USENIX Association

Proceedings of the
FREENIX Track:
2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

USENIX Association

Matchbox: Window Management Not for the Desktop

Matthew Allum
OpenedHand Ltd.
London, England

matthew@openedhand. com

Abstract

Matchbox is a set of X11 utilities for managing applica-
tions. Matchbox is intended primarily for use on embed-
ded X Window System devices with low display resolu-
tion, limited available input mechanisms, limited avail-
able storage and/or slow CPUs.

The core of Matchbox is an X window manager which
aims to ameliorate shortcomings of existing desktop
window managers on constrained platforms.

Matchbox approaches window management in a
unique restricted way, bene£fting the user, while striving
to adhere to relevant standards such as the ICCCM and
EWMH. Included applications include a PDA style ap-
plication launcher, a panel and numerous panel applica-
tions. Matchbox also hopes to support emerging devices
with limited input mechanisms such as Tablet PCs, HUD
based devices and “wrist tops”.

1 Introduction

The past few years have heralded the wide availability of
high-powered handheld computers such as the HP Ipagq.
The processing power of such machines is equal to that
of the desktop computers of just a few years ago. A
typical device will have a 200MHz ARM processor, 32
Megabytes of RAM, and a 320 x 240 pixel touchscreen
display.

During this same period, several factors have con-
tributed to the emergence of open Unix-like software
distributions for handhelds. These include the Xexibility
and platform independence of the software, the cooper-
ation of hardware manufacturers, and the hard work of
bedroom reverse engineers.

The standard windowing system for Unix-like ma-
chines is the X Window System [15], a powerful and
Xexible network-transparent window system. Client ap-
plications connect to the server, which performs the ac-
tual rendering of windows. A single client, known as
the “window manager”, performs the task of managing
other clients’ windows. The tasks of the window man-
ager include framing windows with decorations, provid-
ing controls for common actions and managing window
placement.

Unfortunately, many window managers do not cope
well with a small display and limited input mechanisms

such as a touchscreen. Application window positioning
and layout are often inappropriate, making the user in-
terface awkward and unfriendly. In addition, specialized
handheld computer input mechanisms, such as software
keyboards, impose new requirements that often violate
assumptions of conventional window managers.

With storage space at a premium, the selection of a
window manager is greatly induenced by the size of its
installed binary. Unfortunately, this constraint leads to
use of simple window managers that lack features, visual
Hair and perhaps most importantly support for standards.
Standards support is important so that the myriad of ap-
plications can expect a uniform interface for interacting
with the window manager.

Matchbox includes a new window manager designed
specifcally for limited platforms. However, the Match-
box window manager also supports pre-existing and
emerging standards. As much as possible, the Match-
box window manager attempts to manage existing ap-
plications in such a way as to make them more usable on
small screens. It also provides features to enhance new
applications that are speci£cally developed for handheld
and embedded X platforms.

Matchbox also optionally offers features found in
high-end desktop window managers including XML-
based Xexible theming, support for modern X infras-
tructure such as Xft [12] and the RandR extension [7]
and support for utility libraries used by KDE [3] and
GNOME [4] such as startup noti£cation [13] and XSET-
TINGS [16].

Matchbox has grown to be more than just a window
manager. It now includes a suite of tools for managing
X11 applications. This paper will focus on the the win-
dow manager, but will also discuss the included panel,
desktop, utility library and panel applications.

2 X Window Management

Most window systems place responsibility for manag-
ing windows either within each application or within the
window system itself. The X Window System [15] di-
verges from convention by supporting external window
management: the geometry and stacking of windows on
the screen is managed by a separate application known
as the window manager. X Version 10 and earlier also

FREENIX Track: 2003 USENIX Annual Technical Conference

197

198

used external window management, but were unable to
provide decorations and necessary event management to
allow the implementation of friendly interfaces.

X Version 11 added several new mechanisms to sup-
port sophisticated external window management. Appli-
cation requests for window placement can be redirected
to the window manager: the window manager can then
augment or amend the request as desired. Application
windows can be reparented—placed within a window
manager frame which also serves to contain window
management user interface elements.

The basic X protocol avoids enforcing policy on ap-
plications. However, some level of cooperation is re-
quired for applications to successfully interoperate with
a wide variety of window managers. The ICCCM sets
the rules of engagement, so that applications know how
to successfully interoperate with arbitrary window man-
agers, session managers and peer applications.

The existing ICCCM standard may have been suff-
cient to describe operations in legacy X environments
like CDE. New environments have included additional
functionality not even conceived of in that era. A new
organisation, freedesktop.org, was formed to set stan-
dards that extend the ICCCM. Standards promulgated
by freedesktop.org add support for modern features like
application docking, virtual desktop support, focus man-
agement, cooperative window management and addi-
tional window types. Many of these new features are
very useful when managing limited screen space and in-
put bandwidth. An important principle obeyed by all
of these standards is that they do not specify precise
behaviour. Rather, the standards describe required se-
mantics of operations. As a consequence, applications
and window managers are expected to accept any be-
haviour permitted by the specifcation. This is particu-
larly important when developing novel window manage-
ment techniques that dramatically change how windows
are manipulated on-screen.

2.1 Basic Window Management

At the most primitive level, window management in X
starts when an application creates a top-level window
(known in X parlance as a “child of the root window”).
The request from the application to make the window
mapped (visible) is not acted on directly by the window
system server. Instead, the window manager captures the
window mapping request and performs whatever prepa-
rations may be necessary. These preparations usually
include moving the application window to the interior
of another window, then creating controls to manipulate
the exterior window once it becomes visible.

Once the application window is prepared, the win-
dow manager makes it visible. The user can then ma-
nipulate the window through the controls drawn by the

FREENIX Track: 2003 USENIX Annual Technical Conference

window manager. Future requests to change the win-
dow’s size, stacking or visibility from the application
are again redirected by the X server to the window man-
ager. The window manager then performs the requested
operations on the user’s behalf. X11 applications are
expected to accept whatever position and size they re-
ceive from the window manager. For example, an early
X window manager, the RTL Tiled Window Manager
from CMU, would adjust the size and position of appli-
cation windows to keep all windows fully visible on the
screen.

2.2 Inter-client Communications Conven-
tions

The basic window manager communication primitives
of the X11 protocol suffce for simple applications.
However, applications normally want the window man-
ager to handle more sophisticated semantics. The core
protocol provides no mechanism for applications to de-
scribe intended associations among windows and win-
dow modes. The ICCCM standard sets conventions for
communicating this information.

ICCCM communication occurs through properties set
on various windows, synthetic events generated by ap-
plications, and standard server-generated events. Clients
set properties on their top-level windows to inform the
window manager about various attributes. Common IC-
CCM properties include:

WM_NORMAL_HINTS Describes the set of desired
sizes as a base size, a size increment and minimum
and maximum sizes.

WM_HINTS Describes the desired “state” of the win-
dow which is one of Normal, Iconic or Withdrawn,
along with an icon to be associated with the win-
dow and any window group association.

WM_TRANSIENT_FOR Set for pop-ups to connect
them with the associated main application window.
Used for dialogs, not menus.

The CDE environment and Motif window manager
(mwm) included additional properties on application
windows to control mwm-specifc decorations around
application windows, such as the minimize/maximize
control and window menu contents. These were not cod-
ifed by the ICCCM, but have been widely implemented
in existing window managers.

There are other properties holding window and icon
name information but the basic ICCCM doesn’t provide
any Unicode representation leaving these names effec-
tively limited to ASCII or perhaps ISO Latin-1.

As far as a window manager is concerned, [ICCCM
compliance largely revolves around correctly interpret-
ing application requests and sending the right messages
back to applications. It has wide latitude in how to po-

USENIX Association

USENIX Association

sition windows on the screen and few hints on how win-
dows are expected to be used.

2.3 Extended Window Management Hints

The KDE and Gnome project teams are working to-
gether on several standards to improve interoperabil-
ity of applications and desktop environments. They
adopted a set of [ICCCM extensions proposed by Carsten
Haitzler and Marko Macek and have published them as
the Extended Window Manager Hints (EWMH) on the
freedesktop.org web site.

The EWMH standard takes up where the ICCCM left
off. EWMH sets policies and conventions to provide ap-
plications more control over how windows are managed
on the screen. A key piece of additional information
specifed by EWMH is the classif£cation of windows into
broad semantic types:

DESKTOP A desktop window the size of the screen,
placed beneath other windows. The window often
contains icons that can be manipulated directly.

DOCK A dock or panel window. The window is often
the width or height of the screen and placed along
the edge to hold menus or other controls. The win-
dow is typically stacked above all other windows.

TOOLBAR,MENU A toolbar or pinnable menu win-
dow respectively (i.e. toolbars and menus “torn
off” from the main application). The application
may also set WM_TRANSIENT_FOR property on
the window to mark the related application window.

UTILITY A persistent utility window like a palette or
toolbox. These windows are different from tool-
bars: they are not “torn off” from the main ap-
plication. These windows are also different from
dialogs, because they are not transient and will
probably stay open during work in the main ap-
plication window. As with toolbars and menus,
WM_TRANSIENT_FOR may be set.

SPLASH A window marking application startup.

DIALOG A transient dialog window. Win-
dows without an EMWH type that have
WM_TRANSIENT_FOR set are assumed to
be of this type.

NORMAL A normal application window. Win-
dows without either an EWMH type or
WM_TRANSIENT_FOR are assumed to be
of this type.

These types allow the application and window manager
to cooperate in confguring the desktop environment and
build different elements with separate applications.

EMWH also add many new window states beyond the
Withdrawn, Iconic and Normal states specifed by the
ICCCM:

MAXIMIZED_VERT,MAXIMIZED _HORZ The win-

dow is maximized in the vertical or horizontal di-
mension.

FULLSCREEN The window should £11 the screen
without any visible decorations. A presentation
program would use this hint.

ABOVE,BELOW The window should be stacked
above or below most regular windows.

EWMH borrows an idea from the Motif window man-
ager hints: applications can select which kinds of con-
trols should be included in any window management
decorations or menus. EWMH also allows applications
to reserve space along the edge of the screen for pan-
els and other controls. This instructs the window man-
ager to avoid covering such windows when maximizing
other windows. Finally, EWMH includes UTF-8 en-
coded window and icon titles to allow localized strings
to be used. Window manager labels can thus be specifed
in a variety of languages.

3 Related Work

There are numerous window managers available for the
X Window System, each with its own merits and unique
features. Several window managers were investigated
in terms of their suitability for use on a handheld de-
vice with limited application storage space and mem-
ory. The following window managers were considered:
saw£sh [9], blackbox [1], icewm [10], ion [17], and
aewm [6]. The results of the investigation are described
below.

Saw£sh is a powerful, full-featured, programmable
window manager. The power of saw£sh comes at
the expense of storage space requirements. While
the core saw£sh binary is only 128KB it has a large
number of library dependencies, one of which con-
tains a lisp interpreter. It is true that when compared
with desktop software, saw£sh would likely not be
considered a large application. But its size becomes
quite signifcant in a system with as little as 16MB
available for application storage.

Blackbox is fast and visually appealing and depends
only the core X libraries and libstdc++. Unfortu-
nately it lacks support for modern EWMH stan-
dards. Its user interface relies on multiple mouse
buttons — the right mouse button is used to access
its root menu. It allows applications to initially size
themselves larger than the actual display.

Icewm has good standards support. It does constrain
application windows to the size of the display and
is usable with a touchscreen, not relying on mul-
tiple mouse buttons. It also has a useful built-in
panel. However navigating between windows on a
small display is uncomfortable and its binary size
is a rather large 480k.

FREENIX Track: 2003 USENIX Annual Technical Conference

199

200

Ion is small and has few dependencies. It is novel in
that it tiles windows on the display. This makes
good use of available display area as there are never
overlapping windows. Unfortunately it is very de-
pendent on keyboard control, does not always han-
dle dialog windows well and has limited standards
support.

Aewm is very small, has basic ICCCM compliance and
only depends on core X libraries. However it is
very basic both in functionality and visual appear-
ance. Aewm relies heavily on multiple mouse but-
tons for its user interface making it nearly impos-
sible to use with a touchscreen. It also allows for
windows to resize themselves greater than that of
the display. It is worth noting that Matchbox was
initially based on aewm, though it now bears little,
if any, resemblance.

Some of these window managers are of acceptable size
and of nearly acceptable usability. As all are open
source, they can be freely patched and adapted as
needed. However none of them are ideal: the fact re-
mains that no pre-existing window manager has been
specifcally designed for a PDA style device. The au-
thor’s frustration with this situation has been the impetus
for the creation of Matchbox.

4 Theory Of Operation

Consider the usage of a conventional desktop window
manager on a constrained device with a 320 x 240 dis-
play, no keyboard, and a touchscreen capable of only
generating left mouse button events.

At best, applications too big for the display will be
limited and resized to the full display size. However at
worst, and more commonly, applications will get their
requested window size and thus be obscured off screen.
This is not a useful situation for the end user.

Assuming the application does £t on the display, or
has been resized by the window manager to do so. It is
very unlikely the window manager will provide any eas-
ily accessible mechanism to allow the user to then select
between clients. Aids for this type of operation will be
missing from the window title bar, a root window menu
will be inaccessible and with no keyboard, key shortcuts
are not possible. The user is left to awkwardly drag the
top-level window off screen to reach lower level win-
dows. With a large number of applications open this sit-
uation soon becomes unworkable.

There are other problems too, appropriate actions will
not be taken to properly facilitate an input device win-
dow such as a software keyboard. For example, a soft-
ware keyboard, to work well needs to be treated as a
special case by the window manager and not the same as
other application windows. It ideally needs not to over-
lap the application its being used to enter text into. If

FREENIX Track: 2003 USENIX Annual Technical Conference

this does happen it means unnecessary extra move re-
size actions for the the user. The keyboard also needs to
never be given keyboard focus, otherwise it will end up
sending key events to itself. While there is an ICCCM
convention for specifying this, it is fairly obscure and not
always implemented - for example blackbox does not.

Matchbox attempts to solve these problems primarily
by managing window in a restrictive way. Restrictive
management on such a device is good for the user. Ac-
tions, such as moving and resizing a window, are easy
with a mouse but problematic with a stylus. If the dis-
play area is small these actions are needed repeatedly
as the user struggles to move between overlapping win-
dows. Therefore removing the need for the user to ever
resize or move a main application window and handling
it in a rudimentary way in the window manager provides
an easier to use en system.

Matchbox organises applications in a manner similar
to a deck of cards. Top-level application windows are re-
quested and ultimately forced to take all available space,
remaining locked to a static position. At any given time,
only one such window is visible. The user is able to nav-
igate through the deck of applications by various means.
The window title-bar decoration may have buttons for
navigating to the previous or next application in the win-
dow deck. There may be a button in the title-bar for a
drop down menu listing an option for each application
on the deck. Clicking an option will make that applica-
tion visible. The presence, appearance and position of
these buttons is confgurable by the Matchbox theme.

Other navigation aids include keyboard shortcuts and
external application task manager style programs. Any
task manager that is EWMH compliant (such as those
included in GNOME and KDE) will work.

This strategy is simple and restrictive in nature, but
helps enormously on target devices trying to balance the
applications needs with practical user control.

The strategy also £ts in with the standards discussed
above. While the application provides geometry hints
to the window manager, the window manager may ulti-
mately choose to set a different geometry.

An application window may be treated differently to
the above if it provides standard hints or its properties
match a certain criteria. Each of these mechanisms are
discussed below.

4.1 Dialogs

Matchbox attempts to accommodate application dialog
windows. Rather than being resized to £11 the display
like their parent application windows, their requested
size is usually honored, (if within the display), and they
are not statically positioned, allowing the user to drag
them about the display.

Dialog windows are “paged” in the deck along with

USENIX Association

USENIX Association

¥ Calepdar < » - x|

—
¢ Figrment :: |

R

ol rxvt-aa 4 Jan » 4 1370

T calendar
£3 pesktop

[
G010
GPE Teleport ®
xkbd ®

‘B E e)b Bizor

Figure 1: Ipaq screenshot showing Matchbox in action
with various navigation aids.

their parent applications. Dialogs which do not have a
parent, are permanently visible ands are placed on the
top of the window deck.

A dialog may be resized to £t the display, not cover
panels or input devices if too large.

Matchbox uses the following criteria to decide if a
window’s properties nominate it to be treated as a dia-
log.

e The window sets its WM_TRANSIENT_HINT prop-
erty.

e The freedesktop.org
NET_WM_WINDOW_TYPE property is set
to NET_WM_WINDOW_TYPE_DIALOG, or
NET_WM_WINDOW_TYPE_SPLASH.

e The window specifes that it is part of a group but
not the group leader.

e Motif WM hints specify the window wants no dec-
orations.

This last criteria is less reliable than previous ones.
The rationale behind treating undecorated windows as
dialogs is a heuristic based on the behaviour of many
applications that use this kind of hinting. Many of
these are shaped shaped windows from applications such
as gkrellm or xmms which simply break terribly when
forced to resize.

4.2 Panels

A panel, or dock as it is sometimes referred to, is an area
of the display used to hold small applications. These
“applets” may be used to launch applications or pro-
vide information and notifcation to the user. Matchbox
supports freedesktop compliant panels and places them
along any edge of the display. They are always visible,
and windows of other types are forced to £t around them.

A panel is identifed when its
NET_WM_WINDOW_TYPE property is set to

NET_WM_WINDOW_TYPE_DOCK.

4.3 Desktops

A desktop window is a full screen window with not title
bar. It is positioned at the bottom of the window deck.
A panel is identifed when its
NET_WM_WINDOW_TYPE property is set to
NET_WM_WINDOW_TYPE DESKTOP.

4.4 Toolbar windows

Toolbar windows behave similar to the way user in-
terface toolbars behave in applications such as web
browsers. Toolbars are placed at the bottom of the dis-
play, below main application windows and above any
panels. Their presence causes main application windows
to resize accommodating them and they remain visible
during application paging. Their width is set to the full
display width and multiple tool bars are stacked verti-
cally on top of one another.

Toolbar windows are collapsible with the window go-
ing into an iconic state and allowing the user to quickly
free up screen real estate. This state is also easily re-
versible via buttons on the windows frame.

The purpose of tool bar windows is to provide accom-
modation for small utility type windows, specifcally in-
put devices such as software keyboards.

A tool bar is identifed when @ its
NET_WM_WINDOW_TYPE property is set to
NET_WM_WINDOW_TYPE_TOOLBAR.

File View Outline
PUEEFa> ¢

Information

b

Figrment
Version 0.3.1
mallum@handhelds.arg

W W W W

Caps(a|s|d fg|h i

||z x c|v|b

Figure 2: Ipaq screenshot showing a dialog and toolbar
window.

5 Included Utilities

It is desirable for a window environment to include util-
ities for launching applications and managing instances
of existing ones. The Matchbox window manager sup-
ports this to a degree via keyboard shortcuts and its built-
in title bar task switcher.

FREENIX Track: 2003 USENIX Annual Technical Conference

201

202

Figure 3: Ipaq screenshot showing mbdesktop, mbdock
and various panel applications

Existing applications that £11 this role are either too
big and unsuitable for embedded environments, or small
but limited, lacking support for modern standards. For
example the GNOME Panel provides a rich application
management tools and much more. It is also Hexible
in usage allowing it, at least from a usability point of
view, to be practical on a constrained device. However it
has a huge range of large library dependencies instantly
making it unsuitable when application storage space is
at a premium. There are numerous simple toolkit based
menu launchers available but many implement a unique
non standard way of adding entries, are written in an
unwanted toolkit on the target device, or lack support for
X server extensions such as RandR. RandR is a modern
X Server extension which allows for on the Ry display
resizes and rotations. This can confuse the positioning
of older toolkit widgets that are not RandR aware.

To solve these problems, the Matchbox distribution
contains a number of lightweight tools which are toolkit
independent and adhere to freedesktop.org standards,
allowing them to interoperate with environments other
than just Matchbox. These include a panel and nu-
merous panel applications such as system monitors and
a menu based launcher, a PDA style “desktop” and a
shared utility library.

5.1 The Panel and Panel applications - mb-
dock

The panel provides a small permanently visible area of
the display to house small separate application windows.
These applications are typically application managers,
such as a launcher, system monitor or notifcation tools.

The docking mechanism works independently of
the window manager and implements the SYS-
TEM_TRAY[14] and XEMBED5] specifcations found
at freedesktop.org. A panel application locates the panel
by means of querying an X selection for a window ID

FREENIX Track: 2003 USENIX Annual Technical Conference

then communicating with a series of X messages and
then £nally being reparented and mapped by the panel.

This lightweight mechanism is also used to a degree
in GNOME and KDE, affording interoperability of both
the panels and panel applications

The Matchbox distribution includes numerous small
panel applications. Mbmenu is a menu based application
supporting entries in both the Debian “/usr/lib/menu”
format and .desktop £les[2], as used by GNOME and
KDE. The .desktop format as the advantage of support-
ing internationalization and startup notifcation. There
are monitor tools included with the distribution for mem-
ory and CPU usage, wireless signal strength, available
battery power and a simple sound mixer tool . Numer-
ous other third-party panel application are also available.

The panel also includes support for both multiple in-
stances and multiple orientations.

5.2 The Desktop - mbdesktop

The included desktop is another application manager in
a PDA style. Application icons and titles are placed in
sectioned grid-like views. Mbdesktop is still in early
stages of development with future plans being to al-
low extension to what is displayed by means of load-
able modules. For example this could extend mbdesktop
to do more than just application management - it could
display browsable URL bookmarks, or specify an area
of the desktop to provided PDA “Today” style summary
textual information.

5.3 Shared utility library - libMB

LibMB contains useful shared code used by all included
Matchbox utilities and optionally the Matchbox window
manager itself.

Included code includes;

A small fast pixel buffer library for client side images.
This library performs loading of PNG and XPM images,
basic manipulation and composition. This part of the
library is used by all Matchbox utilities and optionally
the window manager.

The Abstraction of the XEMBED and SYS-
TEM_TRAY protocols for easy creation of panel appli-
cations. It also safely extends the specif£cation to allow
alpha composition of panel applications on the panel.

A simple menu widget specifcally designed for usage
with touchscreens. This is used by both the panel and
some panel applications.

A small .desktop £le parser.
launchers.

Used by application

Various utility calls, for operations such as grabbing
the root window image.

USENIX Association

USENIX Association

6 Flexibility / Tailoring to platform

Already there is quite a range in the capabilities of plat-
forms supported by Matchbox. There are older and
new cheaper devices which may be limited to a 4-bit
greyscale display and 16MB of ram. There are also
newer devices emerging such as the Sharp Zaurus SL-
C700 which features a 640x480 16-bit display, a fast
CPU, and ample memory.

It is desirable as a developer to take advantage of in-
creased resources on newer devices, but less desirable
for the end user to £nd his older device is no longer sup-
ported.

Matchbox attempts to keep all parties happy by the
use of numerous compile-time options. These options
produce numerous enhancements to operation but keep
the core working essentially the same. The compile-time
options allow for £ne-grained control over library de-
pendencies, features, binary size and memory usage.

A good example of this in action is the theming
engine. People with higher-end devices will appre-
ciate their window decorations being visually exciting
and Xexible —supporting multiple image formats, alpha
blending and anti aliased fonts. Others however, may
value their CPU cycles and storage space more pre-
ciously and happily do with out such features.

The Matchbox build system uses GNU autotools [18].
Using the confgure script, the specifcs of the created
binaries can be controlled.

All build permutations provide the same core window
management operations. Differences are primarily en-
riched visual look, and support for external libraries that
provide features external to core window management.

With no options passed to the confgure script, a con-
servative Matchbox will be built. Support for confg-
urable theming is included though it lacks support for
features like anti-aliased XFT text and PNG based im-
ages.

For a very tiny Matchbox the ’—enable-standalone’
confgure option is used. This effectively replaces a large
chunk of code implementing theming and XML parsing
with a non-confgurable theming system that uses only
core X rendering functions to create a simple but fast
look for window decorations. A standalone Matchbox
also is dependent only on core Xlib libraries and no ex-
ternal confguration or image £les.

A high-end Matchbox with most confgure options en-
abled will give much richer theme support with support
for PNG images, Xft anti-aliased fonts and freedesk-
top.org extensions such as XSETTINGS and startup no-
tifcation.

7 Implementation

Matchbox is implemented in about 26400 lines of C
code. Table 1 shows breakdown of the lines of code

Module Lines of code
Window Manager 10744
libMB 5152
dock 4041
desktop 2872
7 applets 3574

Table 1: Lines of Code per Module

among the various modules of the window manager, the
utilities, and the library shared between them (1ibMB).
Matchbox is written in a pseudo object-oriented style.
The core of the window manager is an event loop which
dispatches events to client objects as shown in Figure 4.
Each client object represents an application window, and
there is a separate client class for each of the supported
window styles. Figure 5 shows the client class hierarchy.

< Redirected X Event
Specific Event
Handler

Figure 4: Matchbox event loop

Find client object
event is for

v

Call class specific
method and process

VYUY

All clients are stored in a circular doubly-linked list.
The client structure is quite simple. In addition to ba-
sic client state information, (name, position, size, etc.),
it contains pointers for the following class-specifc func-
tions:

reparent
redraw
button_press
move._resize
confgure
get_coverage
hide

show
iconize
destroy

The assumption is these particular methods should
provide enough abstraction for the operations on various
client types - though a client type may physically per-
form differently to the same method called on different
client type. For example the iconize method will cause
a main decked application to drop to the bottom of the
deck, while if called on a toolbar application it will cause
its toolbar to collapse.

FREENIX Track: 2003 USENIX Annual Technical Conference

203

204

Base Client

Select Client Dockbar Client
Dialog Client Toolbar Client
(Main Client)

Figure 5: Matchbox client class hierarchy

A particular method or group of methods invocation
can be mapped to the receiving of an event. For exam-
ple on reception of an expose event, the client object for
the event will be located and its redraw method called.
Different window types need painting in different ways
and structuring the code in this object-oriented way re-
moves the need for lengthy if-then-else or switch-case
code constructs.

Unfortunately the abstraction is not perfect and there
does exist a few special cases where a workaround is
required. The £xing of these would require a major re-
working and restructuring of the code and with the dis-
covered special cases being few and minor this has not
yet been required.

Separate to this class structure there are various func-
tion calls which will act on the entire list of managed
clients. The most important of these are window resiz-
ing and layout functions. If a client such as a toolbar
resizes it will no doubt affect all other clients, so these
functions manage keep the layout uniform.

There is a separate “theme engine” which performs
the task of painting frame decorations. As discussed
earlier, there are two interchangeable implementations
of the theme engine, a Hexible engine confgured with
XML confguration £les and external graphics, and a
standalone version designed for small £xed-use builds
of Matchbox. Using the standalone engine reduces the
size of Matchbox by about 25%.

8 Evaluation

Table 2 compares Matchbox with with other window
managers previously mentioned.

Matchbox is able to achieve dramatic savings in size
when compared to most window managers. Part of the
savings is due to the restrictive window management
style in Matchbox. Fewer supported styles of window
management operations means less code bulk.

At the same time, Matchbox demonstrates that a win-
dow manager can be very small without going to the
extreme minimalist style of a window manager such as
aewm. Matchbox supports modern standards and pro-
vides high-level functionality with its theme support.
The Xexible build operations allow Matchbox to span a
wide range of usage scenarios including static embedded

FREENIX Track: 2003 USENIX Annual Technical Conference

systems. This is a a good model that can be followed by
developers of many different classes of applications.

9 Future Work

The Author is currently happy with the core functional-
ity and features provided by the Matchbox window man-
ager. Improvements in the future will most like consist
of minor improvements and bug £xes.

The project could bene£t from some formal usability
testing. Most user interface improvements and decisions
have been personal decisions of the author or based on
ad hoc feedback from users. Most user interface prob-
lems can be quickly solved with the Xexibility of the
theme confguration £les requires no code changes.

Also investigation and possibly improvements to us-
age on newer larger constrained devices including Tablet
PC’s and set-top boxes. Initial experimentations on such
devices have proved quite positive.

There is also the possibility or modi£cations for us-
age with future devices such as "Head Up Display’ based
machines and so called ’wrist-tops’.

Most future improvements lie in the included utilities.
Applications such as mbdesktop are still in early stages
which much experimentation and newer features waiting
to be done.

LibMB needs stabilizing with a solid API as well as
documenting so it can be safely used by other develop-
ers.

There is scope for new included utilities, such as a
small session manager or a panel based task switcher.

Also to avoid bloat, careful consideration has to be
made before the addition of any new features that cannot
be made as a compile time option.

10 Conclusion

Matchbox has proven very popular within the commu-
nity of users of the Familiar[8] handheld environment.
Familiar is a Linux distribution is for HP Ipags.

GPE[11], a GNOME like PDA environment based on
GTK+ has chosen Matchbox as its core window man-
ager. It too strives for standards support so the two £t
together well. GPE developers have also written numer-
ous panel applications.

I have also had reports of Matchbox being used with
GNOME and KDE on desktop machines intended to be
used by small children. Matchbox is also of value with
these desktop environments on platforms such as Tablet
PC’s and personal video recorder style media boxes.

This success seems to suggest that design decisions
made were correct.

11 Availability

Matchbox is free software released under the terms
of the GNU general public license (GPL). It is

USENIX Association

USENIX Association

Name Version Size | Dependencies Standards Theme Support
saw£sh 1.3 192K | X libraries, GTK+ li- | ICCCM, EWMH | yes
braries, librep and rep gtk
bindings
blackbox | 0.65.0 328K | X libraries, libstdc++ ICCCM yes
ion 20020207 176K | X libraries Limited ICCCM | no
icewm 1.2.6 480K | X libraries, Imlib ICCCM yes
aewm 1.2.2 24K X libraries ICCCM no
matchbox | bells and whistles 0.5r2 | 88K X libraries, libpng, | ICCCM, EWMH | yes
libxsettings, libstartup-
notifcation, libexpat
matchbox | default build 0.5rc2 59K | Xlibraries, libpng ICCCM, EWMH | yes
matchbox | standalone 0.5rc2 44K X libraries ICCCM, EWMH | no

Table 2: Window Manager Comparison

known to compile for Linux, various BSDs and So-
laris.Releases, documentation and more are available at
http://handhelds.org/ mallum/matchbox .

12 Acknowledgements

My greatest thanks go to my £ance, whose help, encour-
agement and patience have helped my ideas become a
reality. Thanks also to Carl Worth, Keith Packard and
Jim Gettys, whose advice and motivation throughout the
project have been a great help. Finally, thanks to Keith,
Carl, and Bart Massey for their help in producing the
£nal draft of this paper.

References

[1] Adam A. Bellinson. The blackbox window man-
ager. http://blackboxwm. sourceforge.

net.
[2] Preston Brown, Jonathan Blandford, and
Owen Taylor. Desktop entry standard.

http://www.freedesktop.org/
standards/desktop-entry-spec.html.

[3] Kalle Dalheimer. KDE: The highway ahead. In
Linux Journal, number 58. Feb 1999.

[4] Miguel de Icaza. The GNOME project. In Linux
Journal, number 58. Feb 1999.

[5] Mathias Ettrich and Owen Taylor. Xem-
bed protocol specifcation. http:
//www.freedesktop.org/standards/
xembed.html.

[6] Decklin Foster. aewm. http://www.
red-bean.com/“decklin/aewm/.

[7] James Gettys and Keith Packard. The X Re-
size and Rotate Extension - RandR. In FREENIX
Track, 2001 Usenix Annual Technical Conference,
Boston, MA, June 2001. USENIX.

[8] Alexander Guy and Russell Nelson. The famil-
iar project. http://familiar.handhelds.
org.

[9] John Harper. saw£sh: an extensible window
manager. http://sawmill.sourceforge.
net.

[10] Marko Macek. icewm.
sourceforge.net.

http://icewnm.

[11] Colin Marquardt. Gpe: The gpe palmtop environ-
ment. http://gpe.handhelds.org.

[12] Keith Packard. The Xft Font Library: Architecture
and Users Guide. In 2001 XFree86 Technical Con-
ference, Oakland, CA, October 2001. USENIX.

[13] Havoc Pennington. Startup notifcation pro-
tocol. http://www.freedesktop.org/
software/startup-notification/.

[14] Havoc Pennington. System tray protocol speci-
£cation. http://www.freedesktop.org/
standards/systemtray.html.

[15] Robert W. Scheixder and James Gettys. X Window
System. Digital Press, third edition, 1992.

[16] Owen Taylor. Xsettings - cross toolkit
confguration proposal. http://www.
freedesktop.org/standards/

xsettings/xsettings.html.

[17] Tuomo Valkonen. ion. http://modeemi.cs.
tut.fi/“tuomov/ion/.

[18] Gary V. Vaughan, Ben Elliston, Tom Tromey, and
Ian Lance Taylor. GNU Autoconf, Automake and
Libtool. New Riders, 2000. ISBN 1-57870-190-2.

FREENIX Track: 2003 USENIX Annual Technical Conference

205

