USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the
USENIX Workshop on Smartcard Technology

Chicago, Illinois, USA, May 10-11, 1999

Mutual Authentication with Smart Cards

Bastiaan Bakker
Delft University of Technology

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remaiwith the author or the author's employer. Permission is granted for
noncommercial reproduction of theork for educational or researchurposes. This copyrighhotice must be
included in the reproduced paper. USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738

Email: office@usenix.org ~ WWW: http://www.usenix.org



Mutual Authentication with Smart Cards

Bastiaan Bakker <Bastiaan.Bakker@Lifeline.nl>
Delft University of Technology, the Netherlands

Abstract

The World Wide Web has become the de facto interface
for consumer oriented electronic commerce. So far the
interaction between consumers and merchants is mostly
limited to providing information about products and
credit card based payments for mail orders. This is
largely due to the lack of security currently available for
commercial transactions. At the moment the only
security mechanism present in most browsers is the
Secure Socket Layer (SSL) which is limited to
authentication and encryption of the HTTP session. It
does not aim to secure transactions.

This report describes the design of a new three party
authentication and key distribution protocol to serve as
a foundation for WWW based transactions. Instead of
having a radically new design it is derived from
KryptoKnight protocol family developed at IBM. An
important design consideration has been that it can be
implemented with existing smart card technology.
Specifically the Dutch Chipper and ChipKnip cards
have been examined for their applicability. The result is
an ABK(t) type protocol that runs with any card that
supports either the ISO7816 internal authenticate
command or the En726 read stamped or protected read
instructions.

Secondly a prototype has been implemented in Java
that can run in either the Java Development Kit or the
Netscape or HotJava browser. Though Java was not
designed for implementing hardware drivers it has
proven perfectly suitable for communication with smart
cards. Also it has effectively demonstrated its cross
platform capabilities over multiple operating systems:
except for a small native library to talk to the RS232
port the same code runs on Win32, Linux and the NCD
network computer.

1. Introduction

The subject of this graduation assignment is to design
and prototype a mutual authentication system for
WAN-based Client/Server applications. Implementation
of the system shall be based on common Internet
technology. More specifically the applications are
assumed to be WWW enabled, with a Java capable
WWW browser on the client side and an HTTP server
on the server side.

The system shall provide the basic elements for the
initialization of a secure channel from client to server:
authentication and (session) key negotiation. Properties

of the channel it self, such as encryption, message
integrity, and non-repudiation, etc., are beyond the
scope of this assignment.

Some countries, notably the USA and France pose
restrictions on the export of strong encryption
technology. In order to accommodate unrestricted
development in these countries the authentication
system shall be built only with cryptography that may
be exported legally.

Since the primary users of the system are consumers
ease of use is very important. Consumer oriented
systems for securing transactions that rely on soft keys
instead of hardware tokens, such as the [Pay system
have proven to be difficult to use and administer.
Hardware tokens on the other hand store the keys and
the algorithms that may use them internally, safe from
harm by careless users or hard disk crashes. Therefore
this assignment will investigate the possibilities to use
hardware tokens as security providers. Particularly
smart cards will be examined because they are designed
for this purpose. Moreover since the introduction of two
nation wide electronic purse systems, the Chipper and
the ChipKnip, by all Dutch consumer banks the
majority of Dutch consumers owns one ore more smart
cards.

For reasons of cost and availability it is attractive to be
able to reuse these existing smart cards to authenticate
clients and servers to each other. Typically the server is
not the card issuer or owner of part of the card and
therefore has no knowledge of the keys used by the
smart card of the client. One option would be to install
a security module containing all relevant keys at each
server. This approach is used for the aforementioned
ChipKnip and Chipper electronic purse
implementations. This was motivated largely by the
restriction that the purse transactions could be
performed off line, without intervention of a central
system. However in case of transactions on the Internet
offline processing is not required. When considering the
security and management issues generated by massive
deployment of security modules, using a central
security server is a preferable alternative. Consequently
the authentication protocol features three parties: a client
(the consumer), a server (the service provider) and a
trusted third party (the smart card issuer, e.g. a bank).



The core of the system is a new cryptographic protocol
that can be implemented with smart cards. It shall
provide:

*x Source authentication. The protocol should return
an identifier of the peer party. This identifier may
be persistent, such as an account or membership
number or a transient, valid only for the duration of
the session. In case of persistent IDs the trusted
third party guarantees that the presented IDs belong
to the communicating party. The protocol shall fail
to complete if either party is not authenticated.

* % Key negotiation. If authentication is successful, the
protocol shall return a shared secret to both
communicating parties. This secret can be used as
a session key to provide message authentication,
message integrity and optionally encryption.

1.1. Elements

Within an authentication system one can identify

several elements. These include the users of the system

of course, others are:

*x Identificators. These are the objects the users (both
clients and servers) use to prove their identity.
They contain an identifier for their owner and a
mechanism to authenticate this identity. In this
assignment the application of smart cards as
identificators will be investigated.

e A Trusted Third Party (TTP). The issuer of the
identificators. It is trusted by both client and server
parties, hence its name.

*x% Semi Trusted Computing Base. The to be secured
application runs in this environment. The semi
trusted computing base is trusted not to
compromise the security of a single session of the
application, but not trusted enough to protect long
term secrets used for identification.

1.1.1. Requirements on the Identificators

In physical life people prove their identity with an
identification paper, for example a passport. In
‘computer life’ we’ll need a similar identificator.

Passports and alike contain three parts:

*x% An organization wide identifier: a social security
number, a name, age, birthplace, birthday tuple,
etc. This information is wused within the
‘organization’ to uniquely refer to a person.

*x% Biometric identification information: photographs,
age, height, eye color, etc. This data set should
unique describe anyone bearing a passport and
thereby link a passport to one unique individual.

*x Physical authentication proofs:  watermarks,
uncopiable prints, special paper, etc. They should
prove the passport is genuine and actually issued

by the claimed authority (and thereby prove that
this authority attests to the identity of the bearer).

So passports rely on biometric verification and the
unfeasibility to physically forge them. Biometric
verification relies on the trusted verificator (e.g. a
customs officer) to be present at the same place as the
identificator (passport): the biometric properties are
public, their security lies in their unforgeability.

Since we are looking for a distributed protocol the peer
party cannot know whether properties are actually
measured or just pretended to be measured.

Challenge Response Identificators

Instead of relying on publicly known properties that
may be forged, the identifying properties should be kept
secret. You prove your identity by showing you know a
unique secret that no other user knows, without
disclosing it. A common method for this is a
challenge/response protocol: party A sends a random
number (the challenge) to party B, whose identity has
to be verified. B returns a response calculated from the
challenge and its unique secret key. The calculation has
the property that it is infeasible to determine the key
from the challenge response pairs. Nor is it possible to
deduce new pairs from known ones. Verification of the
response is only possible for parties knowing the secret
used in the calculation. They can reproduce the
challenge/response calculation and verify the response
given by the authenticating party.

Physical, electrical and functional properties of smart
cards are standardized in ISO standard 7816 ([ISO89],
[ISO92] and [ISO93]). The majority of currently
deployed cards implement 7816 parts 1 to 3 and most
application level commands in part 4. The latter part
includes some standardized commands to perform
challenge/response calculations. The actual choice and
implementation of a particular algorithm is left to the
card manufacturer.

Minimally we require the card to contain an identifier
and a key that are unique for the owner of the card and
maintained by the Trusted Third Party (TTP).
Examples of the identifiers are (bank) account numbers,
social security numbers, membership numbers, etc.
Secondly we require the card to offer some challenge
response mechanism using the unique key that can
prove the validity of the ID supplied by the card.

1.1.2. Requirements on the Trusted Third
Party

The Trusted Third Party is the organization issuing the
smart cards or at least controlling the part of the card
used for the protocol in case of Multi Function Cards



(MFCs). It has knowledge of the persistent keys used in
the protocol. As the name suggests, the client and
server trust the TTP to provide them accurate
information. Also they trust the TTP to issue
identificators that have sufficient security provisions to
keep the persistent keys secret.

1.1.3. Requirements on the Semi Trusted
Computing Base

A user may consider his or her computer and web
browser to be a semi trusted computing base. People
trust their computer and browser to communicate with
the service provider, that is they trust it not to
compromise the communication, for example to relay it
to another party, to manipulate it, etc.

However Internet enabled computers are compromised
on a daily basis all over the world, so one cannot rule
out the possibility a hacker gains control over the web
browser or even the whole computer. An important
feature of the authentication system has to be that in
such a case compromise will be incidental and not
total: once the security breach in the semi trusted base
has been fixed compromise should no longer be
possible. Note that this is different from a breach in the
security of the trusted computing base: once a smart
card has leaked its secret nothing can be done to restore
the security of that card.

1.2. Standardized Cryptographic Features
for Smart Cards

Both the ISO 7816 and En726 standards only include
commands that wuse secret key cryptography.
Consequently their authentication mechanisms require
that both parties (the card and the application) know the
authentication key.

ISO 7816 specifies a single command by which a card
can authenticate it self to the outside world: the internal
authenticate command. This is a straightforward
challenge/response mechanism with challenges and
responses of typically eight bytes (this is not mandatory
though). Commonly this command is implemented
with DES encryption in Electronic CodeBook (ECB)
mode. Conversely the external authenticate command
allows the outside world to authenticate it self to the
card.

ISO 7816 also specifies mechanisms for providing data
integrity and confidentiality, labeled Secure Messaging.
These do not seem to be implemented widely though,
so they will not be discussed here.

Additionally the En726 standard offers methods for
authentication and concealment of data on the card.
Elementary files can be given access conditions, which
specify whether and how the files may be read and/or
updated. Among the conditions are “ALW” (for

always), “NEV” (for never), “PRO” (for protected) and
“ENC” (for enciphered). The “PRO” access condition
mandates that a cryptogram shall be sent along with the
data read from or written to the card. This cryptogram
is the result of a keyed MAC over the data and a
challenge. The “ENC” access condition is an extension
of the “PRO” condition. It mandates that all data shall
be enciphered as well as protected by a cryptogram.

1.3. Key Management of Some Smart Card
Systems

Electronic purses like Chipper and ChipKnip are
designed for off line use: the customer should be able to
pay the merchant without the need for a connection to a
central server of a bank. This means only two parties
are involved: just the card of the customer and the
Payment Terminal System (PTS). Generally the part of
the terminal that provides the security (contains all
keys, etc) called the Secure Application Module
(SAM), is a smart card as well.

Secret key based authentication requires both parties to
share a common secret. The simplest method to arrange
this is to have a single organization wide key stored in
all smart cards. In closed systems deployed within a
single organization, authentication with a single key is
still commonly used. An example is the Closed
Electronic Purse on the Studenten ChipKaart of
1995/96 [Hoekstra97].

For larger systems such as a nation wide intersector
electronic purse a single global authentication key is
not a feasible solution: breaking the security of a single
smart card, that is obtaining the key, compromises the
security of the entire purse application. Failure of a
single entity in the system results in failure of the
security of the entire system.

To remedy this electronic purses like Chipper and
ChipKnip feature a unique authentication key per purse
card. Obtaining the key of one purse card does not help
you to forge other purse cards. After a couple of
fraudulent purchases with a forged version of the cracked
card the bank will notice the fraud (because more money
was ‘downloaded’ from the card than was previously
uploaded to it) and black list the card. The solution is
only partial however: since every Payment Terminal
System (PTS) should be able to authenticate every
purse it should know all authentication keys. It is
infeasible to store every key in a big database located in
the PTS; we would be talking about something like 5
million entries replicated in at least 50.000 databases.
Instead the authentication key of a purse is determined
by key transformation: the bank has a single master key
that serves as a key encrypting key or key generating
key over the ID number of the card: Kpuse = Exm(IDpurse)
or Kpuse = MACkm(IDpurse). Now the SAM only needs



to know the master key from which it can deduce the
purse key for every purse it has to authenticate. The
purse itself contains only its own Kue. Of course if this
master key extracted from a SAM somehow, the entire
system still is compromised completely.

2. A New Protocol for Authentication &
Key Distribution

The KryptoKnight protocol family provides three party
based authentication and key distribution built on
exportable symmetric cryptography. It has most of the
properties we desire. Nevertheless it has not specifically
been designed for implementation with existing smart
cards. For example it assumes party A and B know
their respective keys K and Kg. For smart cards this is
not true: neither smart card users nor applications are
allowed to know the keys stored in the card. The
operating system of the card only permits applications
to initiate certain commands that use the key, but these
are all executed within the secured environment of the
card itself.

This chapter describes the design of a three party
authentication and key distribution protocol suitable for
smart cards, based on the KryptoKnight protocol
designs. More specifically the ABK variant of the
KryptoKnight protocol will be adapted to a smart card
compatible ABK(t) type protocol, named KLOMP
(KryptoKnight-based  Lightweight Open  Mutual
authentication Protocol).

2.1. Assumptions and Constraints

1.% Only the server shall contact the trusted third party.

2.% Assumptions about the identificators used by the
client and the server shall be minimized.

3. The protocol shall be compatible
contemporary smart card technology.

4. The protocol shall be suitable for a Wide Area
Network (WAN) environment.

5. All cryptographic algorithms shall be legally
exportable (out of the United State and other

with

countries that put restrictions on export of
cryptography).

6.% The protocol shall be stateless with respect to the
trusted third party.

7.% The trusted party shall not need to give any
response before successful authentication of both
client and server. Specifically it shall not disclose
any information about the client to the server before
both client and server are authenticated and the
client has given its consent.

Ad 1) In a typical Internet based client/server system
the number of clients is much larger than the number of
servers. Furthermore the relation between a trusted party

and the application servers is more static than between
the trusted party and the clients. Therefore both from a
security and a topological viewpoint it is wise to limit
access to the trusted party to the application servers.

Ad 2) Minimizing the assumptions about identificators
maximizes the reusability of the protocol.

Ad 3) The protocol is specifically aimed at letting
smart cards provide the security for it. It shall at least
be implementable with ISO7816 or En726 compliant
cards.

Ad 4) The protocol is aimed at use in an Internet
environment, which certainly is a Wide Area Network.

Ad 5) Authentication and key distribution by them
selves are exportable functions. In many cases they
suffice and confidentiality by encryption is not needed
for the subsequent transactions. With careful design it is
possible to build a system that is both secure and does
not rely on export restricted cryptography

Ad 6) A stateless protocol considerably reduces the

amount of administration to be kept by the trusted

party. Keeping the server of the trusted party simple is
important:

*x compared to the other parties, the authentication
server has to handle many requests: whereas the
client has to perform only one authentication, the
application server has to perform as many
authentications as there are clients connecting and
the trusted third party has to serve requests from all
the applications servers it serves.

*x a simple server is more robust than a complex one.

*x a simple server is more likely to be secure than a
complex one.

Ad 7) To ensure the privacy of users any information
about them should be disclosed (to the application
server) only after the user agrees to it, which means that
both the user and the server should be authenticated
first. Also for security it better not to have to send
encrypted messages (tickets) to unauthenticated
principals: it allows attackers to collect cipher texts
which might help breaking the cryptographic protocols.

2.2. Generating MACs with smart cards

The KryptoKnight protocol needs to calculate
authentication codes over messages longer than 32
bytes. Smart cards may not support MAC generation
over messages of that length. They often offer only
limited support for generation of authentication codes
over messages. Some methods are:



3% [SO7816 Internal Authenticate

*x% En726 Read Stamped / Protected Read of freely
writeable field

*x% En726 Read Stamped / Protected Read of read only
field

3 CBC-MAC based of one of the above methods.

2.2.1. 1ISO7816
command

The ISO7816 Internal Authenticate command returns a
keyed hash of a short message (the challenge) in order
to authenticate the card to the outside world. This
keyed hash can also be used to generate an
authentication code over an arbitrary message. Since the
challenge that the Internal Authenticate command
accepts must have a limited length (typically 8 bytes),
the message first has to be compressed using a secure
hash algorithm. The compressed message is then fed to
the Internal Authenticate command. In order to ensure
freshness of the resulting Message Authentication Code,
a random challenge number should be included in the
message before compression. To put it in a formula:
MACk(M) = InternAuthg(H(R // M)), where M is the
message, K the authentication key and R a random
number to ensure freshness.

Although this method does yield a MAC generating
algorithm, the compression of the message before the
Internal Authenticate command does weaken it. For
example in order to find two messages that collide
(generate the same MAC) an attacker does not need to
have access to the Internal Authenticate command. She
only needs to find collisions in the secure hash
algorithm. Any collisions found will then occur with
any smart card regardless of the key.

Internal Authenticate

2.2.2. En726 Read
Writeable Field

The smart card supports the En726 Read Stamped or
Protected Read methods and has a freely writeable file
that can be read with (one of) these methods. This offers
the best way to perform MAC calculation on the card:
first write the message on the card and then read it back
with the Read Stamped or Protected Read method. The
only limitation is that the message has to fit into the
file.

Stamped of Freely

2.2.3. En726 Read Stamped of Read Only
Field

In this case the smart card supports the Read Stamped
or Protected Read methods but none of the files on the
card is freely writeable. This gives the same
opportunities as the Internal Authenticate command: an
8-byte challenge that yields an 8-byte response. The
only difference is that the contents of the file have to be

sent to the verificator along with the response or else
the verificator will not be able to reproduce the MAC
calculation.

2.24. CBC-MAC

All of the above methods use an authentication code
generating command only once. Depending on the
speed of the card and the time constraints on the
protocol this may be the maximum as well. But if one
is permitted multiple invocations, either of the methods
mentioned above can be used to build a CBC MAC,
analogous to the ANSI X9.9 keyed MAC algorithm.
The Read Stamped over Writeable Field and the CBC-
MAC method generate MACs over the entire message,
the others only over a compressed representation of the
message, which is less secure, so the first are preferred.
But since they might not always be available or feasible
the protocol will be designed to work with the other
two methods as well.

2.3. Challenges, responses and authentica-
tion proofs

From the previous paragraph follows that minimally
available is a challenge/response mechanism that
accepts fixed length short challenges (of 8 bytes in most
cases) and returns responses of the same length. In other
words where KryptoKnight calculates MACs with Ka
or Kg on complete messages, the new protocol first has
to compress these messages. With a secure hash
function the message can be mapped to a fixed length
challenge that appears pseudo random. For example let
CA = H(NA, NB, B) and CB = H(NA, NB, A)

However this introduces a possible weakness: the space
of possible challenges is much smaller. When the space
is small enough it might be feasible for an attacker that
has already has collected correct challenge/response
pairs to try to find a Na (or Ng) that yields a known
challenge by brute force. For example if the challenge is
64 bits big and the attacker has collected 2'°
challenge/response pairs, every one in 2* nonces yields
a challenge for which the response is known. With the
currently available computing resources this is feasible
by ‘brute force’. This attack is possible because the
search for a suitable nonce can be performed off line. In
order to limit this off line search the protocol may
impose a time window outside of which the challenge
is not valid. A window that is small enough renders a
brute force attack infeasible: once a suitable challenge
has been found the transaction has already expired. The
challenges become:

CA = H(NA, NB, T, B) and CB = H(NA, NB, T, A),
where T is a time stamp.

2.4. Order and Direction of the Data Flow



The order in which the three parties communicate is
largely dictated by the constraints put on the protocol:
the limitation that the protocol should be stateless with
respect to the TTP (constraint 6) implies that it shall
be contacted only once during a protocol run. The
contactor shall be the server (see constraint 1). So the
protocol flow includes B>K->B.

Since A has to be notified about success or failure of the
protocol B subsequently sends a message to A. And
since the ID of A has to be known before contacting the
protocol flow has to be at least A->B>K->B->A.
From constraint 7 follows that both the client and
server shall generate their authentication proofs before
contacting the TTP. This in turn implies that the
challenges the client and server identificator have to
respond to cannot include a nonce from the TTP.
Instead it has to be substituted by a time stamp. In
order to establish challenges that contain nonces of both
A and B and the time stamp, the protocol flow has to
start with a message from B to A that contains B’s ID
and its nonce Ng. If the protocol will be initiated by A
it has to send a (possibly empty) ‘trigger’ message to
B before that. This results in the following protocol
flow: ADB2>A>B>K>B2>A.

All in all the desired protocol can be called an ABK(t)
protocol, using the naming convention of the
KryptoKnight documentation. (The t after the K for the
KDC = TTP, indicates the substitution of a timestamp
for a nonce from the TTP.) Unfortunately the
KryptoKnight family does not include a protocol of this
type, so a new one has to be developed.

2.5. Session Key Distribution

The method of key distribution is also influenced by
the constraints on the protocol. The KryptoKnight
protocols all let the TTP generate the session key and
distribute it with tickets to both the client (A) and
server (B). As discussed before this has the drawback
that an attacker may collect any number of tickets for an
attack on the encryption algorithm without any
authentication.

In the new algorithm a different distribution mechanism
is proposed: party A generates the session key,
transports it encrypted (via party B) to the TTP, which
decrypts the key and finally sends it to party B
reencrypted with a key known to B. So in this case the
session key is transported (from A to B) rather than
distributed (from the TTP to A and B).

A and B generate cryptographic proofs before contacting
the trusted third party. In the same effort the session key
can be generated as well: party A generates session key
Kag with the same parameters as proof Pax it sends to
the TTP. Since these parameters are either publicly sent

to the TTP or known by the TTP (in case of the key
transforming key Ka), the TTP can reproduce the
session key without further knowledge.

2.6. Protocol Description
The considerations in the previous paragraphs lead to
the protocol flows depicted in figure 1.

Step 1 might seem strange since it does not include any
protocol data. Its purpose is to trigger the start of the
authentication protocol and need not be explicitly
performed: the protocol might be triggered implicitly
when the client requests a secured action within the
application protocol.

In step 2 the server replies with an identifier for itself
(B), a nonce (Ng) and a time stamp (T). T substitutes
for a nonce Nk of the TTP because the TTP may
contacted only once, after the challenge/responses have
been performed at the client and server. The time stamp
does not need to be very precise: it sets but a time
window in which the authentication session has to be
performed. It is checked by the TTP, so the clocks of
the server and the TTP must have a time skew less
than the allowed time window. A time window in the
order of 5 to 10 minutes seems reasonable: it is small
enough not to compromise the security of the protocol
and wide enough to avoid the difficulties of tightly
synchronized the two clocks.

Steps 3 and 4 are split up in three parts: In step 3a the
client calculates a challenge C. to send to the
identificator. This challenge should be a secure hash of
Na, Ng, T and B, where N, is a nonce generated by the
client. Proposed is Co = MACt (N4 // Ng // B).

In step 3b the client collects the data from the
identificator: the ID of the client (A), the type of the
identificator (I»), the response on the challenge (Kap),
and optionally any extra data used in the calculation of
the response (Da). Rather than having the TTP generate
and distribute the session key, response Kay will be
used as a temporary key for the generation of session
key Kag. The choice for key generating function f{)
depends on whether party B is allowed to lean
challenge/response pairs of A’s smart card. In that case
fx)=x will suffice else an (optionally salted) hash
function has to be used. The authentication proof Pak is
calculated from A, Na, N and Kap using formula Pax
= MACas(Na // Ng // A). Using Kap instead of Kag
makes the proof from A for the TTP identical to the
proof from A for B: Pax = Psx.

In step 3c the client sends all parameters (A, Na, I, Da,
Pak, B, Ng, T) to party B.



The server (party B) similarly generates a challenge
(Cg) and retrieves the corresponding response (Kgp) from
its smart card. However the server does not need to
generate a session key nor should its authentication
proof be verifiable by the client. Therefore it can directly
apply response Kg in its calculation of Pgk. Since the
server does not know Kag yet it cannot verify Pag.
Instead the server sends all parameters (A, Na, Ia, Da,
Pak, B, Ng, Ig, Dg, Psk, T) to the trusted third party.

In step 5 the TTP werifies all parameters received from

B:

*x is time stamp T valid?

e is A a valid and active client ID?

e is B a valid and active server ID?

*x corresponds proof value Pax to the value yielded
with genuine key of the client KA?

*x corresponds proof value Pgx to the value yielded
with genuine key of the client Kg?

In case the authentication request passed verification,
the TTP calculates the session key and encrypts it for
the server using key encrypting function g(): Tga =

2(Kgp, Kag, ....). if A may learn Kg; the function may
be very simple again: g(x, y, ...) = x U y. The TTP
sends back the result, the ticket Tga, to the server B.

In step 6 the server decrypts the session key Kag. Now
B is able to verify proof Pak, because Pax is calculated
from secret Kag and the public values Na, Ng and A. I
the verification either client A or the trusted third party
are imposters or the communication has been tampered
with. If verification is successful B generates proof Pga
for client A and sends it to A. Finally A verifies proof
PBA.

2.7. Improvements on the protocol

The basic KLOMP protocol has been designed to be
implementable with any challenge/response capable
identificator. With some identificators the protocol can
be enhanced for better security. At the cost of some
extra calculations also some potential weak spots can be
eliminated.

2.7.1. Collection of challenge / response
pairs

Smart Card Client Smart Card Server Trusted
for Client for Server Third Party
Iy A Iy B e

1. request authentication D

2. start of protocol i ‘ B, Ng, T

3a. calculate challenge of client C,

card —

PA LK, D, i

3b.receive response LA AT AL

3c.calculate sess'ion.key and AN K | " D A P AR B, NB, T

proof of authentication >

4a.repeat step 3a for server ‘ Cp

4b.repeat step 3b for server B, Iy, Kgs, Dy

AN, T, DA) P,

4c.repeat step 3c for server B, Ny, I, D, Py,

>

5.verify repsonses, calculate ‘ Tpa
ticket for server and retum it
Pga

6.confirm to client 4

Figure 1: Data flow of the KLOMP protocol

Ca = H(Na, Ng, T, B)
KAD: MACA(CA, DA)
KAB :f(KAD )

PAK = PAB = MACAB(NA // NB // A)

Tea = g(Ksp Kas, -...)

CB = H(NA, NB, T, A)
KBD = MACB(CB, DB)

PBK = MACB[( NA // NB // B)
PBA = MACAB(NA // NB)



The current protocol allows servers to collect
challenge/response pairs of the identificator of the client.
Conversely clients can collect pairs of the identificator
of the server if they eavesdrop on the connection
between the server and the trusted third party. The
reason for this weakness is obviously the simplicity of
the key encrypting and key generating function applied
in the protocol. To remedy this let:

KAB = H(KAD // NA) and TBA = H(KBD // NB) O KAB

2.7.2. Clients searching for suitable C,’s

If a rogue client knows some challenge/response pairs of
the client identificator it may try to find a challenge he
knows by trying different client nonces (Na’s). Of
course the search must be completed before the time
stamp T expires. In any case this attack can be
prevented if the client already has to commit to a
specific N, in step 1. A way to accomplish this is to let
the client send a concealed commitment to the server in
step 1: it has to send a verification parameter Va=H(Na,
S4). Here So denotes the salt used to randomize the
hash, analogous to the salt in encrypted UNIX
passwords. The salt is a public value, meaning that the
client sends it together with V. to the server. The
inclusion of the salt in the hash increases the input
address space of the hash beyond the point where the
server can deduce Ny through a dictionary attack. So the
secure hash and the salt prevent the server to deduce the
challenge of the client before committing to the value of
its own nonce Ng. Yet in step 3c the server can verify
that the client already has chosen its nonce before it
knew the server nonce, thereby eliminating the search
for a suitable nonce.

2.7.3. Time Window of Session Key Com-
promise

The session key Kag may be used not only to protect
the integrity and origin of transactions between A and B
but also to encrypt their communication. If the
information exchanged between A and B has to stay
confidential even after the session has ended, K,z must
remain secret as well. Since Kag is calculated solely
from long term key Ka and data susceptible to
eavesdropping, compromise of K. will enable an
attacker to recalculate all session keys, no matter how
long ago the corresponding sessions took place
(provided that he recorded those sessions of course).
The same applies to the compromise of Kz, since it
forms the basis for the transport key for Kag. In case of
key distribution protocols implemented completely in
software, like KryptoKnight, the best we can hope for is
that Ka nor Kz are ever revealed to other parties: there is
no solution for this problem.

However with hardware security tokens like smart cards
the situation may be much better. Compromise can be
divided in two levels now:

1.% An attacker obtains access to the smart card and
particularly to the challenge/response generating
command: this means that the attacker can obtain
responses over arbitrary challenges.

2.% An attacker discovers the key (Ka or Kg) used by
the challenge/response algorithm on the card.

The second level equals the compromise of the key in
an implementation in software only: the attacker can
recover any session key. Luckily level 2 compromises
are very unlikely to occur: smart cards are specifically
designed to withstand any attempt (both logically and
physically) to illegitimately retrieve the keys they
contain.
Level 1 compromises are far more likely to happen, in
fact any stolen or lost card may be abused for it.
Luckily these compromises are also less severe. The
key authentication and distribution protocol does not
take advantage of the different properties of level 1 and
level 2 compromises: in both cases all session keys can
be recovered.
Depending on the implementation of the
challenge/response mechanism on the smart cards, the
vulnerability of old session keys may be eliminated for
level 1 attacks. The challenge/response mechanism has
to be based on a reversible function, such as DES rather
than on a keyed one way function. The ANSI X9.9
MAC generation algorithm used in the IBM Multi
Function Chipcards is an example. It essentially is
DES run in CBC mode.
This algorithm has an ‘inverse’, that calculates a
challenge from a message, a key and the corresponding
Message authentication Code. In other words: let M be
a message, K be a key, C be a challenge and R be the
MAC of M under key K and challenge C (so R =
MACKk(C, M) ) then C = MAC'x (M, R). With an
inverse MAC one can take advantage of the fact that the
B L *® *

"

® ® ®

w Y

Figure 2: ANSI X9.9 MAC algorithm



TTP has full access to the keys in the identificators, but
users of the identificators do not: a user can encrypt a
short message by simply having the identificator
perform a MAC calculation with the message used as
challenge. The TTP decrypts the message by applying
the inverse MAC. The holder of the identificator
cannot, because the identificator restricts the application
of the key it holds to the forward MAC calculation.

To strengthen the authentication protocol with
reversible MAC’s the following formulas have to be
used for the notarization keys Kapand Kg
Kap=MACA(Ca, Ds) + MAC ' (N4, Da) = MACA(Ca,
DA) O Ra

Ks,=MACs(Cs, Dg) + MAC™'s (Ng, Dg) = MACg(Cs,
D) U Rg

where NA = MACA(RA, DA) and NB = MACB(RB, DB)
Now the notarization keys are offset with the randomly
chosen values Ra and Rg respectively. The TTP can
decode these random values because they are encoded in
the nonces N and Ny with a MAC calculation. Since a
smart card does not offer a method to derive Rs or Rp
from N, and Np an attacker cannot calculate the
notarization keys and consequently the session key.

®
l
BN ) gt ol gt
..................... S— Q
% % *

Figure 3: 'inverse' of X9.9 MAC

The TTP, on the other may derive the random values
by applying the inverse MAC algorithm.

3. Prototype Implementation

In order to test the applicability and usability of the
authentication protocol in actual WWW browser
environments a prototype implementation has been
built. Minimal goals for the implementation were Java
1.1 compatibility with support for at least one RS232
connected smart card reader and a commonly available
smart card. For the latter, the ZeelandKaart and the
Chipper, both incarnations of the IBM Multi Function
Card were chosen.

The prototype implementation has been split into two
parts: an implementation of the authentication and key
transportation protocol and an implementation of a
smart card access library. The intention was to be able

to plug in specific identificators in the authentication
protocol, including ones not based on smart cards.
Flexibility was an important design consideration.
Adding support for new smart card interfaces or smart
cards has to be easy. Also extending the protocol for
extra security or new features must not break
compatibility.

3.1. Smart Card Interfacing

At the start of this project no Java API for accessing

smart cards was available so one was developed as part

of the project. The Smart Card API is layered

analogous to the ISO 7816 standards:

e Hardware layer: provides uniform access to different
smart card interface devices.

ex Datalink layer: implements the T=0, T=1, etc
datalink protocols described in ISO 7816-3

e Transport layer: provides multiple concurrent smart
card communication channels for datalink layers
that support it (T=1).

*x Application layer:
commands standardized
prEN726-3

implements the application
in ISO 7816-4 and

In order to maximize portability the bridge between
native code and Java was put in the hardware layer.
This meant the development of a native RS232 port
access library that can be linked by the Java Runtime
through the Java Native Interface (JNI). This library has
been implemented for the Win32 and Linux platform
with the JDK 1.0, JDK 1.1 and Netscape 3 & 4 Java
Runtime Environments. Support for the NCD Explora
network computer was added in pure Java.

On top of the RS232 layer drivers have been built for
the Towitoko ChipDrive (see [Towitoko97]) and the
DumbMouse smart card interface [BillISF96].

For the complete API and JavaDoc documentation, see
[Bakker98].

3.2. Smart Card based Identificators

As part of this investigation several smart cards have
been examined for their applicability as identificators in
the authentication protocol: the Studenten Chip Kaart
(SCK) 1995/96, the Zeeland Kaart, the ChipKnip, the
Postbank Chipper and the Studenten Chip Kaart
1997/98 supplied to students at the Technical
University of Delft.

Except for the ChipKnip, which is a Bull CP8 Transac
CC 60 payment card, all cards are based on the IBM
Multi Function Card OS that implements (a subset of)
the ETSI En726 smart card application layer. (All cards
offer an ISO7816-4 command set, the ChipKnip over
datalink layer T=0 and the others over T=1).



The ChipKnip turned out not to be compatible with
KLOMP since it provides authentication only within
the proof of debit step of a payment transaction, not
separately [BeaNet96]. The other cards provide either a
‘protected read’ or En726 ‘read stamped’ method,
which both include ANSI X9.9 MACs. With these
methods improved KLOMP can be implemented.
Experiments proved the MAC implementation on the
Zeeland Kaart to be insecure however.

3.3. Password based Identificators

For testing purposes also a password based
challenge/response identificator has been built. It can be
considered a software emulation of a smart card that
implements the ISO7816 internal authenticate
command. The password-based identificator simply
asks the user for a user ID and password to perform
MAC calculations with. In this case the cryptographic
functions are processed in the semi trusted computing
base instead of in a trusted computing base. Of course
the consequence is that compromise of the semi trusted
computing base fully voids the security of the
identificator.

3.4. Protocol Implementation

A prototype of KLOMP wusing password-based
identificators has been written for the Java 1.1 platform.
Using smart card based identificators was not possible,

obtains
W B # dentif- ***W
Fiogom cators | &
from ¥
creates serves
- _w_Lg_
L ® OB ¥
B % oo
B OB ¥
BOR B ROk
authenticates
identifies authenticates
|
B
owns owns
/ descﬁé describes \

communicates with
g ® ¥

Figure 4: Class Diagram of the Protocol
Implementation

because no smart cards were available of which the keys
were known. Figure 4 shows a global class diagram of
the prototype. At the TTP the identificator factory
builds identificators by looking up users and passwords
in a PostgreSQL connected through JDBC. The
ClientAuthenticator, the ServerAuthenticator and
TrustedThirdParty communicate through Java Remote
Method Invocation (RMI). Java 1.1 includes a class for
generation of MD5 message digests, so this algorithm
has been applied for all secure hashes. The prototype is
available at [Bakker98-2].

3.5. Running the Prototype

Since the prototype protocol implementation is written
in pure Java, so it should run with any Java 1.1
compliant runtime. (The prototype does connect to a
pure Java UserdID/Password identificator by default,
therefore it does not need a native RS232 access
library). The server also needs the Java Generic Library
(version 3.0) and the TrustedThirdParty needs a JDBC
driver, in this case one for PostgreSQL. A PostgreSQL
database containing the user table has to be accessible
for the TTP.

A small client has been written that repeatedly initiates
the authentication protocol and times the duration for
completion. The measurements of a typical run of this
applet are shown below:

Pass 1 2 3 4

Time 5.542s 0.314s 0.337s 0.432s

Here the applet was running the protocol on a Pentium
II 233 with Red Hat Linux 4.0 and JDK 1.1.1v2
generated the above log. The first run of the protocol
takes clearly much longer than the other ones. This is
due to the initialization of the RMI channels between
the parties: it causes loading of many Java RMI classes
into the runtime. Also the Java serialization mechanism
has to perform elaborate hash calculations for every class
serialized. These timings should not be considered an
indication of the speed of the protocol in a typical
application environment: the JDK 1.1.1 for Linux is
much slower than the average Java implementation, for
example it does not contain a Just In Time (JIT)
compiler. The above test runs were performed with all
three processes (client, server and TTP process) and the
PostgreSQL database on the same machine. Several
other test runs have been performed with these parts
running on separate machines running different
operating systems. Besides Linux the system was
tested on Sparc Solaris 2.5.1 and WindowsNT 4.0.
Other than speed no functional differences were observed
with the different configurations. Also the PostgreSQL
JDBC driver did not have any problems in accessing



the database remotely. All in all the binary code
portability of the Java prototype implementation scored
100%.

3.6. Application of the Smart Card API
Separately from the protocol prototype, the smart card
access code has been applied in a project for the
Landelijk Instituut voor Sociale Verzekeringen (LISV).
In this demonstration system people can register and
login to the HTTP based application by entering their
Chipper or ChipKnip card. A Java applet reads the
account number and a password from the card and sends
it to the web server for simple password based
authentication. The applet takes less than half a second
to read the card and send the logon request.
Furthermore the applet couples to (Netscape)
JavaScript. At the registration page a Javascript routine
uses this coupling to read name and address information
from the Chipper card and fill the registration request
form with it.

4. Conclusions

The ISO7816 standards for smart cards provide basic
functionality for authentication through the internal
authenticate command. Together with the storage of an
ID this command allows us to build challenge/response
identificators. It has been demonstrated that with such
identificators it’s possible to build an intrinsically
secure three party authentication protocol (called
KLOMP). Furthermore @KLOMP imposes few
requirements on the trusted party, e.g. no
administration of sessions is needed for the
authentication, no information has to be returned before
both client and server have been authenticated. Also
KLOMP separates authentication from privacy through
strong encryption, so the system does not suffer from
cryptography export regulations like those imposed by
the US. The incorporation of encryption of short
messages with ‘inverse’ MAC’s strongly enhances the
security of the protocol to a point where session keys
are still secure even the smart card is stolen or other
wise abused. This gives hardware-based identificators
like smart cards a definite advantage over mechanisms
that rely solely on software.

Currently the majority smart cards used in Holland are
either a version of the IBM Multi Function Card (the
“Chipper”) or a ChipKnip. This is mainly a
consequence of the massive scale at which the joined
banks and the PostBank introduced the ChipKnip and
the Chipper to the public. Though both are ISO7816
compliant cards, neither base their security on the
internal authenticate command (even though the MFC
at least implements it). The MFC does provide two
other challenge/response based commands that can be

used as a substitution. The MFC therefore is
compatible with the proposed authentication protocol.
Unfortunately the ChipKnip cannot be adapted to the
protocol because it lacks a transactionless authentication
method.

The authentication protocol has been successfully
implemented in Java. It has been tested on the Linux,
Solaris and Windows32 platforms, demonstrating the
cross platform capabilities of Java. The time
measurements performed with the relatively slow Linux
JDK 1.1.1 indicate that the protocol does not require an
unacceptably long time to complete.

Bibliography

“Smart Card Access Library v1.17,
Bastiaan Bakker 1998,

http://speeltuin.lifeline.nl/~bastiaan/smar

tcardapi.html
[Bakker98-  “Klomp  Prototype Implementation

2] v1.0”, Bastiaan ~ Bakker 1998,

http://speeltuin.lifeline.nl/~bastiaan/klo

mpproto.html
“ChipKnip Terminal

BeaNet BV 1996

“Everything About Chipcards”, Bill
SF, magazine ‘t Klaphek, issue 2, 1996
“Systematic Design of a Family of
Attack-Resistant Authentication
Protocols”, R. Bird, 1. Gopal, A.
Herzberg, P. Janson, S. Kutten, R.
Molva, M. Yung, IBM 1992

“The KryptoKnight Family of Light-
Weight Protocols for Authentication and
Key Distribution”, R. Bird, I. Gopal, A.
Herzberg, P. Janson, S. Kutten, R.
Molva, M. Yung, IBM 1993
“Requirements for IC cards and
terminals for telecommunication use,
part 3", prEN726-3 version 14, ETSI
STC9, Valbonne Cedex 1993
[Hoekstra97  “Design and implementation of the ISI-
] 3 authentication protocol”,  Arjen
Hoekstra, ISCIT 1997

“Identification cards —  Integrated
circuit(s) card with contacts, part 37,
ISO/IEC 7816-3, Geneva 1989
“Identification cards —  Integrated
circuit(s) card with contacts, part 3,
amendement 17, ISO/IEC 7816-3
Amendement 1, Geneva 1992
“Identification cards —  Integrated
circuit(s) card with contacts, part 47,
ISO/IEC 7816-4, Geneva 1993

[Bakker98]

[BeaNet96] Specifications”,

[BillSF96]

[Bird92]

[Bird93]

[ETSIO3]

[1SO89]

[1S092]

[1S093]



[IBM96]

[JavaSoft97
al
[Schneier96
1

[Towitoko9
7]

Notational

XY
X0y
Kx

Kxo

Kxy

Ex(M)
E'x(M)
H(M.,..,M,)
MACx(M)

MACx
(CM)

MAC'x
(R,M)

Nx
Cx
Ix
Mx
PXY

TXY

KDC

“The IBM  MultiFunction  Card
Programmer’s Reference v3.5”, IBM
Germany  Development Laboratory,
Boeblingen 1996. CONFIDENTIAL
“Java 1.1 API  Documentation”,
JavaSoft 1997

“Applied Cryptography, second
edition”, Bruce Schneier, John Wiley
& Sons 1996, ISBN 0-481-11709-9
“RS232  protocoll description  for
ChipDrive & KartenZwerg”, Towitoko
Electronics 1997

conventions

X concatenated with Y

X exclusive ORed with Y

Party X’s master secret (= a long term
key shared with the TTP)

Party X’s key transforming key (= a
derived key shared with the TTP for the
duration of a session)

Secret session key shared by X and Y
Encryption of M under key Kx
Decryption of M under key Kx

a secure hash of My, ... , M,

Message  Authentication Code  for
message M under key Kx

Message  Authentication Code  for

message M under key Kx with challenge
C. The algorithm by which the
challenge is inserted in the MAC is
either unknown or undetermined.

Inverse MAC for message M under key
Kx with response R:

MACXx(C,M) = R = MAC'x (R,M) =
C

a nonce generated by X

a challenge for Ix

The identificator owned by X

Data used by Ix to calculate MACs

a MAC calculated by Ix based upon
challenge Cx

Proof of authentication by X for
verification at Y

a ticket for X containing the encrypted
session key Kxy

The client

The server

The Key Distribution Center (= the
Trusted Third Party)

a timestamp

Abbreviations

ABK(t)

CA
CBC
CHV
ECB
DES
DSS
ETSI

HTTP
ICC
ICV
IEP
JDK
JVM
INI
KDC

KET
KGK
KTK
MD5
MFC
NC
PIN
PTS
RMI
SAM
SCM
SHA
SSL
TTP

Three party authentication protocol in
which a time stamp is used to substitute a

nonce for party K.
Certificate Authority
Cipher Block Chaining (mode)

Card Holder Verification (number)

Electronic Code Book (mode)
Data Encryption Standard
Digital Signature Standard
European Telecommunication
Institute

Hyper Text Transfer Protocol
Integrated Circuit Card

Initial Chaining Vector
Intersector Electronic Purse
Java Development Kit

Java Virtual Machine

Java Native Interface

Key Distribution Center

Key Encrypting Key

Key Expiration Time

Key Generating Key

Key Transforming Key
Message Digest number 5
Multi Function (Chip)Card
Network Computer

Personal Identification Number
Payment Terminal System
Remote Method Invocation
Secure Application Module
Secure Cryptographic Module
Secure Hash Algorithm
Secure Sockets Layer

Trusted Third Party

Standards



