
Mining Console Logs for Large-Scale System Problem Detection

Wei Xu∗ Ling Huang† Armando Fox∗ David Patterson∗ Michael Jordan∗
∗UC Berkeley †Intel Research Berkeley

Abstract
The console logs generated by an application contain messages
that the application developers believed would be useful inde-
bugging or monitoring the application. Despite the ubiquity and
large size of these logs, they are rarely exploited in a systematic
way for monitoring and debugging because they are not read-
ily machine-parsable. In this paper, we propose a novel method
for mining this rich source of information. First, we combine
log parsing and text mining with source code analysis to ex-
tract structure from the console logs. Second, we extract fea-
tures from the structured information in order to detect anoma-
lous patterns in the logs using Principal Component Analysis
(PCA). Finally, we use a decision tree to distill the resultsof
PCA-based anomaly detection to a format readily understand-
able by domain experts (e.g. system operators) who need not
be familiar with the anomaly detection algorithms. As a case
study, we distill over one million lines of console logs fromthe
Hadoop file system to a simple decision tree that a domain ex-
pert can readily understand; the process requires no operator
intervention and we detect a large portion of runtime anomalies
that are commonly overlooked.

1 Introduction
Today’s large-scale Internet services run in large server
clusters. A recent trend is to run these services on virtu-
alized cloud computing environments such as Amazon’s
Elastic Compute Cloud (EC2) [2]. The scale and com-
plexity of these services makes it very difficult to design,
deploy and maintain a monitoring system. In this paper,
we propose to return to console logs, the natural tracing
information included in almost every software system, for
monitoring and problem detection.

Since the earliest days of software, developers have
used free-text console logs to report internal states, trace
program execution, and report runtime statistics [17].
The simplest console log generation tool is the print state-
ment built into every programming language, while more
advanced tools provide flexible formatting, better I/O per-
formance and multiple repository support [7].

Unfortunately, although developers log a great deal of
valuable information, system operators and even other
developers on the same project usually ignore console
logs because they can be very hard to understand. Con-
sole logs are too large [14] to examine manually, and un-
like structured traces, console logs contain unstructured
free text and often refer to implementation details that
may be obscure to operators.

Traditional analysis methods for console log involve
significant ad-hoc scripting and rule-based processing,
which is sometimes calledsystem event processing [15].
Such scripts are usually created by operators instead of
developers because the problems that operators look for
are often runtime-environment dependent and cannot be
predetermined by developers. However, most operators
do not understand the implementation details of their sys-
tem well enough to write useful scripts or rules; as a re-
sult their scripts may simply search for keywords such as
“error” or “critical,” which have been shown to be insuf-
ficient for effective problem determination [14].

We propose a general approach for mining console
logs for detecting runtime problems in large-scale sys-
tems. Instead of asking for user input prior to the anal-
ysis (e.g., a search key), our system automatically se-
lects the most important information from console logs
and presents it to operators in a format that is a better
fit to operators’ expertise. Besides extracting commonly
used features such as performance traces and event counts
from console logs [8, 11], we also construct console-log-
specific features, such as themessage count vector dis-
cussed in this paper. Although we only present one type
of feature here, we are designing more features as ongo-
ing work.

We present our methodology and techniques in the
context of a concrete case study of logs from the Hadoop
file system [3] running on Amazon’s EC2 [2]. The results
are promising: We generate a human-friendly summary
from over 1 million lines of logs, and detect commonly
overlooked behavioral anomalies with very few false pos-
itives. We emphasize that although our approach is pre-
sented in a single case study, it is applicable to logs of a
large variety of server systems.

Contributions. 1) We describe a novel method for run-
time problem detection by mining console logs, which re-
quires neither additional system instrumentation nor prior
input from the operator. 2) We use source code analysis
to help extract structured information from free text logs;
source code is increasingly available for Internet services
due to the heavy influence of open source software and
the fact that many services develop their custom compo-
nents in-house. 3) We apply principal component anal-
ysis (PCA) to detect behavior anomalies in large-scale
server systems. To our knowledge this is the first time

1

PCA has been used in this way. 4) We automatically
construct decision trees to summarize detection results,
helping operators to understand the detection result and
interesting log patterns.

Related Work. Most existing work treats the entire log
as a single sequence of repeating message types and ap-
plies time series analysis methods. Hellersteinet al. de-
veloped a novel method to mine important patterns such
as message burst, message periodicity and dependencies
among multiple messages from SNMP data in an enter-
prise network [8, 12]. Yamanishiet al. model syslog se-
quences as a mixture of Hidden Markov Models (HMM),
in order to find messages that are likely to be related to
critical failures [19]. Limet al. analyzed a large scale en-
terprise telephony system log with multiple heuristic fil-
ters to find messages related to actual failures [11]. Treat-
ing a log as a single time series, however, does not per-
form well in large scale clusters with multiple indepen-
dent processes that generate interleaved logs. The model
becomes overly complex and parameters are hard to tune
with interleaved logs [19]. Our analysis is based on log
message groups rather than time series of individual mes-
sages. The grouping approach makes it possible to obtain
useful results with simple, efficient algorithms such as
PCA.

A crucial but questionable assumption in previous
work is that message types can be detected accurately.
[8, 12] uses manual type labels from SNMP data, which
are not generally available in console logs. Most projects
use simple heuristics—such as removing all numeric
values and IP-address-like strings—to detect message
types [19, 11]. These heuristics are not general enough.
If the heuristics fail to capture some relevant variables,
the resulting message types can be in the tens of thou-
sands [11]. SLCT [17] and Sisyphus [16] use more ad-
vanced clustering and association rule algorithms to ex-
tract message types. This method works well on mes-
sages types that occur many times in log, but cannot han-
dle rare message types, which are likely to be related to
the runtime problems we are looking for in this research.
In our approach, we combined log parsing with source
code analysis to get accurate message type extraction,
even for rarely seen message types.

2 Approach
There are four steps in our approach for mining console
logs. We first extract structured information from console
logs. By combining logs with source code, we can accu-
rately determine message types, as well as extract vari-
able values contained in the log. Then we construct fea-
ture vectors from the extracted information by grouping
related messages. Next, we apply PCA-based anomaly
detection method to analyze the extracted feature vectors,
labeling each feature vector normal or abnormal. As we
will describe, the threshold for abnormality can be cho-

sen in a way that bounds the probability of false positives
(under certain assumptions). Finally, in order to let sys-
tem developers and operators better understand the result,
we visualize the PCA detection result in a decision tree.

To make the following explanation concrete, we de-
scribe the application of our technique to the console
logs generated by the Hadoop file system (HDFS) [3]
while running a series of standard MapReduce jobs [1].
We use unmodified Hadoop version 0.18 (20 April 2008)
running on twelve nodes of Amazon Elastic Compute
Cloud (EC2) [2]: one data node, one MapReduce job
tracker, and ten nodes serving as HDFS data nodes and
MapReduce workers. The experiment ran for about 12
hours, during which 600GB (nonreplicated) client data
were written to HDFS, 5,376 HDFS blocks were created,
and 1.03 million lines of console logs were generated to-
taling 113MB uncompressed.

3 Anomaly Detection
3.1 Log parsing and structure extraction
The key insight of our method is that although console
logs appear to be free-form, in fact they are quite lim-
ited because they are generated entirely from a relatively
small set of log output statements in the application.

A typical message in console log might look like:

10.251.111.165:50010 Served block
blk_801792886545481534 to /10.251.111.165

We can break this down into a constant pattern
called the message type (Served block . . . to)
and a variable part called themessage variables
(blk 801792886545481534). The message type is es-
sential information for automatic analysis of console
logs, and is widely used in prior work [17, 11].

Identifying the message type and extracting the mes-
sage variables are crucial preprocessing steps for auto-
matic analysis. Our novel technique for doing this in-
volves examining log printing statements in source code
to eliminate heuristics and guesses in message type detec-
tion step, generating a precise list ofall possible message
types. As a byproduct, by examining the abstract syntax
tree of the source code we also get all variable values and
variable names reported in log messages.

Space constraints do not permit a detailed description
of the source code analysis machinery, so we summa-
rize our results here. By automatic analysis of Hadoop
source code, we extracted 911 message types; 731 are
relevant to our analysis (i.e., are not simply debugging
messages), and of these, 379 originate from HDFS code.
We emphasize that these numbers described areall pos-
sible message types that could be generated in the log
given the source code. However, in our experiment, we
only find 40 distinct HDFS message types out of the 379
possible. Many of the other message types only appear
in log when exceptional behavior happens, and therefore

2

Algorithm 1 Feature extraction algorithm

1. Find all message variables reported in log with the
following properties:
a. Reported many times;
b. Has many distinct values;
c. Appears in multiple message types.

2. Group messages by values of the variables
chosen above.

3. For each message group, create a message count
vectory = [y1, y2, . . . , yn], whereyi is the number of
appearances of messages of typei (i = 1 . . . n)
in the message group.

are likely to be important when they do appear. Generat-
ing message types from source code makes it possible to
identify these rare cases even if they do not show up in
the particular logs being analyzed. We believe this is the
most significant advantage of supplementing log analy-
sis with source code analysis rather than mining message
types exclusively from the logs.

We consider console logs from all nodes as a collection
of message groups. The message group can be arbitrarily
constructed. The flexibility of message grouping is a di-
rect benefit of being able to accurately extract all variable
(name, value) pairs from log messages.

3.2 Feature vector construction
In a nutshell, our method uses automatically chosen log
message variables as keys to group different log lines:
Then for each log group, we construct a feature vector,
themessage count vector. This is done by an analogy to
thebag of words model in information retrieval [5]. In our
application, the “document” is the message group, while
“term frequency” becomes message type count. Dimen-
sions of the vector consist of (the union of) all useful mes-
sage types across all groups, and the value of a dimension
in the vector is the number of appearances of the corre-
sponding message type in the group. We construct the
feature from message groups because often multiple log
messages together capture a single behavior of the sys-
tem, and thus an anomalous pattern in the message groups
is often a better indication of a particular runtime problem
than an anomalous pattern among individual messages.

Algorithm 1 gives a high-level description of our fea-
ture construction algorithm, which involves three steps.
In the first step, we want to automatically choose vari-
ables as keys to group messages (one key for each group).
We find variables that are frequently reported by different
message types and can have a large number of distinct
values. This step eliminates the need for a user to man-
ually choose grouping criteria. The intuition is that if a
variable has many distinct values reported, and each dis-
tinct value appears multiple times, it is likely to be an
identifier for an object of interest, such as a transaction

ID, session ID, source/destination IP address, and so on.
In our experiments, we have found that this criterion re-
sults in very few false selections for Internet service sys-
tems, which can be easily eliminated by a human opera-
tor. In the HDFS log, the only variable selected in step 1
is block ID, an important identifier.

In the second step, log entries are grouped by the iden-
tifier values, generating message groups we believe to be
a good indicator of problems. In fact, the result reveals
the life cycle of an identifier passing through multiple
processing steps. The idea is very similar to execution
path tracing [6], with two major differences. First, not ev-
ery processing step is necessarily represented in the con-
sole logs; but since the logging points are hand chosen by
developers, it is reasonable to assume that logged steps
should be important for diagnosis. Second, correct order-
ing of messages is not guaranteed across multiple nodes,
due to unsynchronized clocks. We did not find this to be
a problem for identifying many kinds of anomalies, but
it might be a problem for debugging synchronization re-
lated issues using our technique.

In the third step, we create a vector representation of
message groups by counting the number of message types
in each group, using the well establishedbag of words
model in information retrieval [5]. This model fits our
needs because: 1) it does not require ordering among
terms (message types), and 2) documents with unusual
terms are given more weight in document ranking, and
in our case the rare log messages are indeed likely to be
more important.

In practice, our feature extraction algorithm paral-
lelizes easily into a map-reduce computation, making it
readily scalable to very large log files. After source code
analysis, which needs to be done only once, message type
detection and feature vector generation can be done in a
single pass in map-reduce.

We gather all the message count vectors to construct
message count matrixY as am × n matrix where each
row is a message count vectory, as described in step 3
of Algorithm 1. Y hasn columns, corresponding ton
message types (in the entire log) that reported the identi-
fier chosen in step 1 (analogous toterms). Y hasm rows,
each of which corresponds to a message group (analo-
gous todocuments). From our Hadoop data set, we ex-
tracted5, 376 message count vectorsy, each of which
has21 dimensions, indicating that block IDs (the only
message variable selected in Step 1 of Algorithm 1) were
reported in21 message types in the entire log. Thus, we
get a5, 376× 21 message count matrixY. We useY for
anomaly detection algorithm.

3.3 PCA-Based Anomaly Detection

In this section we show how to adapt Principal Compo-
nent Analysis (PCA)-based fault detection from multi-
variate process control [4] to detect runtime anomalies

3

5 10 15 20
0

0.2

0.4

0.6

0.8

1

V
ar

ia
nc

e
C

ap
tu

re
d

Principal Component

Figure 1:Fractional of total variance captured by each princi-
pal component.

in logs via the message count matrixY. Intuitively, we
use PCA to determine the dominant components in mes-
sage count vectors, i.e. the “normal” pattern in a log mes-
sage group. By separating out these normal components,
we can make abnormal message patterns easier to detect.
PCA is efficient: With a small constant dimension for
each vector, its runtime is linear in the number of vectors,
so detection can scale to large logs.

PCA. PCA is a coordinate transformation method that
maps a given set of data points onto principal components
ordered by the amount of data variance that they capture.
When we apply PCA toY, treating each rowy as a point
in R

n, the set ofn principal components,{vi}
n
i=1, are

defined as

vi = arg max
‖x‖=1

‖(Y −

i−1∑

j=1

Yvjv
T
j)x‖.

In fact, vi’s are then eigenvectors of the estimated co-
variance matrixA := 1

m
YT Y, and each‖Yvi‖ is pro-

portional to the variance of the data measured alongvi.

Intrinsic Dimensionality of Data. By examining the
amount of variance captured by each principal compo-
nent, we can use PCA to explore theintrinsic dimension-
ality of a set of data points. If we find that only the vari-
ance along the firstk dimensions is non-negligible, we
can conclude that the point set represented byY effec-
tively resides in ank-dimensional subspace ofR

n.
Indeed, we do observe low effective dimensionality in

our message count matrixY. In Fig. 1, we plot the frac-
tion of total variance captured by each principal compo-
nent ofY. This plot reveals that even though message
count vectors have 21 dimensions, a significant fraction
of the variance can be well captured by three or four
principal components. The intuition behind this result is
that most blocks in HDFS go through a fixed processing
path, so the message groups are intrinsically determined
by program logic, resulting in high correlation and thus
low intrinsic dimensionality.

The normal message count vectors effectively reside in
a (low) k-dimensional subspace ofR

n, which is referred
to as thenormal subspaceSn. The remaining(n − k)
principal components constitute theabnormal subspace

Sa. Intuitively, because of the low effective dimension-
ality of Y, by separating out the normal subspace using
PCA, it becomes much easier to identify anomalies in the
remaining (abnormal) subspace [4, 10]. This forms the
basis for the success of PCA methods.

Detecting Anomalies. Detecting program execution
anomalies relies on the decomposition of each message
count vectory into normal and abnormal components,
y = yn+ya, such that (a)yn corresponds to the modeled
normal component (the projection ofy ontoSn), and (b)
ya corresponds to the residual component (the projection
of y ontoSa). Mathematically, we have:

yn = PPTy = Cny, ya = (I − PPT)y = Cay,

whereP = [v1,v2, . . . ,vk], is formed by the firstk prin-
cipal components which capture the dominant variance in
the data. The matrixCn = PPT represents the linear op-
erator that performs projection onto the normal subspace
Sn, and operatorCa = I − Cn projects data onto the
abnormal subspaceSa.

An abnormal message count vectory typically results
in a large change toya; thus, a useful metric for detect-
ing abnormal traffic patterns is the squared prediction er-
ror SPE ≡ ‖ya‖

2 = ‖Cay‖
2. Formally, we mark a

message count vector as abnormal if

SPE = ‖Cay‖
2 > Qα, (1)

whereQα denotes the threshold statistic for theSPE

residual function at the(1 − α) confidence level. Such
a statistical test for theSPE residual function, known as
theQ-statistic [9], can be computed as a functionQα =
Qα(λk+1, . . . , λn), of the(n − k) non-principal eigen-
values of the covariance matrixA. With the computed
Qα, this statistical test can guarantee that the false alarm
probability is no more thanα if the original dataY has a
multivariate Gaussian distribution. However, Jensen and
Solomon point out that theQ-statistic changes little even
when the underlying distribution of the data differ sub-
stantially from Gaussian [9]. With our data, which may
deviate from Gaussian distribution, we do find that the
Q-statistic still gives excellent results in practice.

4 Results
We first discuss the PCA detection results by comparing
them to manual labels. Then we discuss our method of
distilling the results into a decision tree which allows a
domain expert unfamiliar with PCA to understand the re-
sults.
4.1 Anomaly detection results
We apply the PCA-based anomaly detection method to
message count matrixY and Fig. 2 shows the result. We
setα = 0.001 and chosek = 4 for the normal subspace,
because the top 4 principal components already capture
more than 95% of the variance. From the figure, we

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

Message group sequence

N
or

m
 o

f y
a

Linear PCA

SPE
Threshold
Alarms

Figure 2:Detection with residual componentya, the projection on the abnormal subspace. The dashed line shows the threshold
Qα. The solid line with spikes is the SPE calculated according to Eq. (1). The circles denote the anomalous message count vectors
detected by our method, whose SPE values exceed thresholdQα.

Table 1: Detection Precision
Anomalous Event Events Detected
Empty packet 1 1
Failed at the beginning, no block written 20 20
WriteBlock received java.io.IOException 39 38
After delete, namenode not updated 3 3
Written block belongs to no file 3 3
PendingReplicationMonitor timed out 15 1
Redundant addStoredBlock request 12 1
Replicate then immediately delete 6 2

Table 2: False Positives
False Positive Type False Alarm
Over replicating (actually due to client request)11
Super hot block 1
Unknown reasons 2

see that after projecting the message count vectors onto
the abnormal space, the count vectors with anomalous
patterns clearly stand out from the rest of vectors. Even
using a simple threshold (automatically determined), we
can successfully separate the normal vectors from the ab-
normal ones.

To further validate our results, we manually labeled
each distinct message vector, not only marking them nor-
mal or abnormal, but also determining the type of prob-
lems for each message vector. The labeling is done by
carefully studying HDFS code and consulting with local
Hadoop experts. We show in the next section that the de-
cision tree visualization helps both ourselves and Hadoop
developers understand our results and make the manual
labeling process much faster. We emphasize that this la-
beling step was done only to validate our method—it is
not a required step when using our technique.

Tables 1 and 2 show the manual labels and the detec-
tion results. Our evaluation is based on anomalies de-
tectable from the block-level logs. Throughout the exper-
iment, we experienced no catastrophic failures, thus most
problems listed in Table 1 only affect performance. For
example, when two threads try to write the same block,
the write fails and restarts, causing a performance hit.
From Table 1 we see that our method can detect a major-
ity of anomalous events in all but the last three categories,
confirming the effectiveness of PCA-based anomaly de-
tection for console logs. Indeed, examining the anoma-
lous message groups, we find that some groups are ab-
normal because the messagecounts change, rather than
because they contain any single anomalous error mes-

sage; these abnormalities would be missed by other tech-
niques based on individual messages rather than message
groups.

However, the PCA method almost completely missed
the last three types of anomalies in Table 1, and triggered
a set of false positives as shown in Table 2. In ongoing
work we are exploring nonlinear variants of PCA to see
whether these errors arise due to the fact that PCA is lim-
ited to capturing linear relationships in the data.

In summary, while the PCA-based detection method
shows promising results, it also has inherent limitations
that cause both missed detection and false alarms. We
are currently investigating more sophisticated nonlinear
algorithms to further improve the detection capability of
our method.

4.2 Visualizing detection results with decision tree

From the point of view of a human operator, the high-
dimensional transformation underlying PCA is ablack
box algorithm: it provides no intuitive explanation of the
detection results and cannot be interrogated. Human op-
erators need to manually examine anomalies to under-
stand the root cause, and PCA itself provides little help in
this regard. In this section, we augment PCA-based de-
tection with decision trees to make the results more easily
understandable and actionable by human operators.

Decision trees have been widely used for classification.
Because decision tree construction works in the original
coordinates of the input data, its classification decisions
are easy to visualize and understand [18]. Constructing
a decision tree requires a training set with class labels.
In our case, we use the automtically-generated PCA de-
tection results (normal vs. abnormal) as class labels. In
contrast to the normal use of decision trees, in our case
the decision tree is constructed to explain the underlying
logic of the detection algorithm, rather than the nature of
the dataset.

The decision tree for our dataset (Fig. 3), gen-
erated using RapidMiner [13], clearly shows that
the most important message type iswriteBlock #

received exception. If we see this message, the
block is definitely abnormal; if not, we next check
whether Starting thread to transfer block #

to # appears 2.5 times or less. This is related to the first
false positive (over-replication) in Table 2. This anoma-
lous case actually comes from special client requests in-
stead of failures, which is indeed arare case but not

5

<= 0

<= 0

<= 2> 2

> 0

<= 0

<= 0

> 0

<= 2.500

> 0

> 0

<= 0

<= 0

> 0

> 0

> 2.500

Unexpected error trying to delete block #\. BlockInfo not found in volumeMap\.

addStoredBlock request received for # on # size # But it does not belong to any file\.

Starting thread to transfer block # to

#Verification succeeded for #

Starting thread to transfer block # to

#:Got exception while serving # to #:#

1

1

0

writeBlock # received exception #

1

0

0

1

1

0

Receiving block # src: # dest: #

Figure 3: The decision tree visualization. Each node is the
message type string (# is the place holder for variables). The
number on the edge is the threshold of message count, generated
by the decision tree algorithm. Small square box are the labels
from PCA, with 1 for abnormal, and 0 for normal.

a problem. Visualizing this false positive helps opera-
tors notice the rare over-replicating behavior, find its root
cause more efficiently and thus avoid future false alarms.

The most counterintuitive result in Fig. 3 is that
the message#:Got Exception while serving #

to #:# indicates anormal case. According to Apache
issue tracking HADOOP-3678, this is indeed a normal
behavior of Hadoop: the exception is generated by the
DFS data node when a DFS client does not finish reading
an entire block before it stops. These exception messages
have confused many users, as indicated by multiple dis-
cussion threads on the Hadoop user mailing list about this
issue since the behavior first appeared. While traditional
keyword matching (i.e., search for words likeException
or Error) would have flagged these as errors, our message
count method successfully eliminates this false positive.
Even better, the visualization of this counterintuitive re-
sult via the decision tree can prod developers to fix this
confusing logging practice.

In summary, the visualization of results with decision
trees helps operators and developers noticetypes of ab-
normal behaviors, instead of individual abnormal events,
which can greatly improve the efficiency of finding root
causes and preventing future alarms.

5 Conclusions and future work
In this paper, we showed that we can detect different
kinds of runtime anomalies from usually underutilized
console logs. Using source code as a reference to under-
stand structures of console logs, we are able to construct
powerful features to capture system behaviors likely to
be related to problems. Efficient algorithms such as PCA
yield promising anomaly detection results. All steps

in our analysis are automatically done on console logs,
without any instrumentation to the system or any prior in-
put from operators. In addition, we summarize detection
results with decision tree visualization, which help oper-
ators/developers understand the detection result quickly.

As future work, we will investigate more sophisticated
anomaly detection algorithms that capture nonlinear pat-
terns of the message count features. We are designing
other features to fully utilize information in console logs.
Current work ispostmortem analysis, but developing an
online detection algorithm is also an important future di-
rection for us. We also want to integrate operator feed-
back into our algorithm to refine detection results. In
summary, our initial work has opened up many new op-
portunities for turning built-in console logs into a power-
ful monitoring system for problem detection.
References
[1] Hadoop 0.18 api documentation. Hadoop web site.
[2] Amazon.com.Amazon Elastic Compute Cloud Developer

Guide, 2008.
[3] D. Borthakur. The hadoop distributed file system: Archi-

tecture and design. Hadoop Project Website, 2007.
[4] R. Dunia and S. J. Qin. Multi-dimensional fault diagnosis

using a subspace approach. InProceedings of ACC, 1997.
[5] R. Feldman and J. Sanger.The Text Mining Handbook:

Advanced Approaches in Analyzing Unstructured Data.
Cambridge Univ. Press, 12 2006.

[6] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-
ica. Xtrace: A pervasive network tracing framework. In
In Proceedings of NSDI, 2007.

[7] C. Gulcu. Short introduction to log4j, March 2002.
http://logging.apache.org/log4j.

[8] J. Hellerstein, S. Ma, and C. Perng. Discovering action-
able patterns in event data.IBM Systems Journal, 41(3),
2002.

[9] J. E. Jackson and G. S. Mudholkar. Control procedures
for residuals associated with principal component analy-
sis. Technometrics, 21(3):341–349, 1979.

[10] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
network-wide traffic anomalies. InProceedings of ACM
SIGCOMM, 2004.

[11] C. Lim, N. Singh, and S. Yajnik. A log mining approach
to failure analysis of enterprise telephony systems. InPro-
ceedings of DSN, June 2008.

[12] S. Ma and J. L. Hellerstein. Mining partially periodic
event patterns with unknown periods. InProceedings of
IEEE ICDE, Washington, DC, 2001.

[13] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler. Yale: Rapid prototyping for complex data mining
tasks. InProceedings of ACM KDD, New York, NY, 2006.

[14] A. Oliner and J. Stearley. What supercomputers say: A
study of five system logs. InProceedings of IEEE DSN,
Washington, DC, 2007.

[15] J. E. Prewett. Analyzing cluster log files using logsurfer.
In Proceedings of Annual Conf. on Linux Clusters, 2003.

[16] J. Stearley. Towards informatic analysis of syslogs. In
Proceedings of IEEE CLUSTER, Washington, DC, 2004.

[17] R. Vaarandi. A data clustering algorithm for mining pat-
terns from event logs.Proceedings of IPOM, 2003.

[18] I. H. Witten and E. Frank.Data mining: practical machine
learning tools and techniques with Java implementations.
Morgan Kaufmann Publishers Inc., 2000.

[19] K. Yamanishi and Y. Maruyama. Dynamic syslog mining
for network failure monitoring. InProceedings of ACM
KDD, New York, NY, 2005.

6

