Using Provenance to Extract Semantic File Attributes

Daniel Margo and Robin Smogor Harvard University

Semantic Attributes

- Human-meaningful data adjectives.
- Applications:
 - Search (Google Desktop, Windows Live)
 - Namespaces (iTunes, Perspective [Salmon, FAST'09])
 - Preference Solicitation (Pandora)
 - And more...
- Make data more valuable (like provenance!)
 - Only...

Where do Attributes Come From?

- Manual labeling intractable.
- Automated content extraction:
 - Arguably, Google.
 - Visual extraction (La Cascia et al., '98)
 - Acoustic extraction (QueST, MULTIMEDIA'07)
- Problems:
 - Need extractors for each content type.
 - Ignorant of inter-data relationships: dependency, history, usage, provenance, context.

How Might Context Predict Attributes? Examples:

- If an application always reads a file in its directory, that file is probably a component.
- If an application occasionally writes a file outside its directory, that's probably content.
- Etc...
- Prior work:
 - Context search [Gyllstrom IUI'08, Shah USENIX'07]
 - Attribute propagation via context [Soules '04]

The Goal

- File relationships → attribute predictions.
- Begin with a provenance-aware system (PASS)
- Run some file-oriented workflow(s).
- Output per-file data into a machine learner.
- Train learner to predict semantic attributes.
 - Simple! Only...

The Challenge

- …like fitting a square peg into a round hole!
- Provenance → graphs → quadratic scale.
- Typical learner handles ~hundreds of features.
- Needs relevant feature extraction.
 - Going to "throw out" a lot of data.

about:PASS

- Linux research kernel.
- Collects provenance at system call interface.
- Logs file and process provenance as a DAG.
- Nodes are versions of files and processes.
 - Must resolve many-to-one node to file mapping.

Resolving Nodes to Files

- Simple solution: discard version data.
 - Introduces cycles (false dependencies).
 - Increases graph density.
- Alternatively: merge nodes by file name.
 - Similar to above; introduces more falsity.
 - But guarantees direct mapping.
- More complicated post-processing?
 - Future work.

Graph Transformations

- File graph: reduce graph to just files.
 - Emphasizes data dependency, e.g. libraries.
- Process graph: reduce graph to just processes.
 - Emphasizes workflow, omits specific inputs.
- Ancestor and descendant subgraphs.
 - Defined as transitive closure.
 - On a per-file basis.

Statistics

- How to convert per-file subgraphs to statistics?
- Experiments with partitioning, clustering:
 - Graclus (partitioner), GraphClust.
 - Failure: graph sparsity, different structural assumptions produce poor results.
- Success with "dumb statistics":
 - Node and edge counts, path depths, neighbors.
 - For both ancestor and descendant graphs.
 - Still a work in progress.

Feature Extraction: Summary

De-version Merge Names
Don't Merge

Provenance Graph	Ancestors	Edge Count	Edge Count
Process Graph	Node Count		
Provenance Graph	Descendants	Node Count	
Edge Count			
Max Depth	Neighbors		

- 2 ways to merge (by versions or path names).
- 3 graph representations (full, process, file).
- 4 statistics for both ancestors and descendants.
- Totals 48 possible features-per-file...
- ...plus 11 features from stat syscall.
 - Content-free metadata.

Classification

- Classification via decision trees.
 - Transparent logic: can evaluate, conclude, improve.
- Standard decision tree techniques:
 - Prune splits via lower bound on information gain.
 - Train on 90% of data set, validate on 10%.
 - k-means to collapse real-valued feature spaces.
- Requires labeled training data...

Labeling Problem

- First challenge: how to label training data?
 - Semantic attributes are subjective.
 - No reason provenance *should* predict any random attribute; must be well-chosen.

Labeling Solution

- Initial evaluation using file extensions as label.
 - Semantically meaningful, but not subjective.
 - Pre-labeled.
 - Intuitively, usage predicts "file type".
 - Reverse has been shown: extension predicts usage [Mesnier ICAC'04].

What's the Data Set?

- Second challenge: finding a data set.
 - Needs a "large heterogeneous file workflow".
 - Still a work in progress.
- In interim, Linux kernel compile.
 - 138,243 nodes, 1,338,134 edges, 68,312 deversioned nodes, 34,347 unique path names, and 21,650 files-on-disk (manifest files).
- Long brute-force analysis; used 23 features.

Precision, Recall, and Accuracy

- Standard metrics in machine learning:
 - Precision: for a given extension prediction, how many predictions were correct?
 - Recall: for a given extension, how many files with that extension received the correct prediction?
 - Accuracy: how many of all the files received the correct prediction?

Results

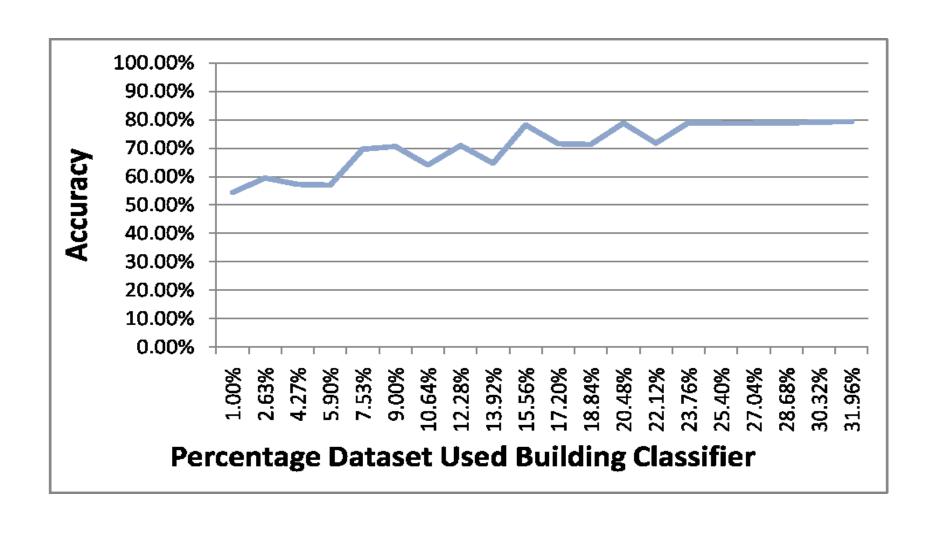
ext	# in set	precision	recall
.h	8678	96.70%	72.65%
.c	8420	70.22%	96.94%
none	1869	80.26%	53.08%
.S	912	69.34%	27.52%
.0	829	99.28%	99.76%
.txt	415	59.39%	99.04%
.cmd	147	97.24%	95.92%
other	180	31.89%	15.00%
total	21450	82.55%	79.79%
1 C	10010	00.760	06 100

 .h+.c+.S
 18010
 98.76%
 96.10%

 total
 21450
 95.83%
 91.87%

- 85.68% extension prediction accuracy.
- 79.79% on *manifest* files (present on disk).
 - Table at left.
 - Confuses "source files".
 - If fixed, 94.08%.
- 93.76% on nonmanifest objects.

Number of Records Needed



Talking Points

- Is "source file" confusion wrong?
 - .c/.h/.S have similar usage from PASS perspective.
 - "source file" may be right semantic level.
 - Can fix using 2nd-degree neighbors (object files).
- Other than this, high accuracy.
 - Especially on non-manifest objects content-free.
 - Noteworthy features ancestral file count, edge count, max path depth; descendant edge count

Future Work

- More feature extraction.
- Evaluate more attributes...
- ...on more data sets.
- More sophisticated classifiers (neural nets).
- Better understanding!