A graph model for data
and workflow provenance

Umut Acar, Peter Buneman, James Cheney,
Natalia Kwasnikowska,
Jan van den Bussche, & Stijn Vansummeren

TaPP 2010

Provenance in ...

® Databases ® Workflows

® Mainly for (nested) ® Many different systems
relational model

® Many different models
® Where-provenance

("source location") ® (converging on OPM?)
® Lineage, why ("witnesses") ® Graphs/DAGs
® How/semiring model ® Relatively informal

® Relatively formal

Provenance in ...

® Databases ® Workflows

® Mainly for (nested) ® Many different systems
relational model

® \ Many different models
® Where-proven

("source loca ????? onverging on OPM?)
® Lineage, why ("witrsses” ® |/ Graphs/DAGs
® How/semiring model ® Relatively informal

® Relatively formal

This talk

® Relate database & workflow "styles”
® Develop a common graph formalism

® Need a common, expressive language that

® supports many database queries

® describes some (simple) workflows

Previous work

® Dataflow calculus (DFL), based on nested
relational calculus (NRC)

® Provenance "run" model by Kwasnikowska & Van
den Bussche (DILS 07, IPAVV 08)

® "Provenance trace" model for NRC

® by (Acar, Ahmed & C.'08)

® Open Provenance Model (bipartite graphs)
® (Moreau et al. 2008-9), used in many WF systems

NRC/DFL background

® A very simple, functional language:
® basic functions +,*,...& constants 0,1,2,3...
® variables x,vy, 2
® npair/record types (A:e,...,B:e), Ta(e)

® collection (set) types

® fe,...} e Ue {e | x in e'} Ue

An example

An example

® Suppose R ={(1,2,3),(4,5,6),(9,8,7)}

An example

® Suppose R ={(1,2,3),(4,5,6),(9,8,7)}

sum { x *y | (x,¥,2) in R, x < y}

An example

® Suppose R ={(1,2,3),(4,5,6),(9,8,7)}

sum { x *y | (x,¥,2) in R, x < y}

=sum { x *y | (x,y,2) in {(1,2,3), (4,5,6)}}

An example

Suppose R ={(1,2,3), (4,5,6), (9,8,7)}

sum { x *y | (x,¥,2) in R, x < y}

sum { x *y | (x,y,2) in {(1,2,3), (4,5,6)}}

sum {1 * 2, 4 * 5}

An example

Suppose R ={(1,2,3), (4,5,6), (9,8,7)}

sum { x *y | (x,¥,2) in R, x < y}

sum { x *y | (x,y,2) in {(1,2,3), (4,5,6)}}

sum {1 * 2, 4 * 5}

sum {2,20}

An example

Suppose R ={(1,2,3), (4,5,6), (9,8,7)}

sum { x *y | (x,¥,2) in R, x < y}

sum { x *y | (x,y,2) in {(1,2,3), (4,5,6)}}

= sum {1 * 2, 4 * 5}

sum {2,20}

22

Another example

® |n DFL, built-in functions / constants can be
whole programs & files,
® as in Provenance Challenge | workflow:
let WarpParams := {align warp(img,hdr})
| (img,hdr) in Inputs} in
let Reslices := {reslice(wp)
| wp in WarpParams} in

softmean(Reslices)

Goal: Define "provenance
graphs” for DFL

Goal: Define "provenance
graphs” for DFL

let WarpParams := {align_warp(img,hdr})
| (img,hdr) in Inputs} in
let Reslices := {reslice(wp)

| wp in WarpParams} in
in softmean(Reslices)

Goal: Define "provenance
graphs” for DFL

let WarpParams := {align_warp(img,hdr})
| (img,hdr) in Inputs} in
let Reslices := {reslice(wp)
| wp in WarpParams} in

in softmean(Reslices)

http://www.flickr.com/photos/schneertz/679692806/

http://www.flickr.com/photos/schneertz/679692806/
http://www.flickr.com/photos/schneertz/679692806/

First step: values

Example value

Next step: evaluation
nodes (' process’)

Constants, praan |
. .« o e\
primitive C z f
functions e e
Variables & |
X =--==* head| |ty
temporary e “Body

bindings

Pairing

Record building : <>

Field lookup T e— 114

Conditionals

: € e— € (_

v T T ! if P T 1 if
y e e— : e i
v----- thene L else

Note: Only taken branch is recorded

Sets: basic operations

Empty set %
Singleton e 0
Union T
e i€

Sets: complex
operations

Flattening e e—] |
i
: el
Iteration - pogy] forx

Provenance graphs

® are graphs with "both value and evaluation
structure”

N C)

@

A bigger example

Value structure

Value structure

Input values

Return value

Expression structure

Expression structure

Building provenance
graphs

® is complicated

® Here we'll use high-level "graph rewrite
rule” formalism

® Mostly because it is nicer to look at than
formal version

[

if

then

N

K

if

else

empty?

.<—[empty?j — .4— empty!?

OK, take a deep breath!

An example

{
(]

An example

{
(]

An example

@ elem

i

An example

@ elem

i

phe
e

©

@ elem

An example

\

1

phe
e

©

@ elem

An example

\

1

An example

Graphs can “lie”
(inconsistency)

@
@~

&

Graphs can "lie

(inconsistency)

&

@
@~

t f—Ceom)

else

Graphs can “lie”
(inconsistency)

@
@~

Graphs can “lie”
(inconsistency)

@
@~

Graph queries

® Many possible approaches

® |n paper:some Datalog

® Maybe overkill, seems fragile

® In code: some "annotation propagation”
traversals

® Seems to handle where, "explanations”,
"summaries”

Explaining

Explaining

Explaining

Explaining

Summarizing

Summarizing

1 fst (« copy), 1
1 X COpy)« snd l 2
copy j* = False), test
else
2 == {3} empty [« {}) 1|‘
. head e goPy
{}r body “&19
- -
COPY) 1,0y) copye ™
copy). o R | : head let S »
., . , -
snd| 1 test COpy)+ he(:d forx {1}) U1} ’ 1 E 0(1; -
° 0py J+ =r lrue)-te body heac
ol S . AN | copy ~ body ‘ copy - oy
ol then | if j¢ " S body
- ' copy
& bl . o N 0Py -
[) e -y [-
\!--om‘-. { } -y | -
-~y 1
- -y L) BN BN BN BN BN BN BN BN BN BN BN BN BN BN B W =
-y + i
' :
copy)~ 1 !
y copy S 1d

fst copy

Graphs are partially
"replayable”

® |[f we change a value node, can try to
"readjust” to recover consistency

@
@~

—®

® Formalized in (Acar,Ahmed, Cheney 08)

Graphs are partially
"replayable”

® |[f we change a value node, can try to
"readjust” to recover consistency

@

&

® Formalized in (Acar,Ahmed, Cheney 08)

—®

Graphs are partially
"replayable”

® |[f we change a value node, can try to
"readjust” to recover consistency

@

4 e

® Formalized in (Acar,Ahmed, Cheney 08)

Graphs are partially
"replayable”

® |[f we change a value node, can try to
"readjust” to recover consistency

Cé !

® Formalized in (Acar,Ahmed, Cheney 08)

Graphs are partially
"replayable”

® |[f we change a value node, can try to
"readjust” to recover consistency

=N
[e e

® Formalized in (Acar,Ahmed, Cheney 08)

if

Graphs are partially
"replayable”

® |[f we change a value node, can try to
"readjust” to recover consistency

S if
4 o @
Stuck!

® Formalized in (Acar,Ahmed, Cheney 08)

Implementation in
Raskell

® Summarized in paper, full code on request

® roughly 250 LOC for basic evaluator

® another 300 for graphviz translation, basic queries, examples
® Point!

® No claim of efficiency/scalability but easy to understand,
experiment

® FElucidates some tricky details that pictures hide

® Similar "lightweight modeling" might be valuable for
understanding/relating other WF/DB models

Related work

® This work synthesizes/rearranges ideas from
several previous works & "folklore"

® traces (Acar,Ahmed, Cheney 2008)

® runs (Kwasnikowska, van den Bussche, DILS 2007, IPAW
2008)

® OPM graphs (Moreau et al. IPAW 2008 etc.)

® and many workflow systems

® More can be done to relate DB & workflow
models

Future work

® This is work in progress

® Next steps:

® Extending to understand/model other workflow
features

® Better grasp of "real" queries and features needed
® |Implementa(tion|ability)?

® Optimization!?

Conclusions

e DB & WF provenance have much in
common

® We develop common graph model

® with both intuitive & precise presentations

® Still much to do to relate and integrate DB
& WF models

® |et alone integrate models at scale in real systems

