =< = <L 22) | <
R 2] < = = R R |

Table 1: Protocols implemented by Twisted. Since
Twisted is an open source project, protocols are
available based on contributions of code from users
and developers.

6.1 The Middle Level - Protocols

In many cases, the main protocol in a networked
application will be a common standardized proto-
col, not a custom designed one. Email clients use
SMTP, POP3 and IMAP, news servers use NNTP
and so on. Even if a custom protocol is being used,
there is frequently a need to use standard protocols
in addition. For example, the application may want
to send out an email (and thus require SMTP), or
provide a web control-panel (HTTP), or allow re-
mote monitoring with SNMP. Twisted provides im-
plementations of many common protocols, without
specifying any policies on usage or backend imple-
mentation. This allows developers to easily use com-
mon protocols out of the box with Twisted, with-
out having to spend the time developing them from
scratch. At the same time, because Twisted exposes
the lowest level of the protocol, developers can use
the protocols without being restricted by policy de-
cisions which may not fit their specific application.

6.2 The High Level - Frameworks

A protocol implementation by itself is not necessar-
ily all that useful. Policies and framework support
are needed before a protocol implementation can
become a real application. To this end, Twisted
includes a number of frameworks providing default
policies and support code, implemented on top of

FREENIX Track: 2003 USENIX Annual Technical Conference

the low-level protocol implementations, although of
course developers need not use these policies if they
so choose. Some (such as twisted.mail, a SMTP and
POP3 server which can be deployed as smarthost
and mail drop) are still in a preliminary develop-
ment state, but others are more extensively devel-
oped and mature.

6.2.1 twisted.web

twisted.web is a web server framework. It is based
on the idea of object publishing: a website is a tree
of objects, with the URL corresponding to a specific
branch and the resulting objects rendering the result
of the HTTP request. twisted.web supports serving
static content and CGIs, along with easy integra-
tion of objects generating dynamic content. Also
supported are XML-RPC and SOAP[8] for simple
object publishing (both are simplistic HT'TP-based
“RPC” protocols).

In addition, twisted.web supports distributed web
servers. A HTTP request may be re-sent us-
ing Perspective Broker (see 6.3) to another web
server that actually handles the request. On
UNIX systems, this can be used to allow users
to publish homepages with dynamic content (e.g.
http://wuw.example.com/ itamar/). Each user
runs their own twisted.web server that listens on
a Unix socket for PB requests, and the main web
server running on port 80 forwards requests for that
user to their own web server which is running with
the user’s security limitations.

Web servers that have been decoupled in this man-
ner provide several advantages. Users can run per-
sistent web services that start up, shut down and
restart without affecting the main web server. This
approach also simplifies reliably separating privi-
leges between individual users and the web server.
The main web server does not need to change user-
ID to the user in order to run subprocesses with
their security restrictions, so it does not require
super-user permissions for anything except the ini-
tial binding of port 80.

6.2.2 twisted.news

twisted.news is a NNTP server framework. It sup-
ports Usenet integration, moderation and other ex-
tended NNTP functionality. Storage is designed to

USENIX Association

USENIX Association

example of testing SOAP server using
Python interpreter:

$ python soapserver.py &

python

from SOAP import SOAPProxy
url = ’http://localhost:8080/°
p = SOAPProxy(url)

p-add(1, 2)

VvV WV V V V &

p.add(4, 9)
13

H OH OH O H H B H H HH H HH

from twisted.web import soap, server
from twisted.internet import reactor

all methods beginning with ’soap.’
are published:
class SO0APAdder(soap.S0APPublisher) :

def soap_add(self, a, b):

return a + b

site = server.Site(S0APAdder())
reactor.listenTCP (8080, site)
reactor.run()

Figure 5: SOAP server that publishes “add(a, b)”
method

be pluggable; currently supported methods include
using a RDBMS, and a simple backend for testing
purposes that serializes Python objects to disk.

6.2.3 twisted.words

twisted.words is a messaging and chat framework,
designed to work with multiple protocols. It in-
cludes a chat protocol implemented using Perspec-
tive Broker (see below) and IRC server support for
chat clients. In also has a web based interface allow-
ing users to sign up for accounts. This is an example
of Twisted’s power in integrating multiple protocols
and services. In addition, the framework provides
infrastructure for automated clients, known as bots.
One such bot acts as a bridge to channels on other
IRC servers, creating fake user objects correspond-
ing to users on the remote server. This a much more
powerful solution than what is possible with most
IRC bots, since the bot is integrated into the server,
instead of working on the protocol level.

6.3 Perspective Broker

Perspective Broker is a remote method invocation
framework. It is a message-oriented, asynchronous,
authenticated protocol designed for use with multi-
ple languages. In addition to Python implementa-
tion included with Twisted, a full implementation
exists for Java and support for other languages is
underway.

PB was designed from a frustration with other re-
mote object protocols. The central feature that PB
supports is the combination of RMI-level flexibility
with the connection of untrusted clients. Most RPC
or RMI protocols are designed with the assumption
that they will be used in a cluster of closely-bound
and ultimately-trusted machines (such as CORBA
and DCOM); those that are not (such as SOAP
and XML-RPC) tend to be limited, extremely ver-
bose, or both. In addition, authentication is an
afterthought in many of these protocols. PB uses
the simple, flexible and robust capability security
model, inspired by the E language[9)].

PB is designed to be the “native” protocol of
Twisted, and eventually to combine all the abstrac-
tions that other protocols in Twisted support. The
distributed webserver functionality in Twisted is
implemented by representing HTTP protocol ab-
stractions as PB objects and sending them be-
tween different Twisted servers. This approach al-
lows greater flexibility to implement servers talk-
ing about a “legacy” protocol than the protocol it-
self would do: for example, PB/HTTP objects may
later be extended to include metadata about load-
balancing without breaking compatibility.

7 End-To-End: An Example Span-
ning Both High- and Low-Levels

As an example of how applications build upon
both low-level and high-level framework compo-
nents, here is an illustration of a simplified XML-
RPC request.

When the reactor receives a new connection event
from the operating system, it dispatches to the ap-
propriate instance of a subclass of Factory to create
a new instance of a subclass of Protocol; in this
case, the factory is a twisted.web.server.Site

FREENIX Track: 2003 USENIX Annual Technical Conference

85

86

from twisted.web import server
from twisted.web import xmlrpc

class MyProc(xmlrpc.XMLRPC) :
def xmlrpc_add(self, a, b):
return a + b

from twisted.internet import reactor
reactor.listenTCP (8080, server.Site(MyProc()))
reactor.run()

Figure 6: Creating a simple XMLRPC server.

which creates a twisted.protocols.http.HTTP in-
stance.

A TCP Transport, encapsulating the newly-created
socket, is attached to the Protocol, and automat-
ically registered with the reactor’s event loop. At
this point, the reactor awaits read events from the
socket. When such events occur, the Transport is
notified. The Transport then reads as much data as
possible from the socket, and calls the Protocol’s
dataReceived method with that data. This allows
the reactor to abstract very different low-level APIs,
such as BSD sockets and POSIX AIO, from the

Protocol.

At this point, the data is parsed by the Proto-
col. The HTTP protocol is a subclass of the
LineReceiver class, which it uses to parse individ-
ual lines. LineReceiver also supports “raw mode”,
which enables HTTP to receive lines when parsing
headers and raw data when parsing message bodies
and/or chunked input.

When a full request is received, a
twisted.web.server.Request instance is cre-
ated. At this point, the URL path is used by
the Site instance to locate a Resource instance
which represents the HTTP Entity, or “end-
point”, for the request. In this case, it is a
twisted.web.xmlrpc.XMLRPC instance.

The XMLRPC instance loads in the XML payload and
parses it. Based on the method name within the
payload, it calls the appropriate handler method
and returns the result.

The result is then generated as a Document Ob-
ject Model tree, which is serialized to a sequence of
bytes. These bytes are written to the Request ob-
ject, which then writes it to the Transport. This
gets buffered and upon write events on the socket,

FREENIX Track: 2003 USENIX Annual Technical Conference

from twisted.protocols.basic import LineReceiver

class ExampleHTTP(LineReceiver):
def connectionMade(self, addr):
self.state = ’command’
self.req = SimpleHTTPRequest ()

def lineReceived(self, line):
if self.state == ’command’:
(self.req.cmd, self.req.url,
self.req.version) = line.split(’ ’,2)
self.state =
elif state == ’headers’:
if line == ’’:
if self.req.needsContent():
self.setRawMode ()
self.state = ’command’

’headers’

else:
self.appendHeader (1line)

def rawDataReceived(self, data):
self.req.bufferContent(data)
if self.req.contentComplete():
self.factory.dispatchRequest(self.req)
self.setLineMode (
self.req.extraContent())

Figure 7: LineReceiver example: a sketch of an
HTTP Protocol

the Transport will be notified and write out the
buffered data to the network.

8 Case Study - Conch

Conch is a shell framework, impressive mainly for
its implementation of the SECSH protocol (SSHv2).
This framework allows users to take advantage of se-
cure shell features in application-level code, as well
as providing a full-featured, standalone SSH client
and server.

class Transport:
def write(self, data):
self.buffer += data
self.activate()

def readyToWrite(self):

count = self.skt.send(self.buffer)
self .buffer = self.buffer[count:]

Figure 8: A sketch of a transport’s write-buffering.

USENIX Association

USENIX Association

Conch is a good example of the Twisted design
approach providing tangible benefits. Examining
some attributes of this system as opposed to other
SSH servers, the benefits of a high-level program-
ming language and an asynchronous core will be-
come clearer.

Twisted makes writing servers of this sort easy, since
many of the simple features which are considered to
be part of implementing a server are either available
or unnecessary. For example, in the client, read-
ing the user’s password from a terminal is one func-
tion already included in Python. This is opposed to
OpenSSH’s readpass.h and readpass.c, comprising
approximately 150 lines of code. Opening an out-
going TCP connection is implemented in Twisted’s
core, not Conch; in OpenSSH, there are 2 func-
tions, ssh_create_socket and ssh_connect, which
together are almost 200 lines.

Conch currently provides a large subset of
OpenSSH’s SSHv2 and is included with the Twisted
distribution.

8.1 Statistics

While it is quite difficult to empirically substanti-
ate claims like “faster development time” or “re-
duced code size”, some heuristic measurements have
been provided which indicate that Conch was imple-
mented quickly, with little cost to efficiency. Since
both Conch and all its competitors are ongoing
projects with bugfixes happening regularly, it would
be difficult to compare development time, but since
all implement the same core protocols, implementa-
tion complexity can be compared.

| Project | SLoC [People |

Conch 5,000 1
J2SSH 20,000 7
OpenSSH | 64,000 84

Initial benchmarking of Conch shows that it is about
the same speed as OpenSSH, though it is faster for
certain tasks and slower for others. It can start
more sessions per second on the same hardware,
but it can transfer fewer encrypted bytes per sec-
ond (with the Psyco Python accelerator Conch is
faster than OpenSSH on throughput and has a much
faster connection rate). Considering the vastly sim-
pler implementation and the fact that very little

time has yet been spent on optimization, this is very
encouraging. Connections per second and bytes
per second were tested over loopback on an AMD
Athlon 1800+, with 384MB RAM, running De-
bian GNU/Linux 3.0 (woody), and using OpenSSH
client v3.4p1l. OpenSSH did 3 connections/sec and
7.4MB/sec. Conch, with Psyco, did 11 connec-
tions/sec and 8.1MB/sec, and without Psyco 8 con-
nections/sec and 3MB /sec.

8.2 Features

OpenSSH is not very portable, because it is bound
directly to providing UNIX services. Each port is
comprised of a separate, subtly different source tree,
and all are synchronized against a central repository
by using an OpenBSD compatibility layer. It does
offer extended functionality such as SSHv1 protocol
support. J2SSH is restricted in its functionality be-
cause it does not allow the standard operation mode
of SSH as a remote shell server (the standard “lo-
gin to your UNIX account and get a shell prompt”
functionality).

Conch has a UNIX-login-savvy server that can re-
place OpenSSH, “out of the box” (the UNIX specific
code in Conch is less than 1000 lines of code out
of the total). It is also portable to native Win32,
without using UNIX-emulation mechanisms such as
Cygwin. The back-end for authentication is easily
replaceable, making it feasible to quickly implement
an authentication backend that uses Windows au-
thentication information, or a Netinfo database on
MacOS X.

Thus, by supporting high-level cross-platform func-
tionality and low-level platform specific features,
Conch can function as a replacement for both
OpenSSH and J2SSH. It can integrate with the
UNIX specific functionality most users expect of an
SSH server and client, as does OpenSSH. At the
same time, most of the SSH implementation runs
on non-UNIX platforms and is easily extendable, as
with J2SSH. Thus, one can implement a multi-user
terminal based application running inside a single
process and accessible via SSH, something which
would be vastly more difficult with OpenSSH.

FREENIX Track: 2003 USENIX Annual Technical Conference

87

88

9 Related Work

There is a large amount of freely-available network-
ing code on the internet today: so much so that the
fundamental programs that drive our networks are
the largest credit to the Open Source community.
However, few frameworks endeavor to Twisted’s
scope and generality, and none that the authors are
aware of provide as much integrated functionality as
it does.

9.1 SEDA (Sandstorm)

SEDA is a very similar project to Twisted. As it
describes itself:

SEDA is an acronym for staged event-
driven architecture, and decomposes a
complex, event-driven application into a
set of stages connected by queues.[4]

SEDA formally represents the notion of a “Stage”
and therefore has more support for gracefully failing
in the face of overwhelming load than Twisted does.
Many of the abstractions involved are similar.

SEDA does have some multi-protocol support,
with applications providing peer-to-peer (Gnutella),
email (SMTP) and web (HTTP and HTTPS). While
basic protocol functionality is in place, the high-
level frameworks to deal with protocol-specific ab-
stractions - similar to twisted.web - are rather light
at this point, and Java does not yet provide good
standard library support for event-based network-
ing.

SEDA also supports two relatively low-level APIs,
the now-standard java.nio and their home-grown
nbio. Sadly, these two APIs do not represent a very
abstract way of doing networking. The names of the
central abstractions for multiplexing in these pack-
ages (SelectSet for nbio, Selector for java.nio)
imply a certain prejudice in favor of legacy network-
ing APIs. In addition, the choice of Java limits the
platform specific functionality available.

Sandstorm or SEDA might be a more appropriate
platform for an application which had very serious
constraints on its behavior under catastrophic load.

FREENIX Track: 2003 USENIX Annual Technical Conference

9.2 POE

POE is a framework for creating multitasking pro-
grams in Perl[6]:

POE parcels out execution time among one
or more tasks, called sessions. Sessions
multitask through cooperation (at least
until Perl’s threads become mainstream).
[...] POE has become a convenient and
quick way to write multitasking network
applications.

POE supports many of the same features Twisted
does, including GUI event loop integration and sup-
port for multiple protocols. POE v0.25 has ap-
proximately 28,000 lines of Perl code, but there
are many components developed for it that are dis-
tributed separately whose equivalent would be dis-
tributed with Twisted. POE makes heavy use of
the rather verbose Perl object-model, however, and
issues with the Perl language are pervasive through-
out the framework. The first question in the POE
FAQ is illustrative:

The way event handlers receive parameters
looks strange at first, but it’s a combina-
tion of a few common Perl features.

Many of Perl’s features create unnecessary problems
of communication between modules written by peo-
ple with differing tastes. Parameter-passing is the
most basic feature that an integration system can
use. The authors feel that if even something so
fundamental will “look strange” to a Perl program-
mer unfamiliar with POE, this is not an easy-to-use
framework.

9.3 ACE[5]

The ADAPTIVE Communication Envi-
ronment (ACE) is a freely available, open-
source object-oriented (OO) framework
that implements many core patterns for
concurrent communication software.

The ACE framework provides a very useful addi-
tion to the C++ programmer’s toolbelt. However,

USENIX Association

USENIX Association

it does not alleviate certain basic problems of the
C++ language, such as portability issues arising
from differing STL implementations, lack of mem-
ory protection and build-process integration issues.
While it eases the task of writing communications
modules, there is little to leverage outside of ACE
to enable integration with multiple GUI toolkits or
database drivers. ACE has about 480,000 lines of
C++ code.

10 Summary

Twisted provides a wide range of APIs and func-
tionality for implementing networked software, from
low-level event loop support to high-level messaging
frameworks. The choice to support such a broad
range of functionality in one framework has proven
to be the right one.

By supporting both high- and low-level opera-
tions, Twisted applications can have the best of
both worlds — cross-platform functionality together
with platform-specific additional functionality (as
in Conch). By using a high-level language, devel-
opment time can be significantly reduced. By us-
ing Twisted’s integrated support for multiple pro-
tocols, developers can add web-based control panels
or email alerts to their server applications or develop
more novel programs (one application messages an
IRC chat channel and sends out email notifications
of commits to a CVS repository.)

Twisted is being used by a broad range of orga-
nizations and developers. Twisted is being used by
government organizations such as NASA, by compa-
nies in the USA, France, Australia and other coun-
tries, by open source projects and by individual pro-
grammers. It is being used in applications such
as batch document processing servers, web servers,
chat clients, distributed hash tables, caching prox-
ies, IRC bots, educational software, protocol test-
ing, messaging frameworks and many others[10].

Twisted is available online at:

http:/ /www.twistedmatrix.com.

References

[1] Kqueue: A generic and scalable event notifica-
tion facility - Jonathan Lemon

[2] Java SDK 1.4.1: New IO APIs:
http://java.sun.com/j2se/1.4.1/docs/guide/nio/
[3] Netcraft Survey:
http:/ /www.netcraft.com/survey/

[4] SEDA: An Architecture for Well-Conditioned,
Scalable Internet Services (2001) - Matt Welsh,
David Culler, Eric Brewer

[5] An Architectural Overview of the ACE Frame-
work (1998) - Douglas C. Schmidt

[6] POE: a framework for creating multitasking pro-
grams in Perl: http://poe.perl.org

[7] XML-RPC: http://www.xmlrpc.com/
[8] SOAP: http://www.w3.org/TR/SOAP/
[9] E Language: http://www.erights.org/

[10] Twisted Success Stories:

http:/ /www.twistedmatrix.com/services/success

[11] Why Threads Are A Bad Idea (for most pur-
poses) - John Ousterhout:

http://www.softpanorama.org/People/Ousterhout /

Threads/tsld001.htm

FREENIX Track: 2003 USENIX Annual Technical Conference

89

