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Abstract
Email encryption techniques have been available for

more than a decade, yet none has been widely de-
ployed. The problems of key generation, certification,
and distribution have not been pragmatically addressed.
We recently proposed a method for implementing a
Lightweight Public Key Infrastructure (PKI) for email
authentication using recent developments in identity-
based cryptography and today’s existing Internet infras-
tructure.

While this solution works well for email authentica-
tion, email encryption exhibits a different threat model
that requires special treatment. In this work, we discuss
how to achieve email encryption and present a realistic
deployment and adoption process, while respecting the
current functionality and expectations of email.

1 Introduction

Email is a mostly insecure communication medium.
Email encryption solutions such as the well-known
PGP [14] and S/MIME [10] have existed for more than a
decade, yet neither has achieved widespread use. This is
due, in large part, to the complexity of key management:
a user must generate a keypair, certify and distribute his
public key, and obtain a validated public key for all in-
tended recipients.

Even identity-based encryption [12], which proposes
to compute public keys directly from users’ email ad-
dresses (or other identity-related strings), presents key
management complications. No realistic, practical ar-
chitecture has been proposed for making use of identity-
based encryption in an Internet-wide setting.

Recently, we proposed and implemented a
Lightweight PKI [2, 1] to manage keys for email
authentication. We now propose extensions to this
architecture for the purpose of email encryption. We call
this approach Lightweight Encryption.

1.1 Prior Key Management Strategies

Public-key encryption has been around for 25 years. In
its basic form, it is well understood: a public key allows
for encryption, while an associated private (a.k.a. secret)
key performs decryption. The complication lies in as-
sociating a public key with a user. How does Bob obtain
Alice’s public key? How can Bob be certain that the pub-
lic key he has obtained is indeed Alice’s, and not some
eavesdropper’s?

In classic public-key cryptosystems like RSA [11], El
Gamal [7], or Cramer-Shoup [5], each user generates a
keypair. The association between a public key and an
identity is then certified by the digital signature of some
authority. With S/MIME [10], these certification author-
ities form an organizational hierarchy. With PGP [14],
an individual trusts a peer-to-peer certificate chain.

In identity-based public-key cryptosystems, first con-
jectured in 1984 [12] but only fully implemented in
2000 [4], a master authority generates a master keypair
(MPK, MSK) and publishes MPK to the world. A
user’s public key is then the combination of MPK and
the string id string representing the user’s identity. The
user’s secret key SK is computable from id string only
by a master authority in possession of MSK who deliv-
ers this key securely to the user. Though identity-based
schemes simplify user-key management, there remains
a domain-key management problem: the MPK-domain
association must be safely distributed, and the user secret
keys must be securely delivered.

1.2 The Lightweight PKI

We recently introduced Lightweight PKI, a mechanism
for Internet-wide distribution of identity-based public
keys for the purpose of email authentication [2, 1]. Each
email domain becomes a master authority for an identity-
based scheme of its choosing and generates a unique
master keypair (MPK, MSK). Each MPK is dis-
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tributed via the Domain Name System (DNS), as a TXT
record associated with the hostname of the domain’s
Mail Exchange (MX) record. (Interestingly, Lightweight
PKI automatically inherits security from any future im-
provements to DNS [6].) Email users obtain their secret
key SK by email-based identification: the master author-
ity delivers the key directly to the user’s inbox. Key revo-
cation is handled by using short-lived keys: the identity
string of a public key includes an expiration date [2].

Thus, Alice can sign each of her messages with
her secret key. Upon receiving a signed email
from alice@wonderland.com, Bob can look
up MPKwonderland.com via the DNS record for
wonderland.com . Then, Bob can compute Al-
ice’s public key using MPKwonderland.com and the string
alice@wonderland.com, and verify the signature.

Lightweight Signatures strike a practical compromise.
They reasonably assume that Alice’s mail server will not
actively attack Alice. Then, using only the established
infrastructures of DNS and email delivery, they make
spoofing outgoing email from Alice as difficult as con-
sistently intercepting Alice’s incoming email.

1.3 Insufficient Security for Encryption

Consider deploying Lightweight PKI for encryption. In
this case, a passive adversarial incoming mail server
could easily decrypt and read a user’s encrypted email.
Moreover, even if Alice’s mail server is honest, the com-
promise of the master authority’s MSK would reveal all
prior encrypted emails for all users of that domain.

We must take extra precautions to help honest domains
secure their master key and honest users protect their pri-
vacy. We conclude two necessary principles for encryp-
tion:

1. a domain’s MSK cannot exist on a single machine.
2. only Alice should know her decryption key

SKAlice.

Much like Lightweight Signatures, our practical threat
model does not defend against active mail server adver-
saries nor the total compromise of an end-user’s personal
computer. However, we do provide a reasonable privacy
guarantee for users, using (primarily) the existing Inter-
net infrastructure.

Good Enough Security? In certain limited cases, the
unmodified deployment of Lightweight Signature keys
may be good enough for encryption. It certainly achieves
better privacy than the majority of users enjoy today.
However, we can do better within the same deployment
constraints.

1.4 Our (Two-Part) Solution

In this paper, we describe how to use the traditional ap-
proach of key splitting and distributed key generation [9]
in our identity-based framework. We apply this tech-
nique in two ways, first to protect honest domains from
single-attack compromise, then to protect honest users
from overly curious incoming mail servers.

Protecting Honest Domains. A domain’s MSK can
retroactively decrypt all messages encrypted against its
public counterpart. Thus, we consider MSK so valu-
able that it should never be stored on a single computer.
However, it must remain functional enough to compute
keys for new users on demand.

We propose that a domain maintain several servers
that independently generate master key shares
(MPKi,MSKi). The master public key shares
are combined into a single MPK that is distributed
via the DNS. Each server with MSKi individually
sends Alice secret key share SKAlice,i. Alice can then
combine all shares into a single secret key SKAlice.
As expected, SKAlice correctly decrypts ciphertexts
computed against MPK and Alice’s identity string
id string .

Protecting Honest Users. Even with MSK split
amongst multiple servers, Alice’s secret key shares can
be intercepted by her passive, incoming mail server.
Effectively, Lightweight PKI is insufficient for encryp-
tion because it provides a single, imperfect commu-
nication channel: email is decrypted using the single
key SKwonderland.com

Alice issued by the master domain for
wonderland.com, which is known to both Alice and
her incoming mail server.

Our solution is thus to set up multiple channels, all
of which are necessary to perform decryption. Email-
based identification can provide lightweight certification
as long as it defines one of these channels. To ensure Al-
ice’s privacy, only she should have access to all channels
simultaneously.

Alice can, in fact, create one of these channels on
her own. She generates (MPKAlice,MSKAlice) us-
ing parameters compatible with MPKwonderland.com and
publishes MPKAlice via the mechanism of her choice,
e.g. her web page. Then, her complete decryption key
is a combination of SKwonderland.com

Alice and SKAlice
Alice . No-

tice that, although Alice generates one key share on her
own, she does not need to obtain certification for it,
since an active adversary who spoofs it will not have
SKwonderland.com

Alice to read her email. We return to these
issues in Section 3.3.
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Figure 1: Lightweight Encryption: (1) The domain sets up two key servers, each in possession of a share of MSK, (2) The
domain’s shares of the master public key are combined into a single key MPKfoo.com stored in the DNS, (3) each domain key
server emails Bob a share of his secret key SKfoo.com

Bob for that domain, (4) To achieve privacy from his mail server, Bob generates
his own master keypair and stores his secret key SKBob

Bob , (5) Bob publishes his uncertified master public key MPKBob via a
keyserver or simple web page, (6) To encrypt to Bob, Alice retrieves his two master public keys and combines them, (7) To decrypt,
Bob combines his three secret keys.

Splitting and Combining Keys. An honest domain is
protected by splitting and recombining the MSK, while
an honest user is protected by creating a new master
key share and recombining it with the domain’s MPK.
In both cases, our technical contribution is the applica-
tion of these key splitting-and-recombination techniques
in the context of identity-based encryption. We review
a known approach for the popular Boneh-Franklin IBE
scheme [4] and describe, for the first time, such a tech-
nique for the new Waters IBE system [13] as well.

1.5 Related Work

Since the early days of encrypted email with
S/MIME [10] and PGP [14], the public-key infras-
tructure requirement has been noted as hampering
widespread deployment [3]. Numerous approaches have
been proposed in the intervening years. Most recently,
Garfinkel suggested viral public key distribution and
key continuity [8] in order to leverage existing commu-
nication channels and reduce the need for a public-key
infrastructure. Both of these techniques can be combined
with our work to strengthen the overall system.

1.6 Roadmap
In Section 2, we review identity-based cryptography. In
Section 3, we present Lightweight Encryption at a high
level. The technical details of this solution are in Sec-
tion 4. Finally, we briefly discuss some extensions and
variations of our solution in Section 5, before conclud-
ing in Section 6.

2 Preliminaries

With identity-based cryptography, a user’s public key is
the combination of MPK and id string , usually the
user’s email address. More specifically, an identity-based
key management interface offers the following calls:

• Generate(key length): outputs (MPK, MSK), a
master public key and corresponding master secret
key of prescribed key length.

• ExtractSecretKey(MSK, id string): outputs SK,

the secret key that corresponds to the user id string
in domain MPK.

• VerifySecretKey(MPK, id string , SK): outputs
True only if SK matches id string in the master
domain designated by MPK.

The identity-based encryption (IBE) interface is then:
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• Encrypt(MPK, id string ,m): encrypts m for
user id string in domain MPK.

• Decrypt(SK, c): decrypts c with secret key SK.

3 Lightweight Encryption

As previously discussed, there are two potential prob-
lems with applying the Lightweight PKI, in its basic
form, to email encryption.

First, the compromise of an MSK causes significant
damage for all users of the domain. Thus, our first goal
is to provide domains with more safeguards for protect-
ing this key. Second, Alice’s incoming mail server for
domain wonderland.com knows all of Alice’s secret
cryptographic keys, specifically SKwonderland.com

Alice . Thus,
all of Alice’s incoming encrypted mail can be decrypted
and read by her mail server. Our second goal is to provide
users with more privacy, such that no passive adversary,
not even Alice’s incoming mail server, can ever read en-
crypted email destined for Alice.

Both of these goals can be achieved by either splitting
(first case) or combining (second case) the public or se-
cret keys of IBE schemes. We begin by describing this
functionality.

3.1 Key Splitting and Combining
We rework the identity-based function calls from Sec-
tion 2 to enable: (1) combining stand-alone MPKi’s
into a single MPK, (2) combining stand-alone
SKid string,i’s into SKid string , and (3) splitting the key
generation of MSK and the extraction of SKid string

among many servers.

• GenerateShare(params)
outputs (MPKi,MSKi), a share of a master pub-
lic and corresponding master secret key.

• CombineMasterKey(MPK1, . . . ,MPKn)
outputs MPK, the master public key correspond-
ing to the n input public key shares.

• ExtractSecretShare(MSKi, id string)
outputs SKi, the user key share that corresponds to
the user id string and the master key share MSKi.

• VerifySecretShare(MPKi, id string , SKi)
outputs True or False, depending on whether SKi

corresponds to the secret key share for input
id string against master key share MPKi.

• CombineSecretKey(SK1, . . . , SKn)
outputs SK, the secret key corresponding to the n
input secret key shares.

We stress an important feature: a secret key share
SKid string,i generated against a master share MPKi

can function as a stand-alone key, with MPKi the stand-
alone master. Each key share is a fully functional key,

if need be. This feature enables the reverse operation
of key recombination from existing, independent, fully-
functional keys.

3.2 Protocol for Email Domains
Using the functionality from Section 3.1, a given email
domain can use multiple servers to manage its master
keypair. These servers can all be online to send Alice her
secret key shares, yet any adversary wanting to hijack
the domain must hack into every server to reconstruct
MSK. Individuals wishing to send Alice an encrypted
email can retrieve the pre-combined MPK through the
DNS, against which they can form an encryption. They
need not know that the corresponding MSK is shared
among multiple servers.

3.3 Protocol for Users
Alice, with address alice@wonderland.com, can
use functionality from Section 3.1 to prevent her mail
server from reading her incoming emails as follows:

1. generate a fresh master keypair (MPKAlice,
MSKAlice) using the same params as those of
wonderland.com.

2. distribute (alice@wonderland.com,MPKAlice)
via a keyserver, web site, etc. The associ-
ation between alice@wonderland.com and
MPKAlice need not be certified.

3. generate a secret key complement SKAlice
Alice

using the string alice@wonderland.com
and MSKAlice. Run CombineSecretKey on
SKwonderland.com

Alice , from her domain, and the newly
created SKAlice

Alice to obtain a single secret key
SKAlice.

Then, when Bob wishes to send Alice an encrypted
email at address alice@wonderland.com, he per-
forms the following actions:

1. obtain MPKwonderland.com using the established
DNS-based mechanism of the Lightweight PKI.

2. obtain MPKAlice from a keyserver or Alice’s web
site.

3. combine the two master public keys: MPK =
CombineMasterKey(MPKalice@wonderland.com,
MPKAlice).

4. encrypt a message m for Alice:
Encrypt(MPK, alice@wonderland.com,m).

With this approach, Alice prevents her mail server
from decrypting and reading her email with only
SKwonderland.com

Alice . Even an adversary (other than Al-
ice’s mail server) who spoofs Alice’s uncertified key
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MPKAlice cannot decrypt and read her email. Our
threat model does not protect against a mail server that
spoofs its own user’s webpage or keyserver entry, as this
type of attack is unlikely in practice.

However, an active attacker – other than Alice’s mail
server – could mount a denial-of-service attack against
Alice by publishing spurious master public keys associ-
ated with Alice’s email address. We suggest methods for
preventing this attack in Section 5.

3.4 Adoption and Deployment
Lightweight encryption offers flexible deployment op-
tions. Privacy increases with each domain deployment
of a Lightweight PKI, and even naive users get some pri-
vacy. We explore two usage cases:

Scenario One: Naive Users. Using the Lightweight
PKI, non-savvy users can use an updated mail client
which automatically encrypts their outgoing mail
and decrypts their incoming mail. To encrypt to
bob@foo.com, Alice’s client simply needs to obtain
MPKfoo.com via DNS. Recall that even if this do-
main splits its master secret key among many servers to
safeguard against hackers, it need only post this com-
bined key in the DNS. Decryption is even easier. The
mail server for foo.com emails Bob his secret key
SKfoo.com

Bob . Bob’s email client can transparently recog-
nize and process such emails, then using the included
key to decrypt the email from Alice.

Scenario Two: Advanced Users. Suppose Alice and
Bob are more advanced users, able to follow the protocol
in Section 3.3. Bob publishes an additional public key
on his web site. Alice combines this public key with the
one defined by MPKfoo.com. Her email to Bob is then
encrypted such that even Bob’s incoming mail server is
unable to decrypt it: only Bob can. Note that Bob never
needs to certify any of this additional key material.

4 How To Split IBE Master Keys

We present methods for splitting, among a group of
trustees, the key generation and verification algorithms
for two predominant IBE systems. Both key types [4, 13]
are based on bilinear maps and support efficient identity-
based encryption and signature schemes [1].

4.1 Bilinear Maps
Let BM Setup be an algorithm that, on input the secu-
rity parameter 1k, outputs (q, g, h, G1, G2, e), where e is
a function mapping G1 × G1 to G2, where both G1 and

G2 are groups of prime order q = Θ(2k), and elements
g and h both generate G1. The function e has the prop-
erties [4]: (Bilinear) for all g, h ∈ G1, for all a, b ∈ Zq,
e(ga, hb) = e(g, h)ab; (Non-degenerate) if g is a gen-
erator of G1, then e(g, g) generates G2; and (Efficient)
computing e(g, h) is efficient for all g, h ∈ G1.

4.2 Waters Key Pairs

We present these algorithms for (a reformulation of) the
Waters key pairs [13, 1] when all trustees are assumed to
be honest. This is the case, for example, when a company
wants to split its MSK among a number of servers that
it owns and operates in order to make stealing the MSK
more difficult for hackers. In Section 4.4, we address the
possibility of malicious servers.

Single Server Key Algorithms

• Generate(1k) outputs MPK = (params, gb) and
MSK = b for params = (q, g, h, G1, G2, e,H)
where H is a function mapping strings in {0, 1}k

to elements in G1 and the remaining parameters are
generated by running BM Setup(1k). We assume
that the discrete logarithm of h with respect to g is
unknown. (Here, H is a particular implementation
of a hash function, not a generic random oracle. We
defer to Waters for the details [13].)

• ExtractSecretKey(MSK, id string) outputs the
user secret key SK = (hbH(id string)r, gr), for
a random r ∈ Zq.

• VerifySecretKey(MPK, id string , SK) parses
SK as (A,B), outputs True if and only if
e(A, g)/e(B,H(id string)) = e(h, gb).

Multiple Server Key Algorithms

• Setup(1k): params = (q, g, h,G1, G2, e,H).

• GenerateShare(params) outputs a master key share
MPKi = gbi and the corresponding secret key
share MSKi = bi.

• CombineMasterKey(MPK1, ..,MPKn) outputs

MPK =
n∏

i=1

gbi = gb.

• ExtractSecretShare(MSKi, id string) outputs

SKi = (hbiH(id string)ri , gri)

for a random ri ∈ Zq.
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• VerifySecretShare(MPKi, id string , SKi) parses
SKi as (Ai, Bi), outputs True only if

e(Ai, g)/e(Bi,H(id string)) = e(h, gbi).

• CombineSecretKey(SK1, . . . , SKn) outputs

SK =
( n∏

i=1

hbiH(ID)ri ,
n∏

i=1

gri
)

=
(
hbH(ID)r, gr

)
.

4.3 Boneh-Franklin Key Pairs
Boneh and Franklin [4] briefly discuss how the key pairs
for their encryption scheme can be generated and verified
in a distributed fashion. The key pairs are simpler than
the above Waters scheme. The master key pairs are of
the form (MPK, MSK) = (gs, s) and user key pairs of
the form (PK, SK) = (H(id string),H(id string)s),
where H : {0, 1}∗ → G1 is a hash function. For the re-
maining details, we defer to the Boneh and Franklin [4].

4.4 Dealing with Untrusted Servers
There are two ways that a malicious server (or servers)
can undermine the security of the previous schemes.

Key Generation Issues. It is possible for a set of col-
luding servers to deviate from the basic GenerateShare
protocols above and choose their shares MPKi in
such a way as to bias the final master key MPK.
An adversary might post a malicious second-channel
key MPKevil which “cancels out” Alice’s first-channel
key from MPKwonderland.com, making the combined
SKAlice a known value.

We can prevent these attacks by requiring that each
server posting an MPK also posts a proof that they
know the corresponding value MSK without revealing
MSK. This can be done by standard cryptographic tech-
niques outside the scope of this paper.

Threshold Issues. After a set of n servers have pub-
lished a final master key MPK, one or more malicious
servers may refuse to provide Alice with their shares of
her user secret key SKAlice. It would be better if some
subset of the servers, say any group of k + 1 out of n for
n/2 ≤ k < n, can provide enough secret shares to recon-
struct SKAlice for Alice. This safeguard can be achieved
by a direct application of techniques due to Gennaro et
al. [9] when the majority of servers are honest, as previ-
ously noted for Boneh-Franklin key pairs [4].

5 Extensions and Variations

Stronger Lightweight Certificates. In Section 3, Al-
ice creates her second encryption channel by posting
MPKAlice. An active adversary might post spuri-
ous MPKevil in order to hijack this second chan-
nel. Since the adversary does not know the secret key
SKwonderland.com

Alice for the first channel, the best he can
achieve is a denial-of-service attack. In practice, we
want to prevent such attacks too. Alice can do so by us-
ing her existing lightweight signing key SKwonderland.com

Alice

to sign her second-channel MPKAlice. If Alice’s mail
server were actively malicious, it could spoof this signed
MPKwonderland.com. However, as stated earlier, our
threat model does not account for this (unlikely) attack.

Double Email-Based Identification. Lightweight en-
cryption works because Alice has two encryption chan-
nels: one from her email domain, and one from herself.
As we saw in Section 4, the two keys from these chan-
nels can be combined to allow for a single encryption by
the sender and a single decryption by the recipient.

Another way to set up two encryption keys
is to have Alice advertise two email addresses
at different domains, alice@wonderland.com
and alice@school.edu. As the two domains
wonderland.com and school.edu are unlikely
to be using the same key parameters (e.g. the same
bilinear map in Boneh-Franklin or Waters), the two
secret keys obtained from each domain cannot be
recombined. However, the sender can simply use
double-encryption: encrypt the message first against
MPKwonderland.com, then encrypt that ciphertext against
MPKschool.edu. Neither incoming mail server can de-
crypt Alice’s email single-handedly, yet Alice can per-
form two decryptions to recover the message. (Note
that this only provides added security if Alice isn’t sim-
ply forwarding her email from alice@school.edu
to alice@wonderland.com. She must log in to each
incoming mail server independently.)

6 Conclusion

We introduced Lightweight Encryption as a means of re-
alizing email encryption with a realistic adoption and de-
ployment process. Certainly, more work is necessary,
including user interface considerations, the widespread
distribution of secondary user private keys, and the real-
world validation of our deployment ideas.

Authentic, private email can help improve the qual-
ity of all Internet-based communication. Lightweight en-
cryption provides a solid building block towards making
email encryption practical.
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