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Semantic Attributes 

  Human-meaningful data adjectives. 

  Applications: 
  Search (Google Desktop, Windows Live) 

  Namespaces (iTunes, Perspective [Salmon, FAST'09]) 

  Preference Solicitation (Pandora) 

  And more... 

  Make data more valuable (like provenance!) 
-    Only... 



Where do Attributes Come From? 

  Manual labeling - intractable. 

  Automated content extraction: 

  Arguably, Google. 

  Visual extraction (La Cascia et al., '98) 

  Acoustic extraction (QueST, MULTIMEDIA'07) 

  Problems: 

  Need extractors for each content type. 

  Ignorant of inter-data relationships: dependency, 
history, usage, provenance, context. 



How Might Context Predict 
Attributes? Examples: 

  If an application always reads a file in its 
directory, that file is probably a component. 

  If an application occasionally writes a file 
outside its directory, that's probably content. 

  Etc... 

  Prior work: 

  Context search [Gyllstrom IUI'08, Shah USENIX'07] 

  Attribute propagation via context [Soules '04] 



The Goal 

  File relationships → attribute predictions. 

  Begin with a provenance-aware system (PASS) 

  Run some file-oriented workflow(s). 

  Output per-file data into a machine learner. 

  Train learner to predict semantic attributes. 
  Simple! Only... 



The Challenge 

  ...like fitting a square peg into a round hole! 

  Provenance → graphs → quadratic scale. 

  Typical learner handles ~hundreds of features. 

  Needs relevant feature extraction. 

  Going to “throw out” a lot of data. 



about:PASS 

  Linux research kernel. 

  Collects provenance at system call interface. 

  Logs file and process provenance as a DAG. 

  Nodes are versions of files and processes. 

  Must resolve many-to-one node to file mapping. 



Resolving Nodes to Files 

  Simple solution: discard version data. 

  Introduces cycles (false dependencies). 

  Increases graph density. 

  Alternatively: merge nodes by file name. 

  Similar to above; introduces more falsity. 

  But guarantees direct mapping. 

  More complicated post-processing? 

  Future work.  



Graph Transformations 

  File graph: reduce graph to just files. 

  Emphasizes data dependency, e.g. libraries. 

  Process graph: reduce graph to just processes. 

  Emphasizes workflow, omits specific inputs. 

  Ancestor and descendant subgraphs. 

  Defined as transitive closure. 

  On a per-file basis. 



Statistics 

  How to convert per-file subgraphs to statistics? 

  Experiments with partitioning, clustering: 

  Graclus (partitioner), GraphClust. 

  Failure: graph sparsity, different structural 
assumptions produce poor results. 

  Success with “dumb statistics”: 

  Node and edge counts, path depths, neighbors. 

  For both ancestor and descendant graphs. 

  Still a work in progress. 



Feature Extraction: Summary 

  2 ways to merge (by versions or path names). 

  3 graph representations (full, process, file). 

  4 statistics for both ancestors and descendants. 

  Totals 48 possible features-per-file... 

  ...plus 11 features from stat syscall. 

  Content-free metadata. 



Classification 

  Classification via decision trees. 

  Transparent logic: can evaluate, conclude, improve. 

  Standard decision tree techniques: 

  Prune splits via lower bound on information gain. 

  Train on 90% of data set, validate on 10%. 

  k-means to collapse real-valued feature spaces. 

  Requires labeled training data... 



Labeling Problem 

  First challenge: how to label training data? 

  Semantic attributes are subjective. 

  No reason provenance should predict any random 
attribute; must be well-chosen. 



Labeling Solution 

  Initial evaluation using file extensions as label. 

– Semantically meaningful, but not subjective. 

– Pre-labeled. 

–  Intuitively, usage predicts “file type”. 

– Reverse has been shown: extension predicts usage 
[Mesnier ICAC'04]. 



What’s the Data Set? 

  Second challenge: finding a data set. 

  Needs a “large heterogeneous file workflow”. 

  Still a work in progress. 

  In interim, Linux kernel compile. 

  138,243 nodes, 1,338,134 edges, 68,312 de-
versioned nodes, 34,347 unique path names, and 
21,650 files-on-disk (manifest files). 

  Long brute-force analysis; used 23 features. 



Precision, Recall, and Accuracy 

•  Standard metrics in machine learning: 

  Precision: for a given extension prediction, how 
many predictions were correct? 

  Recall: for a given extension, how many files with 
that extension received the correct prediction? 

  Accuracy: how many of all the files received the 
correct prediction?   



Results 

  85.68% extension 
prediction accuracy. 

  79.79% on manifest 
files (present on disk). 

– Table at left. 

– Confuses “source files”. 

–  If fixed, 94.08%. 

  93.76% on non-
manifest objects. 



Number of Records Needed 



Talking Points 

  Is “source file” confusion wrong? 

  .c/.h/.S have similar usage from PASS perspective. 

  “source file” may be right semantic level. 

  Can fix using 2nd-degree neighbors (object files). 

  Other than this, high accuracy. 

  Especially on non-manifest objects – content-free. 

  Noteworthy features – ancestral file count, edge 
count, max path depth; descendant edge count 



Future Work 

  More feature extraction. 

  Evaluate more attributes... 

  ...on more data sets. 

  More sophisticated classifiers (neural nets). 

  Better understanding! 


