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Provenance in ...

® Databases ® Workflows

® Mainly for (nested) ® Many different systems
relational model

® Many different models
® Where-provenance

("source location") ® (converging on OPM?)
® Lineage, why ("witnesses") ® Graphs/DAGs
® How/semiring model ® Relatively informal

® Relatively formal
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This talk

® Relate database & workflow "styles”
® Develop a common graph formalism

® Need a common, expressive language that

® supports many database queries

® describes some (simple) workflows



Previous work

® Dataflow calculus (DFL), based on nested
relational calculus (NRC)

® Provenance "run" model by Kwasnikowska & Van
den Bussche (DILS 07, IPAVV 08)

® "Provenance trace" model for NRC

® by (Acar, Ahmed & C.'08)

® Open Provenance Model (bipartite graphs)
® (Moreau et al. 2008-9), used in many WF systems



NRC/DFL background

® A very simple, functional language:
® basic functions +,*,...& constants 0,1,2,3...
® variables x,vy, 2
® npair/record types (A:e,...,B:e), Ta(e)

® collection (set) types

® fe,...} e Ue {e | x in e'} Ue
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Suppose R ={(1,2,3), (4,5,6), (9,8,7)}

sum { x *y | (x,¥,2) in R, x < y}
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Another example

® |n DFL, built-in functions / constants can be
whole programs & files,
® as in Provenance Challenge | workflow:
let WarpParams := {align warp(img,hdr})
| (img,hdr) in Inputs} in
let Reslices := {reslice(wp)
| wp in WarpParams} in

softmean(Reslices)
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First step: values




Example value




Next step: evaluation
nodes (' process’)
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Pairing

Record building : <>

Field lookup T e— 114




Conditionals

: € e— € (_
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v----- thene L else

Note: Only taken branch is recorded



Sets: basic operations

Empty set %
Singleton e 0
Union T
e i€



Sets: complex
operations

Flattening e e—] |
i
: el
Iteration - pogy] forx



Provenance graphs

® are graphs with "both value and evaluation
structure”

N C)

@




A bigger example




Value structure
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Input values




Return value




Expression structure




Expression structure




Building provenance
graphs

® is complicated

® Here we'll use high-level "graph rewrite
rule” formalism

® Mostly because it is nicer to look at than
formal version
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OK, take a deep breath!
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Graphs can “lie”
(inconsistency)
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Graph queries

® Many possible approaches

® |n paper:some Datalog

® Maybe overkill, seems fragile

® In code: some "annotation propagation”
traversals

® Seems to handle where, "explanations”,
"summaries”
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Summarizing
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Graphs are partially
"replayable”

® |[f we change a value node, can try to
"readjust” to recover consistency
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Implementation in
Raskell

® Summarized in paper, full code on request

® roughly 250 LOC for basic evaluator

® another 300 for graphviz translation, basic queries, examples
® Point!

® No claim of efficiency/scalability but easy to understand,
experiment

® FElucidates some tricky details that pictures hide

® Similar "lightweight modeling" might be valuable for
understanding/relating other WF/DB models



Related work

® This work synthesizes/rearranges ideas from
several previous works & "folklore"

® traces (Acar,Ahmed, Cheney 2008)

® runs (Kwasnikowska, van den Bussche, DILS 2007, IPAW
2008)

® OPM graphs (Moreau et al. IPAW 2008 etc.)

® and many workflow systems

® More can be done to relate DB & workflow
models



Future work

® This is work in progress

® Next steps:

® Extending to understand/model other workflow
features

® Better grasp of "real" queries and features needed
® |Implementa(tion|ability)?

® Optimization!?



Conclusions

e DB & WF provenance have much in
common

® We develop common graph model

® with both intuitive & precise presentations

® Still much to do to relate and integrate DB
& WF models

® |et alone integrate models at scale in real systems



