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High Level
I Challenges to developing capability

in formal methods:
I Perceived high barrier to entry,
I Specialized tools and jargon,
I Need for a compelling but

attainable demonstration.

I Why we chose the SCIP processor:
I Developed in house,
I General purpose processor,
I Simple design (∼5k lines VHDL),
I No advanced processor features

(pipelining, out-of-order
execution, etc.),

I For use in satellites ⇒ high
reliability requirements.
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Scope
True Goal: To prove that the physical processor does what we
want,

Formal 
Specification

ACL2
Model

English
Design

Document
VHDL Design Hardware

but . . .
I proof tools work on an abstract model,
I “what we want” is not formally defined.

Instead we prove that a model of the VHDL design meets certain
correctness properties.
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Approach

Embedding of VHDL in ACL2

I Focus on building a syntactic layer on ACL2 for easy
translation.

I Key Goals:
I Incremental semantic refinements,
I Direct manual translation of existing code,
I Target for automated translation.

ACL2 Model of SCIP Design

I Test case for modeling framework.

I Translate VHDL code, then prove axiomatic summaries of
components.
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VHDL Modeling Framework

Challenges

I Large semantic gap between VHDL and ACL2.
I VHDL processes all execute at the same time.

I Human checkable translation.
I Must match structure of original VHDL code.

Solution
I Use ACL2 (LISP) macros to wrap ACL2 implementation

behind VHDL like syntax.
I Based primarily on Georgelin, et al., “A framework for VHDL

combining theorem proving and symbolic simulation.”

September 24, 2010



Supported VHDL

Entities
I Uses defstructure book to generate data type predicates,

accessors, updaters, etc.

I Nested components supported via copy-in/copy-out semantics.

Processes
I Mapped to ACL2 functions.

I Generate theorems to guarantee some safety properties (e.g.,
no writing to inputs).
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Supported VHDL

Architectures
I Generate a single function that is the composition of all

processes and subcomponent updates.

I Generate theorems to show processes are order independent.

But Wait. . .
I Order independence isn’t sufficient to guarantee the

processes can be safely interleaved!
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Supported VHDL

Architectures
I Generate a single function that is the composition of all

processes and subcomponent updates.

I Generate theorems to show processes are order independent.

But Wait. . .
I Order independence isn’t sufficient to guarantee the

processes can be safely interleaved!

I Fine for combinatorial processes (all of SCIP).
I Problem for sequential processes with shared state.

I But it is easy to change the macros to generate stronger
theorems for guaranteeing determinism.
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Supported VHDL

Data Types

I Originally based on ACL2’s native integer type.
I Easy for arithmetic, challenging for bit slicing operations

(concatenation, truncation, etc.).
I Simplification of VHDL’s 9 valued logic:

U (uninitialized), X (undefined), 0 (strong drive, logic 0), 1,
(strong drive, logic 1), Z (high impedance), W (weak drive,
unknown value), L (weak drive, logic 0), H (weak drive, logic
1), - (don’t care).

I Used a symbolic instruction representation to avoid complex
bit operations.

I Became problematic as we added type checking because data
and instructions must traverse the same buses.
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Supported VHDL

Data Types

I Migrated to lists of logical symbols
I Operations such as truncation and concatenation become

structurally recursive.
I Required very little modification to existing SCIP model

(mostly search and replace).
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SCIP Design

A Simple Forth Microprocessor

I Designed for managing scientific instruments on satellites.
I Low power, light weight, low gate count.
I 16 and 32 bit versions (16 is standard).

I No pipelining, No superscalar, No out-of-order.

I Stack based design inspired by the Forth language.

I Two stacks: parameter stack (P-stack) and return stack
(R-stack).

I Instructions may specify multiple behaviors such as an ALU
operation, a P-stack modification, and a return.
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SCIP Instructions

Instructions Are Packed Structures
I Only 18 different kinds of instructions.

I ∼ 9356 different opcodes.

1011 1 01 010 0010

Basic ALU Instruction

Pop Return Stack
After Execution

Push Result On Top
Of Operand Stack

Addition

00

Ignored

September 24, 2010



SCIP Correctness Proofs

Parameter Stack Design

I Many instructions can include a stack operation (Push, Pop,
Swap, or Nop).

I Processor stacks are represented by a set of data registers and
two index registers.

I On 16 bit SCIP: 16 2
byte data registers, 4
bit index registers.

I If enabled,
overflow/underflow
may trigger
reading/writing main
memory.
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SCIP Correctness Proofs

Abstract Properties

I We’d like to show that the register ring actually implements a
stack.

I In particular we need to show that the instructions correspond
to abstract stack manipulation operations.

I e.g., s −−−−→
push(a)

(a . s)

I Model stacks using ACL2 lists (push ≡ cons).

I Focus on normal operation & detecting exception cases
(overflow/underflow)
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Graphically
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Actual Theorem
Parameter Stack Push ≡ Cons

(defthm scip push pstack cons
(implies

(and (scip pstack inputs ready p st) (not (equal (scip reset st) 1))
(not (rising edge (scip clk st))) (equal (scip stretch st) 0)
(instr class stack (scip ir+ st))
(equal (stack op (scip ir+ st)) *st push*)
(std logic defined list p (scip ptopi+ st))
(std logic defined list p (scip poveri+ st))
(integerp n) (>= n 3))

(equal
(scip get pstack regfile as list

(scip step (scip raise clock (scip step n n st))))
(let ((p (scip ptopi+ st)) (o (scip poveri+ st)))

(cond
((equal (std logic list to int p) (std logic list to int o))

(list (scip pnext+ st)))
(t (cons (scip pnext+ st) (scip get pstack regfile as list st))))))))
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stable state,
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cycle, represented as a list...
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If the SCIP is valid and in 
stable state,

then the P-stack at the next clock 
cycle, represented as a list...

... is equal to the original pnext 
register cons'ed onto the original 

P-stack represented as a list
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Contributions

VHDL Modeling Framework

I Human readable/writable framework for modeling VHDL in
ACL2.

I Automates generation of basic sanity theorems.

I Supports incremental refinements of VHDL semantics with
little damage to target system model.

SCIP Processor Verification
I Demonstration of framework viability.

I Models of nearly every functional entity of the SCIP processor.

I Significant correctness proof for key SCIP functionality (stack
manipulation).
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Future Work

Framework Enhancement
I Improving auto-generated theorems (strength and proof

speed).

I Machine translation tool.

SCIP Specific Proofs

I Overflow and underflow behavior.
I Proved correct detection of overflow/underflow condition.
I Memory model and axiomatic definition of page relative

addressing begun.

I Return stack.

I End goal is full instruction set specification.
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