
Using Provenance to Extract
Semantic File Attributes

Daniel Margo and Robin Smogor
Harvard University

Semantic Attributes

  Human-meaningful data adjectives.

  Applications:
  Search (Google Desktop, Windows Live)

  Namespaces (iTunes, Perspective [Salmon, FAST'09])

  Preference Solicitation (Pandora)

  And more...

  Make data more valuable (like provenance!)
-  Only...

Where do Attributes Come From?

  Manual labeling - intractable.

  Automated content extraction:

  Arguably, Google.

  Visual extraction (La Cascia et al., '98)

  Acoustic extraction (QueST, MULTIMEDIA'07)

  Problems:

  Need extractors for each content type.

  Ignorant of inter-data relationships: dependency,
history, usage, provenance, context.

How Might Context Predict
Attributes? Examples:

  If an application always reads a file in its
directory, that file is probably a component.

  If an application occasionally writes a file
outside its directory, that's probably content.

  Etc...

  Prior work:

  Context search [Gyllstrom IUI'08, Shah USENIX'07]

  Attribute propagation via context [Soules '04]

The Goal

  File relationships → attribute predictions.

  Begin with a provenance-aware system (PASS)

  Run some file-oriented workflow(s).

  Output per-file data into a machine learner.

  Train learner to predict semantic attributes.
  Simple! Only...

The Challenge

  ...like fitting a square peg into a round hole!

  Provenance → graphs → quadratic scale.

  Typical learner handles ~hundreds of features.

  Needs relevant feature extraction.

  Going to “throw out” a lot of data.

about:PASS

  Linux research kernel.

  Collects provenance at system call interface.

  Logs file and process provenance as a DAG.

  Nodes are versions of files and processes.

  Must resolve many-to-one node to file mapping.

Resolving Nodes to Files

  Simple solution: discard version data.

  Introduces cycles (false dependencies).

  Increases graph density.

  Alternatively: merge nodes by file name.

  Similar to above; introduces more falsity.

  But guarantees direct mapping.

  More complicated post-processing?

  Future work.

Graph Transformations

  File graph: reduce graph to just files.

  Emphasizes data dependency, e.g. libraries.

  Process graph: reduce graph to just processes.

  Emphasizes workflow, omits specific inputs.

  Ancestor and descendant subgraphs.

  Defined as transitive closure.

  On a per-file basis.

Statistics

  How to convert per-file subgraphs to statistics?

  Experiments with partitioning, clustering:

  Graclus (partitioner), GraphClust.

  Failure: graph sparsity, different structural
assumptions produce poor results.

  Success with “dumb statistics”:

  Node and edge counts, path depths, neighbors.

  For both ancestor and descendant graphs.

  Still a work in progress.

Feature Extraction: Summary

  2 ways to merge (by versions or path names).

  3 graph representations (full, process, file).

  4 statistics for both ancestors and descendants.

  Totals 48 possible features-per-file...

  ...plus 11 features from stat syscall.

  Content-free metadata.

Classification

  Classification via decision trees.

  Transparent logic: can evaluate, conclude, improve.

  Standard decision tree techniques:

  Prune splits via lower bound on information gain.

  Train on 90% of data set, validate on 10%.

  k-means to collapse real-valued feature spaces.

  Requires labeled training data...

Labeling Problem

  First challenge: how to label training data?

  Semantic attributes are subjective.

  No reason provenance should predict any random
attribute; must be well-chosen.

Labeling Solution

  Initial evaluation using file extensions as label.

– Semantically meaningful, but not subjective.

– Pre-labeled.

–  Intuitively, usage predicts “file type”.

– Reverse has been shown: extension predicts usage
[Mesnier ICAC'04].

What’s the Data Set?

  Second challenge: finding a data set.

  Needs a “large heterogeneous file workflow”.

  Still a work in progress.

  In interim, Linux kernel compile.

  138,243 nodes, 1,338,134 edges, 68,312 de-
versioned nodes, 34,347 unique path names, and
21,650 files-on-disk (manifest files).

  Long brute-force analysis; used 23 features.

Precision, Recall, and Accuracy

•  Standard metrics in machine learning:

  Precision: for a given extension prediction, how
many predictions were correct?

  Recall: for a given extension, how many files with
that extension received the correct prediction?

  Accuracy: how many of all the files received the
correct prediction?

Results

  85.68% extension
prediction accuracy.

  79.79% on manifest
files (present on disk).

– Table at left.

– Confuses “source files”.

–  If fixed, 94.08%.

  93.76% on non-
manifest objects.

Number of Records Needed

Talking Points

  Is “source file” confusion wrong?

  .c/.h/.S have similar usage from PASS perspective.

  “source file” may be right semantic level.

  Can fix using 2nd-degree neighbors (object files).

  Other than this, high accuracy.

  Especially on non-manifest objects – content-free.

  Noteworthy features – ancestral file count, edge
count, max path depth; descendant edge count

Future Work

  More feature extraction.

  Evaluate more attributes...

  ...on more data sets.

  More sophisticated classifiers (neural nets).

  Better understanding!

