Estimating Environmental Costs

Kiara Corrigan, Amip Shah, and Chandrakant Patel HP Labs, Sustainable IT Ecosystem Lab (SIEL) February 22, 2010

Outline

Introduction

Future Environmental Costs

2. Modeling Framework

- Economic Input-Out Life-Cycle Assessment Model (EIO-LCA)
- Operational and Production Model

3. Results

- Product Level vs. Enterprise Level Total Cost of Ownership (TCO)
- Impact on Producers vs. Consumers

4. Conclusions/Future Work

ENVIRONMENTAL COSTS AND THE IT PORTFOLIO

Assessing Future Costs

Future Environmental Costs

- Increased electricity prices (2%-4%)
- Carbon tax per ton (producers and consumers)
 - Projected range: \$10 to \$50 per metric ton

- → What is the impact of above on TCO of IT products?
 - Purchase Price
 - Operational Cost

Assessing Future Costs

Baseline Composition of Enterprise IT Portfolio

- 5,000 Netbooks (e.g. HP Mini)
- 15,000 Handhelds (e.g. HP iPAQ Business Messenger)
- 30,000 Laptops (e.g. HP Compaq Notebook PC)
- 20,000 Desktops (e.g. HP Compaq dc7900 Minitower)
- 1,500 Servers (e.g. HP Proliant DL360)

Three Scenarios

Scenario A: Baseline

- Constant electricity prices
 - Normalized to current (2009) industrial rates
- \$0 carbon tax (e.g. legislation fails to pass or costs absorbed internal to supply chain)

Three Scenarios

Scenario B: Low

- Electricity: 3% increase in prices
 - Normalized to current industrial rates
 - Nominal price increase in electricity rates
- \$10 carbon tax

Three Scenarios

Scenario C: High

- Electricity: 3% increase in prices
 - Normalized to current residential rates
 - High end price increase
- \$50 carbon tax

OPERATIONAL AND PRODUCTION MODEL

EIO-LCA Model and Power Utilization Model

Economic Input-Output Model

The economy is divided into **n** sectors

 X_i is the total output (production) of sector i

 Y_i is the total final demand for sector i's product

 z_{ij} represents the interindustry sales from sector i to sector j

$$X_i = z_{i1} + z_{i2} + ... + z_{in} + Y_i$$

Let
$$a_{ij} = z_{ij}/X_j$$
: $X_i = a_{i1}X_1 + a_{i2}X_2 + ... + a_{in}X_n + Y_i$

EIO-LCA Model

Economic Input-Output Model (EIO):

$$X = (I - A)^{-1}Y$$

Decomposition:

$$X = Y + AY + A^{2}Y + A^{3}Y + ... + A^{n}Y$$

EIO-LCA:

$$b_i = R_i x$$

$$b_i = R_i (I - A)^{-1} y$$

b_i is a vector of environmental burdens for each production sector,

R_i is a matrix with diagonal elements representing the impact per dollar output at each stage

Environmental Cost Model

Operational Impact Model:

Power Utilization

$$p_{sys} = \sum_{i=1}^{n} \left(\int_{0}^{T} \dot{W}_{i} X_{i}(t) \hat{p}_{elec}(t) dt \right)$$

Environmental Impact

$$\varepsilon_{op} = \hat{\varepsilon}_{elec} (I - A)^{-1} p_{elec}$$

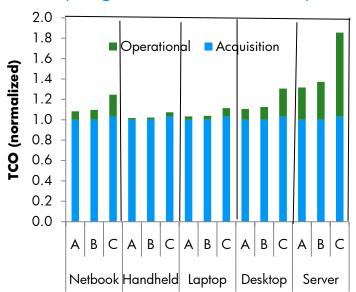
Production Model:

$$b_i = R_i (I - A)^{-1} y$$

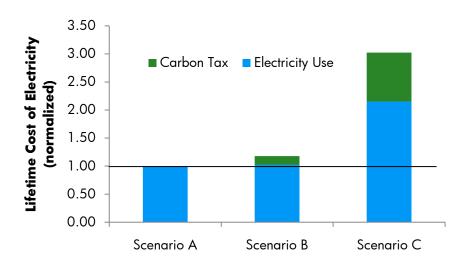
i = electricity use and CO2 emissions

RESULTS

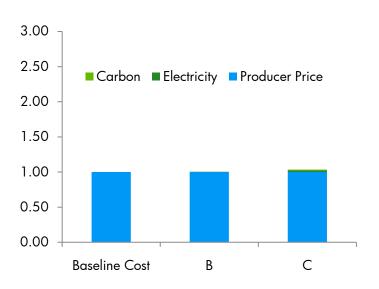
TCO: Product level and the Enterprise Customer


Distribution of Costs: Producer vs. Purchaser

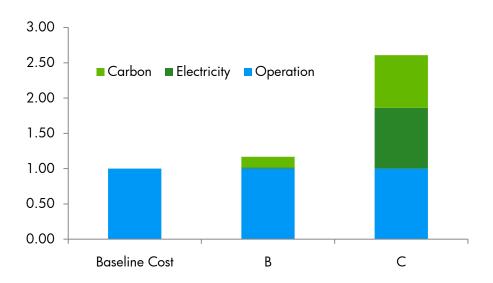
Forecasted Changes in TCO


Product-Level

Average increase of 1.3% per device (range: from 0.3% to 36%)


Enterprise-Level Portfolio

1% to 12% potential increase in TCO



Distribution of Costs

PRODUCER

PURCHASER

CONCLUSIONS

Conclusions and Future Work

Key Contributions

- Constructed a model to evaluate lifecycle increase in TCO due to environmental drivers, specifically electricity and carbon costs
 - For the consumer, in terms of acquisition as well as operation
 - For the producer, internally as well as across the supply chain
- Demonstrated model for sample enterprise customer
 - •TCO of specific IT product families could increase by up to 36%
 - •Increase in TCO of up to \$5.9 million for a representative enterprise customer

Conclusions and Future Work

Future Work

- Elasticity of demand impacts
 - -How will consumers respond to increasing cost of IT ownership?
- Demand response mechanisms in the Smart Grid market
 - -Time-of-use (TOU) pricing mechanisms

