Using Provenance to Extract
Semantic File Attributes

Daniel Margo and Robin Smogor
Harvard University

Semantic Attributes

. Human-meaningful data adjectives.

« Applications:

« Search (Google Desktop, Windows Live)

. Namespaces (iTunes, Perspective [Salmon, FAST'09])
« Preference Solicitation (Pandora)

« And more...

« Make data more valuable (like provenance!)
- Only...

Where do Attributes Come From??

« Manual labeling - intractable.

« Automated content extraction:

. Arguably, Google.

« Visual extraction (La Cascia et al., '98)

« Acoustic extraction (QueST, MULTIMEDIA'07)
« Problems:

« Need extractors for each content type.

« Ignorant of inter-data relationships: dependency,
history, usage, provenance, context.

How Might Context Predict
Attributes? Examples:

. If an application always reads a file in its
directory, that file is probably a component.

. If an application occasionally writes a file
outside its directory, that's probably content.

. EtcC...

« Prior work:
« Context search [Gyllstrom |UI'08, Shah USENIX'07]
« Attribute propagation via context [Soules '04]

The Goal

File relationships — attribute predictions.

Begin with a provenance-aware system (PASS)
Run some file-oriented workflow(s).

Output per-file data into a machine learner.

 Train learner to predict semantic attributes.

o Simple! Only...

The Challenge

...like fitting a square peg into a round hole!
Provenance — graphs — quadratic scale.
Typical learner handles ~hundreds of features.

Needs relevant feature extraction.
« Going to “throw out” a lot of data.

about:PASS

Linux research kernel.
Collects provenance at system call interface.
Logs file and process provenance as a DAG.

Nodes are versions of files and processes.
« Must resolve many-to-one node to file mapping.

Resolving Nodes to Files

« Simple solution: discard version data.

« Introduces cycles (false dependencies).
« Increases graph density.

o Alternatively: merge nodes by file name.

« Similar to above; introduces more falsity.
« But guarantees direct mapping.

« More complicated post-processing?

o Future work.

Graph Transformations

» File graph: reduce graph to just files.
« Emphasizes data dependency, e.qg. libraries.
« Process graph: reduce graph to just processes.
« Emphasizes workflow, omits specific inputs.
« Ancestor and descendant subgraphs.

. Defined as transitive closure.
« On a per-file basis.

Statistics

« How to convert per-file subgraphs to statistics?

« Experiments with partitioning, clustering:

« Graclus (partitioner), GraphClust.

« Failure: graph sparsity, different structural
assumptions produce poor results.

o Success with “dumb statistics”:

. Node and edge counts, path depths, neighbors.
« For both ancestor and descendant graphs.
 Still a work in progress.

Feature Extraction: Summary

Node Count
Provenance Graph
: Merge Names . Ancestors Edge Count
De-version = File Graph
Don’t Merge Descendants Max Depth
Process Graph .
Neighbors

« 2 ways to merge (by versions or path names).

« 3 graph representations (full, process, file).

« 4 statistics for both ancestors and descendants.
 Totals 48 possible features-per-file...

o ...plus 11 features from stat syscall.

. Content-free metadata.

Classification

« Classification via decision trees.
. Transparent logic: can evaluate, conclude, improve.
« Standard decision tree techniques:

« Prune splits via lower bound on information gain.
« Train on 90% of data set, validate on 10%.
« k-means to collapse real-valued feature spaces.

« Requires labeled training data...

Labeling Problem

 First challenge: how to label training data?

« Semantic attributes are subjective.

« No reason provenance should predict any random
attribute; must be well-chosen.

Labeling Solution

o Initial evaluation using file extensions as label.

— Semantically meaningful, but not subjective.
— Pre-labeled.
— Intuitively, usage predicts “file type”.

— Reverse has been shown: extension predicts usage
Mesnier ICAC'04].

What's the Data Set?

» Second challenge: finding a data set.
. Needs a “large heterogeneous file workflow”.
« Still a work in progress.

o In interim, Linux kernel compille.

. 138,243 nodes, 1,338,134 edges, 68,312 de-
versioned nodes, 34,347 unique path names, and
21,650 files-on-disk (manifest files).

« Long brute-force analysis; used 23 features.

Precision, Recall, and Accuracy

. Standard metrics in machine learning:

« Precision: for a given extension prediction, how
many predictions were correct?

« Recall: for a given extension, how many files with
that extension received the correct prediction?

« Accuracy: how many of all the files received the
correct prediction?

Results

ext #1n set | precision recall
h 8678 | 96.70% | 72.65%
.C 8420 | 70.22% | 96.94%
none 1869 | 80.26% | 53.08%
S 912 | 69.34% | 27.52%
.0 829 | 99.28% | 99.76%
Axt 415 | 59.39% | 99.04%
.cmd 147 | 97.24% | 95.92%
other 180 | 31.89% | 15.00%
total 21450 | 82.55% | 79.79%
h+.c+.S | 18010 | 98.76% | 96.10%
total 21450 | 95.83% | 91.87%

« 85.68% extension
prediction accuracy.

e 79.79% on manifest
files (present on disk).

— Table at left.
— Confuses “source files”.
— If fixed, 94.08%.

e 93.76% on non-
manifest objects.

Number of Records Needed

100.00%

90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

Adeindoy

0.00%

%96'1¢
%lE0E
%89°8C
%¥0°LC
%01t°SC
%9L'ET
%L1CT
%81°0¢
%v8 81
%0T'LT
%95°ST
%C6'ET
%8C'C1L
%v9°01
%006

%EG'L

%06°S

yTAA

%€9°C

%001

Percentage Dataset Used Building Classifier

Talking Points

. Is “source file” confusion wrong?

« .Cc/.h/.S have similar usage from PASS perspective.
« “source file” may be right semantic level.
« Can fix using 2nd-degree neighbors (object files).

» Other than this, high accuracy.

« Especially on non-manifest objects — content-free.

« Noteworthy features — ancestral file count, edge
count, max path depth; descendant edge count

Future Work

More feature extraction.

Evaluate more attributes...

...on more data sets.

More sophisticated classifiers (neural nets).
Better understanding!

