
Model-based Testing Without a Model:
Assessing Portability in the Seattle Testbed

Justin Cappos and Jonathan Jacky

University of Washington
Seattle, Washington USA

justinc@cs.washington.edu, jon@u.washington.edu

with special thanks to Jeff Rasley

Justin Cappos and Jonathan Jacky Model-based testing without a model



Seattle Testbed

Seattle distributed computing testbed
https://seattle.cs.washington.edu/

Seattle programs —

Coded in a Python subset

Use a special API

Run in a “sandbox”, a safe execution environment

Run on many platforms: Windows, Linux, Mac OS X, BSD,
various mobile . . .

Justin Cappos and Jonathan Jacky Model-based testing without a model



Portability

Seattle programs should be portable: behave the same on all
platforms.

Portability has proved to be a problem —

On other systems (Java, POSIX, . . . )

On Seattle itself (file system, network . . . )

Justin Cappos and Jonathan Jacky Model-based testing without a model



Seattle API

Simple API: 32 functions

File I/O: 6 functions

Locks: 3

Debugging: 2

Threads: 3

Code verification and evaluation: 2

Network DNS, UDP, TCP: 13

Accounting: 2

Random bytes (crypto): 1

Justin Cappos and Jonathan Jacky Model-based testing without a model



Testing the Seattle API

Unit tests are not enough. We need —

Many interleavings (to check different orders)

Handle nondeterminism (for network API)

We chose model-based testing.

Justin Cappos and Jonathan Jacky Model-based testing without a model



Traces

Traces are samples of behavior:

(listfiles_start, ()),

(listfiles_finish, (["junk.testfile"],)),

(removefile_start, ("junk.testfile",)),

(removefile_finish, ()),

(openfile_start, ("junk.testfile", True)),

(openfile_finish, (fileobject0)),

(filewriteat_start, (fileobject0, "hello world!!!", 0)),

(filewriteat_finish, ()),

(filewriteat_start, (fileobject0, "ked", 9)),

(filewriteat_finish, ()),

(filereadat_start, (fileobject0, None, 0)),

(filereadat_finish, ("hello worked!!"),

(fileclose_start, (fileobject0)),

(fileclose_finish, ())

Justin Cappos and Jonathan Jacky Model-based testing without a model



Model-based testing

Model Program

Offline
Test Generator

Traces

Traces

Offline
Test Runner

Test Harness

Implementation

Traces

Model Program

On-the-fly
Test Runner

Test Harness

Implementation

Traces

Justin Cappos and Jonathan Jacky Model-based testing without a model



Model-based testing with trace capture / replay

Model Program

Offline
Test Generator

Traces

Reference
Implementation

Interposition

Traces

Traces

Offline
Test Runner

Test Harness

Implementation

Traces

Model Program

On-the-fly
Test Runner

Test Harness

Implementation

Traces

Justin Cappos and Jonathan Jacky Model-based testing without a model



Experience

Technology demonstration:

File system API for next Seattle version

Capture traces (via interposition) on Windows, Mac, Linux

Captured traces while executing unit tests for file system API

Replay traces on Windows, Mac, Linux

Discovered, fixed several portability problems involving
filenames

Justin Cappos and Jonathan Jacky Model-based testing without a model



Future work

Test with traces captured “in the wild”

Test entire Seattle API

Compare to offline testing, on-the-fly testing

Consider testing other systems with portability requirements

Seattle distributed computing testbed
https://seattle.cs.washington.edu/

PyModel model-based testing framework
http://staff.washington.edu/jon/pymodel/www/

Justin Cappos and Jonathan Jacky Model-based testing without a model


