
Empirical Comparison of Techniques for Automated Failure Diagnosis

Songyun Duan and Shivnath Babu
Department of Computer Science, Duke University

Abstract

Automated techniques to diagnose the cause of system
failures based on monitoring data is an active area of re-
search at the intersection of systems and machine learning.
In this paper, we identify three tasks that form key building
blocks in automated diagnosis:

1. Identifying distinct states of the system using monitor-
ing data.

2. Retrieving monitoring data from past system states that
are similar to the current state.

3. Pinpointing attributes in the monitoring data that indi-
cate the likely cause of a system failure.

We provide (to our knowledge) the first apples-to-apples
comparison of both classical and state-of-the-art techniques
for these three tasks. Such studies are vital to the consolida-
tion and growth of the field. Our study is based on a variety
of failures injected in a multitier Web service. We present
empirical insights and research opportunities.

1 Introduction

Failures of Internet services and enterprise systems lead to
user dissatisfaction and considerable loss of revenue. Man-
ual diagnosis of these failures can be laborious, slow, and
expensive. This problem has received considerable atten-
tion recently from researchers in systems, databases, ma-
chine learning and knowledge discovery, computer archi-
tecture, and other areas (e.g., [2, 5, 6, 7]). The research has
been directed at developing automated, efficient, and accu-
rate techniques for diagnosing failures using system moni-
toring data. These techniques are based on one or both of
two fundamental primitives in machine learning: (i)clus-
tering, which partitions data instances into groups based on
similarity; and (ii) classification, which predicts the cate-
gory of data instances based on attribute values.

While clustering and classification are well-studied prob-
lems, applying them in the context of automated diagnosis
poses nontrivial challenges like:
• High dimensionality: Monitoring data routinely con-

tain 100-1000 attributes, posing challenges from both
an accuracy as well as running-time perspective.

• Dynamic systems: Modern systems are highly dy-
namic environments where workloads, resource avail-
ability, and system configuration vary over time, so fail-
ure patterns can change as well.

• Noisy data: Monitoring data from production systems
contain various types of errors that can mislead diagno-
sis: (i) natural system variability injects Gaussian noise;
(ii) failures may corrupt observations; and (iii) rapid

system state transitions cause observations from differ-
ent states to get mixed up.

This paper compares some classical as well as some more
recent techniques that have been developed to address such
challenges. For this comparison, we identify three tasks that
form key building blocks in automated diagnosis. The tasks
are presented in Section 2 along with the details of sys-
tem monitoring data. The techniques we evaluate for each
task are presented in Section 3. Our evaluation is based
on an implementation of all techniques in theFa system-
management platform being developed at Duke [9, 10, 11].1

The evaluation setting is a testbed that runs theRubis
[13] auction Web service where we inject failures caused
by factors like software bugs, data corruption, and uncaught
Java exceptions. Section 4 presents the evaluation setting,
methodology, and results. We conclude in Section 5.

2 Key Tasks in Automated Diagnosis
System Monitoring Data: When a system is running,
Fa collects monitoring data periodically and stores it in a
database. In this paper, we consider monitoring data hav-
ing a relational (row and column) schema with attributes
X1, . . ., Xn. For example, Fa collects more than a hundred
performance metrics (e.g., average CPU utilization, number
of disk I/Os) periodically from Linux servers. Application
servers and database servers maintain performance counters
(e.g., number of invocations of each Java module, number
of index updates, number of full table scans) that Fa reads
periodically. Most enterprise monitoring systems like HP
OpenView and IBM Tivoli Monitoring collect similar data.

Over a period of time, thehistoric monitoring data col-
lected by Fa will contain two types of instances:
• Healthy data H , which is monitoring data collected

when the system was in a healthy state, i.e., when
it experiences no violations ofservice level objectives
(SLOs).

• Failure data U , which is monitoring data collected
from failure states of the system, i.e., when the system
was not in a healthy state.

Apart from X1, . . . , Xn, the monitoring data contains an
annotation attributeA. The value ofA in an instance indi-
cates whether the instance belongs toH or U . We consider
three tasks that process the system monitoring data in dif-
ferent ways to aid failure diagnosis.

Task I: Identifying distinct system states. This capability
helps system administrators in many ways. For example,
administrators can understand the evolving behavior of the

1For fairness, we have left out our own diagnosis techniques from this
paper. Insights from our work could be presented at the workshop.

system, or identify baseline system behavior from the dif-
ferent healthy states of a dynamic system. Furthermore, ad-
ministrators can prioritize their diagnosis efforts by identi-
fying the frequent failure states and the associated revenue
losses.

Task II: Retrieving historic instances from the monitoring
data that are similar to one or more given instances. This ca-
pability helps system administrators leverage past diagnosis
efforts for recurrent failures. Failure diagnosis is expensive
in complex systems, so it is valuable to leverage past diag-
nosis efforts whenever possible; particularly since 50-90%
of failures seen are recurrences of previous failures [3]. Fur-
thermore, identifying similar instances from the past helps
generate more data that can be input to machine-learning
tools. These tools usually give more accurate and confident
results when more input (training) data is provided.

Task III: Processing adiagnosis query Diagnose(H ′, F).
Here,H ′ consists of monitoring instances from a healthy
system state, whileF consists of instances from a failure
state. The result of this query is a selected subset of at-
tributes in the monitoring data that indicate the likely cause
of the failure represented byF . While Task III is the
quintessential task of automated diagnosis, it may need the
results of Tasks I and II to generate the inputsH ′ andF .

3 Techniques Compared for the Three Tasks
We briefly describe the techniques that were implemented
and compared for the three tasks above. Please refer to the
cited original papers for the full details of each technique.

3.1 Task I: Identifying Distinct System States
The main approach used for solving this task is to divide
the historic monitoring dataH ∪ U into non-overlapping
partitions such that instances in each partition have similar
characteristics that represent a distinct system state. The
frequency of a state can then be estimated as the size of the
corresponding partition.

3.1.1 Clustering-Based Techniques

We can partition data using a classical clustering technique
like K-Means. However, recent work observes that cluster-
ing techniques like K-Means suffer from thecurse of dimen-
sionalityin high dimensional spaces [8]. In such spaces, for
any pair of instances within the same cluster, it is highly
likely that there are some attributes on which the instances
are distant from each other. Thus, distance functions that
use all input attributes equally can be ineffective. Further-
more, different clusters may exist in different subspaces,
i.e., comprised of different subsets of attributes [8].

These issues are addressed bysubspace clustering(e.g.,
[1, 8]) which discovers clusters in subspaces defined by dif-
ferent combinations of attributes. Thelocally adaptive clus-
tering (LAC)algorithm from [8] associates each clusterC

with a weight vector that reflects the correlation among in-
stances inC. Attributes on which the instances inC are

strongly (weakly) correlated receive a large (small) weight,
which has the effect of constricting (elongating) distances
along those dimensions.

Extension of the Clustering Process

Reference [7] uses K-Means (withK=5) as a building
block to producepure clusters iteratively. The purity of a
cluster is defined based on the annotation attribute: a cluster
is completely pure if it contains failure instances only or it
contains healthy instances only. (We will later extend the
definition of purity to multiple different failure types.) The
extended clustering process in [7] works as follows:
1. Apply K-Means to the historic data and getk clusters.
2. Compute the purity score of each cluster with anentropy

formula equal to−p0× log2(p0)−p1× log2(p1), where
p0 andp1 are the percentage of failures instances and
healthy instances in the cluster respectively. A cluster is
pure if its entropy is 0.

3. Apply K-Means again to the instances in clusters whose
purity scores are below a predefined threshold.

4. Go to Step 2 unless each produced cluster has a purity
score below the threshold, or the number of clusters has
reached the allowed maximumKtot.

The authors of [7] explore the space of possible values for
Ktot to compare the clustering techniques.

3.1.2 Classification and Regression Trees (CART)

A classification tree(CART, or decision tree) [14] can be
learned from the historic dataH ∪ U with the annotation
attribute as the class attribute, and the others as predictor at-
tributes. The tree’s leaf nodes represent a partitioning ofthe
data. A nice feature of this approach—which arises from
its roots in classification as opposed to clustering—is that
the tree minimizes the chances of putting instances from
healthy states and instances from failure states into the same
partition. We can vary thepruning level[14] of the tree
during learning to generate different numbers of partitions
(leaf nodes) fromH ∪ U . (Pruning is usually used to avoid
overfitting the training data.) More aggressive pruning will
generate a tree with fewer leaf nodes (partitions).

3.2 Task II: Retrieving Similar Historic In-
stances

Given an instancef , we can retrieve the topN historic in-
stances fromH ∪ U that are the most similar tof . The
similarity between two instancesf andf ′ can be measured
by the inverse of their pairwise Euclidean distance.

The retrieval off based on a CART learned from his-
toric data will return all instances from the leaf node that
the CART classifiesf into. The intuition here is that the
returned instances have similar patterns in attribute values
(i.e., satisfy a similar set of conditions) asf .

3.3 Task III: Processing Diagnosis Queries
Given a diagnosis queryDiagnose(H ′, F), whereH ′⊂H

andF contains instances during or just before a failure, the

2

task of processing this query is to track down the subset of
attributes that pinpoint the cause of the failure represented
by F . Previous techniques for processingDiagnose(H ′, F)
belong to one of the following two categories:
• Thecorrelation-basedapproach localizes the failure to

attributes that correlate highly with the annotation at-
tribute. Examples include [5] and [6] which use CART
and Bayesian networkclassifiers [14] respectively to
capture correlation. These statistical models are learned
from H ′ ∪ F with the annotation attribute used as the
class attribute, and the others as predictor attributes.

• The baselining-basedapproach (e.g., [2]) learns the
baseline system behavior from the healthy dataH ′. The
failure is localized to attributes whose distribution in the
failure dataF differ significantly from the baseline.

We now describe the techniques compared for Task III.

3.3.1 Diagnosis using Metric Attribution

The metric-attribution approachfrom Reference [6] pro-
cesses aDiagnose(H ′, F) query as follows:
1. Apply feature selection techniques [14] toH ′ ∪ F to

remove irrelevant attributes.
2. Learn a tree-augmented Bayesian networkclassifier

[14] TANfrom the filteredH ′ ∪ F .
3. For each failure instancef ∈ F , infer which at-

tributes inX1, . . . , Xn have values closer to their char-
acteristic values in the failure state than to their char-
acteristic values in the healthy state. This condi-
tion can be expressed asP (mi|mpi

, A = ‘failure’) >

P (mi|mpi
, A = ‘healthy’), wheremi is Xi’s value in

f , mpi
represents values inf of Xi’s parents inTAN,

A is the annotation attribute, andP (·|·) is a condi-
tional probability distribution given byTAN. Intuitively,
if Xi’s valuemi in the failure instancef is more likely
to come from the failure state, thenXi is attributableto
the failure; and will be output in the diagnosis result.

3.3.2 Diagnosis using CART

The CART-based diagnosis approach [5] works as follows:
1. Learn a classification tree fromH ′ ∪ F .
2. As a noise-filtering step, remove the leaf nodes in the

tree that contain less than a specified threshold of failure
instances fromF . (This threshold is set to 10% in [5].)

3. Apply Step 2 iteratively until no more leaf nodes can be
removed.

4. Output the attributes used in the decision nodes in the
leftover tree as the diagnosis result.

3.3.3 Diagnosis using Anomaly Detection

The baselining-based approach described in [2] first cap-
tures the distributionDXi

of attributeXi’s (1 ≤ i ≤ n)
values in the healthy instancesH ′. DXi

is approximated by
a Gaussian distribution in [2]. Then, [2] computes the prob-
ability of DXi

having produced the measurements ofXi in
the failure instances inF . If this probability is lower than a
threshold, thenXi is included in the diagnosis result.

3.4 Constructing Signatures from Monitor-
ing Data

The techniques discussed so far for the three tasks work di-
rectly on the raw monitoring data. Reference [7] applies
metric attribution (Section 3.3.1) to construct asignature
for each instance in the historic data. (This approach is
one example of applyingtransformationsto the raw data.)
The signature of an instance aims to distill the system state
that the instance belongs to. Partitioning and retrieval can
be done with the constructed signatures instead of the raw
data, with the hope that the quality of results for Tasks I and
II will be improved. Signatures are constructed as follows:
1. Divide the historic dataH∪U into non-overlappingcon-

secutive chunksCi based on a preset chunk size. Each
chunk contains a minimum number of healthy instances
and a minimum number of failure instances.

2. For each chunkCi, apply feature selection to re-
move irrelevant attributes; and learn a Tree-augmented
Bayesian networkTANi from Ci.

3. A signature is generated for each instance (healthy or
failure) in chunkCi. The signature contains a value for
each attribute: if the attribute is removed during the fea-
ture selection process, then its corresponding value in
the signature is 0; if the attribute is attributable to the
failure state, then its value is 1; otherwise its value is -1.

4 Experimental Evaluation

We evaluate the techniques described in this paper in the
context of common failures in a three-tier Web service. We
implemented a testbed that runsRubis [13]—a multitier
auction service modeled after eBay—on a JBoss applica-
tion server (with an embedded Web server) and a MySQL
DBMS. It has been reported that software problems and op-
erator errors are the common causes of failure in Web ser-
vices [12]. We inject such failures into a running Rubis
instance using a comprehensive failure-injection tool [4].
This setting makes it easy to study the accuracy of vari-
ous diagnosis algorithms because we always know the true
cause of each failure.

Specifically, we can inject 3 independent causes of
failure—software bugs, data corruption, and uncaught Java
exceptions—into 25 Java modules (Enterprise Java Beans
(EJBs)) that comprise the part of Rubis running in the ap-
plication server. Using this mechanism, we can inject 75
distinct single-EJB failures and any number of independent
multiple-EJB failures (concurrent single-EJB failures).

We collect data for each failure typeft as follows: (1)
run the testbed under a stable workload (there is no per-
formance bottleneck for this workload) for 20 minutes; (2)
inject the specific failureft into the testbed and continue the
run for 20 minutes; (3) fix the failure bymicrorebooting[4]
affected EJBs, and go to Step 2. The whole process lasts
200 minutes. The monitoring data used in the evaluation
consists of the number of times each distinct EJB proce-
dure call is invoked per minute; consisting of a total of 110

3

5 10 15 20 25 30 35 40 45
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Number of clusters

A
ve

ra
ge

 e
nt

ro
py

Rubis−10

Kmeans(raw data)
LAC(raw data)
Kmeans (signatures)
CART

Figure 1: Average entropy for Rubis-10

5 10 15 20 25 30 35 40 45
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Number of clusters

A
ve

ra
ge

 e
nt

ro
py

Rubis−20

 Kmeans(raw data)
LAC(raw data)
Kmeans (signatures)
CART

Figure 2: Average entropy for Rubis-20
attributes. (Monitoring at this level is light-weight.) SLO
violations are defined based on Rubis’s average response
time per-minute. For evaluation purposes, we assign anan-
notation to each data instance being collected as follows:
(i) healthy, if the instance has no SLO violation, or (ii) the
identifier of the injected failure type, if the instance has SLO
violations. A failure type is defined by which causes of fail-
ure were injected into which EJBs.

TheRubis-5, Rubis-10, andRubis-20monitoring datasets
in Table 1 are used in the evaluation. All experiments were
run on a machine with 2 GHz CPU and 1 GB memory.

4.1 Evaluation of Task I

The entropy formula from Section 3.1.1 can be generalized
to multiple annotations as

∑
i −pi × log2(pi), wherepi is

the percentage of instances with a specific annotation in a
cluster. The quality of a partitioning result can be measured
as the average entropy over all produced clusters weighted
by their normalized cluster sizes. Generally, the lower the
average entropy, the better the partitioning. An average en-
tropy close to 0 means that each cluster mostly contains in-
stances from one system state; so the partitioning character-
izes different system states correctly.

We compare four partitioning techniques: (1) K-means
applied on the raw monitoring data, (2) LAC applied on
the raw monitoring data, (3) K-means applied on signatures
constructed from the monitoring data, and (4) CART. Recall
from Section 3.4 that we need to set the chunk size for sig-
nature construction. We set the chunk size to 100 to ensure

Name a i Data and injected failures
Rubis-5 110 986 From 5 distinct single-EJB failures
Rubis-10 110 1971 From 10 distinct single-EJB failures
Rubis-20 110 3972 From 20 distinct single-EJB failures

Table 1: Monitoring datasets used. Columnsa andi are the
number of attributes and instances respectively.

0 10 20 30 40 50
0

0.5

1

1.5

2

Number of clusters

A
ve

ra
ge

 e
nt

ro
py

Rubis−5

signature
sig (opt_chunk)

0 10 20 30 40 50
0.5

1

1.5

2

2.5

Number of clusters

A
ve

ra
ge

 e
nt

ro
py

Rubis−10

signature
sig (opt_chunk)

Figure 3: Average entropy: (a) Rubis-5, (b) Rubis-10
that each chunk has sufficient healthy and failure instances
to learn a reasonable Bayesian network. We do not have
a direct control over the number of partitions generated by
CART. We can only vary the pruning level that affects how
many leaf nodes (partitions) remain in the produced tree.

Figures 1 and 2 show the average entropy of each parti-
tioning technique as we increase the number of maximum
allowed partitions for Rubis-10 and Rubis-20 respectively.
We observe the following trends:

• As the number of partitions increases, the average en-
tropy generally decreases since the produced partitions
become more pure (as expected).

• LAC performs better than K-means. As the dimension-
ality of our monitoring data is high (>100), the com-
putation of Euclidean distance in the full space by K-
means is problematic. LAC avoids this problem by
searching for clusters in lower-dimensional subspaces.

• CART shows relatively good performance because it
produces many low-entropy clusters that mostly contain
healthy instances. Recall that CART is good at sepa-
rating healthy instances from failure instances, but not
necessarily at separating failure instances of different
types from each other. Our monitoring datasets contain
roughly equal amounts of healthy and failure instances;
giving CART an undue advantage.

• Comparing K-means applied on signatures with K-
means on the raw monitoring data gives mixed results.
For Rubis-10, both show similar performance. For
Rubis-20, K-means on signatures is much better. It turns
out that the quality of signatures is very sensitive to the
chunk size used during signature construction (Section
3.4). If the chunk size is too big, then each chunk may
include instances from different system states. If the
chunk size is too small, then each chunk may not con-
tain enough instances to learn a reasonable Bayesian
network. In both cases, metric attribution may not func-
tion as desired, leading to incorrect signatures.

To verify our observations about signatures, we analyzed
the possible improvement when the chunk size is set

4

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision

R
ec

al
l

Rubis−10

raw data
 signature
CART

Figure 4: Precision-recall curves for Rubis-10

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Precision

R
ec

al
l

Rubis−20

raw data
 signature
CART

Figure 5: Precision-recall curves for Rubis-20

optimally (which is possible only when we know the
points where system resources, workload, or configuration
changed). Figure 3 plots the average entropy of K-means
clustering on signatures for Rubis-5 and Rubis-10 respec-
tively in two settings: (1) the chunk size is fixed at 100
during signature construction (denoted assignature); and
(2) the chunk size is set adaptively to capture all change
points in system state (denoted assig(optchunk)). Note
the considerable improvement in the quality of partitioning
with optimal chunk sizes. The relative improvement also
increases as the number of failure types increase.

4.2 Evaluation of Task II

We adopt the traditional metrics ofprecisionandrecall for
evaluating retrieval quality. For a given instancef and
numberN of instances similar tof to be retrieved: pre-
cision measures the percentage of correctly-retrieved in-
stances among theN results; and recall measures the per-
centage of correctly-retrieved instances among all historic
instances with the same annotation asf . The perfect value
for both metrics is 100%. Intuitively, asN increases, recall
improves while precision drops. Thus, the bigger the area
under the precision-recall curve, the better.

Figures 4 and 5 plot the precision-recall curves for Rubis-
10 and Rubis-20 respectively.N is varied from 20 to 1000.
The precision and recall values are averaged over a test
set comprising 40% of the data. We could not plot the
precision-recall curve for CART in the high-recall and high-
precision regions since we do not have direct control on the
number of instances retrieved from a CART (recall Section
3.2).

Reference [7] observed that signature-based retrieval is

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Precision

R
ec

al
l

Rubis−5

 signature
sig (opt_chunk)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Precision

R
ec

al
l

Rubis−10

 signature
sig (opt_chunk)

Figure 6: Precision-recall curves: (a) Rubis-5, (b) Rubis-10

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision

Re
ca

ll

Rubis−10, healthy instances

raw data
 signature
CART

Figure 7: Precision-recall curves for retrieving healthy in-
stances in Rubis-10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision

Re
ca

ll

Rubis−10, failure instances

raw data
 signature
CART

Figure 8: Precision-recall curves for retrieving failure in-
stances in Rubis-10
better than raw-data-based retrieval. However, Figures 4
and 5 show contrary results. Once again, the possible rea-
son is that signature construction is sensitive to the chunk-
size setting; but there is no principled way to set this value
statically. This point is verified in Figure 6 which shows
the precision-recall curves for Rubis-5 and Rubis-10 for
the fixed chunk-size and optimal chunk-size settings (recall
Section 4.1). There is considerable improvement in both
precision and recall with optimal chunk sizes.

Retrieval based on CART performs better than the other
two techniques because CART retrieves healthy instances
with higher precision than the other two. This point is veri-
fied in Figures 7 and 8 which respectively plot the precision-
recall curves for retrieving healthy instances only and fail-
ure instances only in Rubis-10.

4.3 Evaluation of Task III

Since we know the actual root cause of each failure injected
in the testbed, we can evaluate the accuracy of a diagnosis
technique in terms of thefalse positives (FP)andfalse neg-
atives (FN)in its result. FP counts the number of EJBs that
appear in the diagnosis result but are not the root cause of
failure. FN counts the number of EJBs that cause the fail-

5

Failure/(FN, FP) MA CART AD

Exception-Bid 0, 7 0, 3 0, 2
Exception-BuyNow 0, 1 0, 2 1, 2
Exception-Category 0, 2 0, 0 1, 3
Exception-SBAboutMe 1, 2 0, 4 1, 3
Exception-SBAuth 1, 3 1, 2 1, 3
jndi-Bid 0, 3 0, 0 0, 4
jndi-BuyNow 0, 5 1, 1 1, 3
jndi-Category 0, 4 0, 0 0, 3
jndi-SB AboutMe 0, 5 1, 1 1, 3
jndi-SB Auth 1, 10 1, 1 1, 2
nullmap-Bid 0, 2 0, 0 0, 2
nullmap-BuyNow 0, 5 0, 4 1, 2
nullmap-Category 0, 12 0, 0 1, 1
nullmap-SBAboutMe 0, 1 0, 4 1, 2
nullmap-SBAuth 1, 3 1, 1 1, 2

Table 2: Comparing diagnosis accuracy (see Section 3.3);
each entry gives false negatives (FN), false positives (FP)
ure but are missing from the diagnosis result. Both false
positives and false negatives hurt diagnosis accuracy.

Table 2 compares the diagnosis accuracy of the three
techniques: metric attribution (MA), CART, and anomaly
detection (AD). The failures were injected one at a time,
and come from a combination of ten distinct EJBs and three
distinct failure types: Java exceptions (Exception), data
corruptions (jndi), and software bugs (nullmap). (Table 2
shows a subset of the results.) MA performs slightly better
than the other two techniques in capturing the root cause.
MA fails 10 out of 30 times to catch the true cause (FN =
1). However, MA tends to produce more false positives than
CART. A good combination of these techniques may reduce
both false positives and false negatives. A manual analysis
of the results showed that FP can be reduced by incorpo-
rating domain knowledge—e.g., inter-EJB calling patterns
which lead to fault propagation [4]—alongside the statisti-
cal machine-learning analysis.

5 Summary
We empirically compared techniques for three tasks related
to diagnosis of system failures. While a number of empir-
ical insights were generated, there was no dominant win-
ner among the techniques we compared. Our evaluation
showed plenty of room for improving these techniques in
the following aspects to realize industrial-strength automa-
tion of failure diagnosis, and to ultimately make systems de-
tect, diagnose, and fix failures automatically (self-healing):
• Most of the basic techniques involved in our compar-

isons (clustering, CART, Bayesian networks) regard
each instance in the data as independent of others, dis-
regarding strong temporal correlations that may exist.
This observation poses both challenges and opportuni-
ties. For example, techniques that can detect transition
points between distinct system states can be combined
with signature construction to improve diagnosis results
significantly (recall Section 4).

• Failure propagation [4] exposes some brittleness in the

pure machine-learning-based techniques that we com-
pared. Note that most rows in Table 2 have at least
one technique that catches the true cause (i.e., FN =
0). Hence, somesymptomthat maps directly to the true
cause is indeed present in the data in most cases. (Fail-
ures injected in the SBAuth EJB are the interesting ex-
ceptions.) However, this symptom may be overlooked,
possibly because it is not the dominant one in the data.
Addressing this issue—e.g., by combinating the current
techniques or incorporating domain knowledge through
symptom databases[7]—is an important next step.

• Monitoring data (especially failure data) from produc-
tion systems can contain various types of noise (recall
Section 1). Making diagnosis techniques robust to such
noise is a promising direction for future work.

6 Acknowledgements
We are extremely grateful to Carlotta Domeniconi for pro-
viding us the source code for LAC, and to George Candea
and other members of Stanford’s Software Infrastructure
Research Group for helpful discussions and source code.

References
[1] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S.Park.

Fast algorithms for projected clustering. InProc. of the ACM SIG-
MOD Intl. Conf. on Management of Data, 1999.

[2] P. Bodik, G. Friedman, L. Biewald, H. Levine, G. Candea, K. Patel,
G. Tolle, J. Hui, A. Fox, M. I. Jordan, and D. Patterson. Combining
visualization and statistical analysis to improve operator confidence
and efficiency for failure detection and localization. InProc. of IEEE
Intl. Conference on Autonomic Computing, June 2005.

[3] M. Brodie, S. Ma, G. M. Lohman, L. Mignet, N. Modani, M. Wild-
ing, J. Champlin, and P. Sohn. Quickly finding known softwareprob-
lems via automated symptom matching. InProc. of 2nd IEEE Inter-
national Conference on Autonomic Computing (ICAC), 2005.

[4] G. Candea, M. Delgado, M. Chen, and A. Fox. Automatic failure-
path inference: A generic introspection technique for internet ap-
plications. InProc. of IEEE Workshop on Internet Applications
(WIAPP), 2003.

[5] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer. Failure
diagnosis using decision trees. InProc. of the 1st IEEE International
Conference on Autonomic Computing (ICAC), 2004.

[6] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons. Cor-
relating Instrumentation Data to System States: A BuildingBlock
for Automated Diagnosis and Control. InOSDI, Dec. 2004.

[7] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, and T. Kelly. Cap-
turing, indexing, clustering, and retrieving system history. In SOSP,
2005.

[8] C. Domeniconi et al. Locally adaptive metrics for clustering high
dimensional data.Data Mining and Knowledge Discovery, 14(1),
2007.

[9] S. Duan and S. Babu. Processing forecasting queries. InProc. of the
2007 Intl. Conf. on Very Large Data Bases, 2007.

[10] S. Duan and S. Babu. Guided problem diagnosis through active
learning. InProc. of 5th IEEE International Conference on Auto-
nomic Computing (ICAC), June 2008.

[11] S. Duan and S. Babu. Fa: A system for automating failure diagnosis.
In Proc. of the 2009 Intl. Conf. on Data Engineering, 2009.

[12] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do internet
services fail, and what can be done about it. InUSENIX Symposium
on Internet Technologies and Systems, 2003.

[13] Rice University Bidding System. rubis.objectweb.org.
[14] I. H. Witten and E. Frank.Data Mining: Practical Machine Learning

Tools and Techniques. Morgan Kaufmann, June 2005.

6

