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PGP in Constrained Wireless Devices

Michael Brown∗ Donny Cheung∗ Darrel Hankerson† Julio Lopez Hernandez‡

Michael Kirkup∗ Alfred Menezes∗

Abstract

The market for Personal Digital Assistants (PDAs) is
growing at a rapid pace. An increasing number of prod-
ucts, such as the PalmPilot, are adding wireless com-
munications capabilities. PDA users are now able to
send and receive email just as they would from their
networked desktop machines. Because of the inherent
insecurity of wireless environments, a system is needed
for secure email communications. The requirements for
the security system will likely be influenced by the con-
straints of the PDA, including limited memory, limited
processing power, limited bandwidth, and a limited user
interface.

This paper describes our experience with porting PGP
to the Research in Motion (RIM) two-way pager, and in-
corporating elliptic curve cryptography into PGP’s suite
of public-key ciphers. Our main conclusion is that PGP
is a viable solution for providing secure and interopera-
ble email communications between constrained wireless
devices and desktop machines.

1 Introduction

It is expected that there will be more than 530 million
wireless subscribers by the year 2001, and over a billion
by 2004 (see [46]). Efforts are underway, most notable
among them the Wireless Application Protocol (WAP)
[50], to define and standardize the emerging wireless In-
ternet. Users will access wireless services including tele-
phony, email and web browsing, using a variety of wire-
less devices such as mobile phones, PDAs (such as the
PalmPilot), pagers, and laptop computers equipped with
wireless modems. Many wireless devices are constrained
by limited CPU, memory, battery life, and user interface
(e.g., small screen size, or a lack of graphics capabili-
ties). Wireless networks are constrained by low band-
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width, high latency, and unpredictable availability and
stability. The purpose of this paper is to examine the via-
bility of using PGP for providing secure and interopera-
ble email communications between constrained wireless
devices and desktop machines.

There are two popular standards for email security:
S/MIME and PGP. S/MIME [40] provides confidentiality
and authentication services to the MIME (Multipurpose
Internet Mail Extensions) Internet email format standard.
PGP (Pretty Good Privacy) [8, 16] is an email security
standard that has been widely used since it was first in-
troduced by Zimmermann in 1991 [52]. While it appears
that S/MIME will emerge as the industry standard for
commercial and organizational use, it also appears that
PGP will remain the choice for personal email security
for many users in the years to come.

The specific goals of this project were three-fold:

1. Port the basic PGP functionality to the RIM pager,
and implement a workable key management system
and a usable user interface that is appropriate for the
RIM pager environment.

2. Achieve interoperability with existing PGP im-
plementations for workstation and PalmPilot plat-
forms.

3. Incorporate standards-based and commercial-
strength elliptic curve cryptography into PGP’s
suite of public-key algorithms.

The remainder of this paper is organized as follows. §2
provides a brief history of PGP, and summarizes the se-
curity services offered by PGP. A description of the RIM
two-way pager including hardware, software, user inter-
face, development tools, and the paging environment, is
provided in §3. A brief overview of the PalmPilot is pre-
sented in §4. Elliptic curve cryptography is introduced
in §5, along with a description of our implementation.
We provide timing comparisons of our ECC implemen-
tation with RSA and DL implementations on a variety of
platforms. Our experience with porting PGP to the RIM
pager is described in §6. Our implementation, including
a description of the user interface and key management
facilities, is presented in §7. In §8, we describe some
possible directions for future work. Finally, §9 makes
concluding remarks.



2 Pretty Good Privacy

2.1 History of PGP

The history of the Pretty Good Privacy (PGP) applica-
tion is both interesting and convoluted, and encompasses
issues in national security, personal privacy, patents, per-
sonalities, and politics; see, for example, [16]. A myriad
of PGP releases emerged, in part due to US Government
restrictions on exports.

The initial PGP application was released in 1991.
According to [16] this was an “emergency release”
prompted in part by a proposed anti-crime bill which
would require eavesdropping ability for the US Govern-
ment on all communications systems. An RSA-based
public-key scheme was used, along with a symmetric-
key algorithm developed by Zimmermann known as
Bass-O-Matic.

Security concerns over Bass-O-Matic resulted in its re-
placement with IDEA in PGP 2. A commercial version
of PGP was developed in 1993 with ViaCrypt (which had
a license from Public Key Partners for RSA). Although
RSA Data Security had released a reference implemen-
tation (RSAREF) of RSA that could be used for non-
commercial purposes, there were interface and other dif-
ficulties preventing its use in PGP. In 1994, RSAREF 2.0
was released and included changes which MIT recog-
nized would solve the interface problems. This eventu-
ally led to PGP 2.6, a version which could be used freely
for non-commercial purposes, and which quickly leaked
out of the US and developed into several international
variants.

MIT PGP 2.6.2 increased the ceiling on the maximum
size of an RSA modulus (from 1024 to 2048 bits, al-
though ViaCrypt reports a patch correcting certain bugs
with the longer moduli). The symmetric-key cipher is
IDEA, a 64-bit block cipher with 128-bit keys; MD5 is
used as the hash function, having digest length of 128
bits. A dependency tree for various US and international
versions and variants may be found via [38].

Work on PGP 3 began in 1994, and was released by
PGP Inc (formed by Zimmermann) as PGP 5 in May
1997.1 New algorithms were present, including DSA
[34] for signatures, an ElGamal public-key encryption
scheme [12], the Secure Hash Algorithm (SHA-1) [35]
with 160-bit message digests, and the symmetric-key ci-
phers CAST and Triple-DES (64-bit block ciphers with
key sizes of 128 and 168 bits, respectively).

In August of 1997, the IETF was approached concern-
ing a proposal to bring PGP to a standards body as a pro-
tocol. An OpenPGP working group was formed. Using

1Callas [8] notes that ViaCrypt had released several products with
a version number of 4 although they were derivatives of PGP 2, and “it
was easier to explain why three became five than to explain why three
was the new program and four the old one.”

PGP 5 as the base, a format specification was promoted
to a Proposed Standard by the IESG in October 1998.
The resulting IETF specification for OpenPGP [9] de-
scribes an unencumbered architecture, although compat-
ibility with PGP 2.6 was encouraged. A reference im-
plementation was written by Tom Zerucha and provided
in a form suitable for scanning to circumvent US export
restrictions [8].

In December 1999, Network Associates (which had
acquired PGP Inc in December 1997) was granted a li-
cense by the US Government to export PGP. An inter-
national PGP project [25], which had been making PGP
available world-wide by scanning paper copies that were
(legally) exported from the US, announced that the lift-
ing of the ban on strong encryption “marks the end of
the PGPi scanning and OCR project, which started with
PGP 5.0i in 1997.”

Several OpenPGP-compliant applications have been
developed. The reference implementation by Zerucha
[8] relies on the OpenSSL library [37], and has been
used by Zerucha as the basis for a PalmPilot implemen-
tation. The standard does not require the use of patented
algorithms, and applications such as GNU Privacy Guard
[18], released in 1999 as a replacement for PGP, can be
both compliant and distributable without patent restric-
tions (since it does not include IDEA or RSA).

2.2 PGP security services

KEY GENERATION AND STORAGE. PGP allows a user
to generate multiple key pairs (public-key/private-key
pairs) for each public scheme supported. Different key
pairs are generated for public-key encryption and for dig-
ital signatures. The key pairs, together with public keys
of other users, are stored in a file called the key ring.

Information stored with a public key includes the
user’s name, email address, trust and validity indicators,
key type, key size, expiry date, fingerprint (e.g., the 160-
bit SHA-1 hash of the formatted public key), and a key
ID (e.g., the low order 64 bits of the fingerprint).

Private keys are not stored directly in the key ring.
Instead, the user selects a passphrase which is salted
and hashed to derive a keyk for a symmetric encryp-
tion scheme. The private key is encrypted usingk, the
passphrase is discarded, and the encrypted private key is
stored. Subsequently, when the user wishes to access a
private key (in order to decrypt a message or sign a mes-
sage), the passphrase must be supplied so that the system
can regeneratek and recover the private key.

CRYPTOGRAPHIC SERVICES. PGP uses a combination
of symmetric-key and public-key methods to provide au-
thentication and confidentiality.

A message can be signed using the private key from a
suitable public-key signature scheme. The recipient can



verify the signature once an authentic copy of the signer’s
corresponding public key is obtained. The OpenPGP
standard requires support for SHA-1 as a hash algorithm
and the DSA, and encourages support for the MD5 hash
function and RSA as a signature algorithm.

The use of symmetric-key algorithms (such as DES)
alone for encryption is supported, although PGP is
known more for the confidentiality provided by a combi-
nation of public-key and symmetric-key schemes. Since
public-key encryption schemes tend to be computation-
ally expensive, a session key is used with a symmetric-
key scheme to encrypt a message; the session key is then
encrypted using one or more public keys (typically, one
for each recipient), and then the encrypted message along
with each encrypted session key is delivered. The stan-
dard requires support for an ElGamal public-key encryp-
tion scheme and Triple-DES; support for RSA, IDEA,
and CAST is encouraged.

Signatures and encryption are often used together, to
provide authentication and confidentiality. The message
is first signed and then encrypted as described above.

KEY MANAGEMENT. The OpenPGP standard does not
have a trust model. An OpenPGP-compliant PGP imple-
mentation could support a hierarchical X.509-based pub-
lic key infrastructure (PKI). The trust model employed
by existing PGP implementations is a combination of di-
rect trust and the web of trust. In the former, userA
obtainsB’s public key directly fromB; fingerprints fa-
cilitate this process as only the fingerprints have to be au-
thenticated. In the web of trust model, one or more users
can attest to the validity ofB’s public key by signing it
with their own signing key. IfA possesses an authentic
copy of the public key of one of these users, thenA can
verify that user’s signature thereby obtaining a measure
of assurance of the authenticity ofB’s public key. This
chaining of trust can be carried out to any depth.

3 RIM’s Pager

3.1 Overview

The RIM wireless handheld device is built around a cus-
tom Intel 386 processor running at 10 MHz. Current
models carry 2 Mbytes of flash memory and 304 Kbytes
of SRAM. There is a fairly conventional (if rather small)
keyboard with a 6- or 8-line by 28 character (depending
on font) graphical display. A thumb-operated trackwheel
takes the place of a conventional mouse (see Figure 1).

A set of applications including a calendar and address
book are commonly installed; even the occasional game
of Tetris (falling blocks) is possible with efficient use of
the graphical display. The main attraction is the wireless
communication features, in particular, email solutions.
The integrated wireless modem is essentially invisible,

with no protruding antennae. The device is roughly 3.5in
x 2.5in x 1in (89mm x 64mm x 25mm) and weighs 5
ounces (142 g) with the single AA battery (there is also
an internal lithium cell). RIM claims that the battery will
last roughly three weeks with typical usage patterns.

A docking cradle can be used to directly connect the
device to a serial port. Software for Microsoft Windows
is provided to download programs and other information,
and to synchronize application data. An RS-232 compat-
ible serial port on the pager runs at 19200 bps.

To be slightly more precise, RIM has two hardware
devices, the 850 and the 950, which are combined with
software to provide communications solutions. We used
RIM’s BlackBerry solution [6] which uses the same
hardware as the RIM Inter@ctive Pager 950. The 950
is more of a 2-way pager, sold in Canada by Cantel and
in the US by BellSouth Wireless Data. The BlackBerry
is sold directly by RIM and includes features such as sin-
gle mailbox integration and PIM synchronization to the
device.

The RIM 850 looks very similar to the 950 device,
but runs on a different wireless network (ARDIS for the
850 as opposed to Mobitex for the 950). The RIM 850
is resold through American Mobile Satellite Corporation
(AMSC) in the US, and is part of the AMSC and SkyTel
eLink solution.

3.2 Software development

The BlackBerry Software Developer’s Kit (SDK) is de-
signed to make use of the features in Microsoft’s C++
compiler packages. The SDK is freely available from
[41]. A handheld application is built as a Windows DLL,
a process which allows use of development and debug-
ging facilities available for Windows. However, only a
small subset of the usual library calls may be used, along
with calls to SDK-supplied routines. The resulting DLL
is then stripped of extraneous information and ported into
the handheld operating system.

For simplicity, the multitasking is cooperative. An ap-
plication is expected to periodically yield control; in fact,
failure to yield within 10 seconds can trigger a pager re-
set. As an example, public-key operations tend to be
computationally expensive, and it was necessary to insert
explicit task yields in the code developed for this paper.

The SDK includes a simulator which can be used to
test applications on the handheld operating system with-
out having to download to the device (the images in this
paper are snapshots of the simulator). A radio device
(RAP modem) can be connected via serial port to the host
machine so that applications running in the simulator can
communicate with the Mobitex network. Alternately, a
pager in the cradle can be used to exchange email with
the simulator, provided that the pager is in coverage.



Figure 1: The RIM pager.

The simulator is essential for serious development, al-
though testing on the pager can reveal bugs not found
in the simulator. For example, we managed to link ap-
plications in such a way that they would work in the
simulator but fail on the pager. At one point, we care-
lessly used some instructions introduced on the Intel 486,
which would work in the simulator when running on a
486-or-better, but would fail on a 386.

3.3 File system

The pager relies on flash memory to store non-volatile
data. Writing to flash is significantly more expensive
than reading, primarily because flash is a write-once,
bulk-erase device. Rewriting a single word of flash in-
volves saving the contents of the 64K sector, erasing,
and rewriting the entire sector. The longest step in this
operation is erasing the sector, and takes approximately
5 seconds. A log-structured file system is employed in
order to maintain acceptable performance. Periodically,
the expensive process of committing the log updates is
performed in order to free file system space.

The programming interface to the file system is gen-
erally through a relatively small number of high-level
database-style calls. Handles are used to read and up-
date databases and variable-length records, a simple but
effective method to cooperate with the updating process
of the log-structured file system. It is possible to use
stream-style I/O operations of the type familiar to C pro-
grammers, which we occasionally found useful for test-
ing code fragments developed on more traditional sys-
tems.

4 The PalmPilot

For comparison, our crypto routines were also run on
the PalmPilot, a very popular PDA based on a 16 MHz
Motorola 68000-type “Dragonball” processor.2 Recent
models carry 2–4 MB of memory in addition to ROM,
although considerable expansion is possible. In 1999,
wireless capabilities were introduced on the Palm VII.
The communications model differs from the RIM device;
in particular, the Palm does not qualify as a pager in the
usual sense. There is an antenna which must be physi-
cally activated and then the device can request informa-
tion. A NiCad battery charged from two AAA batteries
common in the Palm series is used to power the radio.

Ian Goldberg had adapted portions of Eric Young’s
well-known SSLeay library (now OpenSSL [37]) for use
on the PalmPilot [19]. The resulting library was used
by Zerucha in building a Palm version of his reference
OpenPGP, and by Daswani and Boneh [11] in their pa-
per on electronic commerce.

We used Palm development tools based on the GNU C
compiler (gcc-2.7.2.2). Timings were done on a Palm V
running PalmOS 3.0. There are code segment and stack
restrictions which must be considered in the design of a
larger application, and our code had to be divided into
several libraries in order to accommodate the Palm.

2According to [39], “Even after two rounds of Microsoft’s best Win-
dows CE efforts, PalmPilot OS devices still represent 80% of all palm-
top sales.”



5 Elliptic Curve Cryptography

5.1 Introduction

Elliptic curve cryptography (ECC) was proposed inde-
pendently in 1985 by Neal Koblitz [27] and Victor Miller
[33]. For an introduction to ECC, the reader is referred
to Chapter 6 of Koblitz’s book [29], or the recent book
by Blake, Seroussi and Smart [7].

The primary reason for the attractiveness of ECC over
RSA and discrete log (DL3) public-key systems is that
the best algorithm known for solving the underlying hard
mathematical problem in ECC (the elliptic curve dis-
crete logarithm problem, ECDLP) takes fully exponen-
tial time. On the other hand, the best algorithms known
for solving the underlying hard mathematical problems
in RSA and DL systems (the integer factorization prob-
lem, and the discrete logarithm problem) take subexpo-
nential time. This means that the algorithms for solv-
ing the ECDLP become infeasible much more rapidly
as the problem size increases than those algorithms for
the integer factorization and discrete logarithm problems.
For this reason, ECC offers security equivalent to that of
RSA and DL systems, while using significantly smaller
key sizes.

Table 1 lists ECC key lengths and very rough estimates
of DL and RSA key lengths that provide the same secu-
rity (against known attacks) as some common symmetric
encryption schemes. The ECC key lengths are twice the
key lengths of their symmetric cipher counterparts since
the best general algorithm known for the ECDLP takes
(
√
π2k)/2 steps fork-bit ECC keys, while exhaustive

key search on a symmetric cipher withl -bit keys takes
2l steps. The estimates for DL security were obtained
from [2]. The estimates for RSA security are the same as
those for DL security because the best algorithms known
for the integer factorization and discrete logarithm prob-
lems have the same expected running times. These esti-
mates are roughly the same as the estimates provided by
Lenstra and Verheul in their very thorough paper [31].

The advantages that may be gained from smaller
ECC parameters include speed (faster computation) and
smaller keys and certificates. These advantages are es-
pecially important in environments where processing
power, storage space, bandwidth, or power consumption
are at a premium such as smart cards, pagers, cellular
phones, and PDAs.

3Examples of DL systems are the ElGamal public-key encryption
scheme and the DSA signature scheme which is specified in the Digital
Signature Standard. PGP documentation refer to these two schemes as
Diffie-Hellman/DSS or DH/DSS.

5.2 Selecting ECC parameters

NOTATION. In the following,Fq denotes a finite field
of orderq, andE denotes an elliptic curve defined over
Fq. #E(Fq) denotes the number of points on the elliptic
curveE. The point at infinity is denoted byO. There is a
group law for adding any two elliptic curve points. Ifk is
an integer andP ∈ E(Fq) is a point, thenk P is the point
obtained by adding togetherk copies ofP; this process
is called scalar multiplication.

DOMAIN PARAMETERS. ECC domain parameters
consist of the following:

q — the field size.
FR — method used for representing field ele-

ments.
a,b — elements ofFq which determine the

equation of an elliptic curveE.
G — the base point of prime order.
n — the order ofG.
h — the cofactor:h = #E(Fq)/n.

The primary security parameter (see §5.4) isn. The
ECC key length is thus defined to be the bitlength ofn.
Typical choices forq are an odd prime (in which case
Fq is called aprime field) or a power of 2 (in which case
Fq is called abinary field).

CURVES SELECTED. For this project, we chose binary
fieldsF2m, for m = 163, 233 and 283. Suitably chosen
elliptic curves over these fields provide at least as much
security as symmetric-key ciphers with key lengths 80,
112 and 128 bits respectively (see Table 1). A polyno-
mial basis representation was used to represent field el-
ements. Such a representation is defined by a reduction
polynomial f (x), which is an irreducible binary polyno-
mial of degreem. For each fieldF2m, we chose a ran-
dom curve overF2m and a Koblitz curve [28] overF2m

from the list of elliptic curves recommended by NIST
for US federal government use [34]. The salient features
of the Koblitz curves are provided in Table 2. Koblitz
curves have special structure that enable faster elliptic
curve arithmetic in some environments (see [44, 45]).
The number of points on each of the chosen curves is al-
most prime; that is, #E(F2m) = nh, wheren is prime and
h = 2 orh = 4. Since #E(F2m) ≈ 2m, it follows that the
ECC key length is approximately equal tom. Security
implications of these choices are discussed in §5.4.

5.3 ECC protocols

KEY GENERATION. An entity A’s public and private key
pair is associated with a particular set of EC domain pa-
rameters(q,FR,a,b,G,n,h). This association can be
assured cryptographically (e.g., with certificates) or by
context (e.g., all entities use the same domain parame-
ters).



Symmetric cipher Example ECC key lengths for DL/RSA key lengths for
key lengths algorithm equivalent security equivalent security

80 SKIPJACK 160 1024
168 Triple-DES 224 2048
128 128-bit AES 256 3072
192 192-bit AES 384 7680
256 256-bit AES 512 15360

Table 1: ECC, DL, and RSA key length comparisons.

m 163
f (x) x163+ x7+ x6+ x3+ 1
E Y2+ XY = X3+ X2+ 1
n 4000000000000000000020108A2E0CC0D99F8A5EF
h 2
m 233
f (x) x233+ x74+ 1
E Y2+ XY = X3+ 1
n 8000000000000000000000000000069D5BB915BCD46EFB1AD5F173ABDF
h 4
m 283
f (x) x283+ x12+ x7+ x5+ 1
E Y2+ XY = X3+ 1
n 1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9AE2ED07577265DFF7F94451E061E163C61
h 4

Table 2: Koblitz curves selected.

To generate a key pair, entityA does the following:

1. Select a random integerd from [1,n− 1].
2. ComputeQ = dG.
3. A’s public key isQ; A’s private key isd.

PUBLIC KEY VALIDATION . This process ensures that a
public key has the requisite arithmetic properties. A pub-
lic key Q = (xQ, yQ) associated with domain parame-
ters(q,FR,a,b,G,n,h) is validated using the follow-
ing procedure:

1. Check thatQ 6= O.
2. Check thatxQ andyQ are properly represented ele-

ments ofFq.
3. Check thatQ lies on the elliptic curve defined bya

andb.
4. Check thatnQ= O.

The computationally expensive operation in public key
validation is the scalar multiplication in step 4. This step
can sometimes be incorporated into the protocol that uses
Q – this is done in the ECAES below. Public key vali-
dation with step 4 omitted is calledpartial public key
validation.

ELLIPTIC CURVE AUTHENTICATED ENCRYPTION

SCHEME (ECAES). The ECAES, proposed by Abdalla,
Bellare and Rogaway [1], is a variant of the ElGamal
public-key encryption scheme [12]. It is efficient and
provides security against adaptive chosen-ciphertext
attacks.

We suppose that receiverB has domain parameters
D = (q,FR,a,b,G,n,h) and public keyQ. We also
suppose thatA has authentic copies ofD and Q. In
the following, MAC is a message authentication code
(MAC) algorithm such as HMAC [30], ENC is a sym-
metric encryption scheme such as Triple-DES. KDF de-
notes a key derivation function which derives crypto-
graphic keys from a shared secret point.

To encrypt a messagem for B, A does:

1. Select a random integerr from [1,n− 1].

2. ComputeR= rG.

3. ComputeK = hr Q. Check thatK 6= O.

4. Computek1 ‖ k2 = KDF(K ).

5. Computec = ENCk1(m).

6. Computet = MACk2(c).

7. Send(R, c, t) to B.



To decrypt ciphertext(R, c, t), B does:

1. Perform a partial key validation onR.
2. ComputeK = hd R. Check thatK 6= O.
3. Computek1 ‖ k2 = KDF(K ).
4. Verify thatt = MACk2(c).

5. Computem= ENC−1
k1
(c).

The computationally expensive operations in encryption
and decryption are the scalar multiplications in steps 2-3
and step 2, respectively.

ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

(ECDSA). The ECDSA is the elliptic curve analogue of
the DSA [34]. SHA-1 is the 160-bit hash function [35].

We suppose that signerA has domain parametersD =
(q,FR,a,b,G,n,h) and public keyQ. We also suppose
that B has authentic copies ofD andQ.

To sign a messagem, A does the following:

1. Select a random integerk from [1,n− 1].
2. ComputekG= (x1, y1) andr = x1 modn.

If r = 0 then go to step 1.
3. Computek−1 modn.
4. Computee= SHA-1(m).
5. Computes = k−1{e+ dr} modn.

If s= 0 then go to step 1.
6. A’s signature for the messagem is (r, s).

To verify A’s signature(r, s) on m, B should do the
following:

1. Verify thatr ands are integers in [1,n− 1].
2. Computee= SHA-1(m).
3. Computew = s−1 modn.
4. Computeu1 = ew modn andu2 = rw modn.
5. Computeu1G+ u2Q = (x1, y1).
6. Computev = x1 modn.
7. Accept the signature if and only ifv = r .

The computationally expensive operations in signature
generation and signature verification are the scalar mul-
tiplications in step 2 and step 5, respectively.

5.4 Security issues

HARDNESS OF THEECDLP. It can easily be verified
that the elliptic curvesE(Fq) chosen resist all known at-
tacks on the ECDLP. Specifically:

1. The number of points, #E(Fq), is divisible by a
prime n that is sufficiently large to resist the par-
allelized Pollard rho attack [36] against general
curves, and its improvements [15, 48] which apply
to Koblitz curves.

2. n does not divideqk−1 for all 1≤ k ≤ 30, confirm-
ing resistance to the Weil pairing attack [32] and the
Tate pairing attack [13].

3. #E(Fq) 6= q, confirming resistance to the Semaev
attack [43].

4. All binary fieldsF2m chosen have the property that
m is prime, thereby circumventing recent attacks
[14, 17] on the ECDLP for elliptic curves over bi-
nary fieldsF2m wherem is composite.

SECURITY OF ECAES. The ECAES modifies the El-
Gamal encryption scheme by using the one-time Diffie-
Hellman shared secret,hrdG, to derive secret keysk1
andk2 The first keyk1 is used to encrypt the message us-
ing a symmetric cipher, while the second keyk2 is used
to authenticate the resulting ciphertext. The latter pro-
vides resistance to chosen-ciphertext attacks. Some for-
mal justification of ECAES security is provided in [1],
where it is proven to be semantically secure against adap-
tive chosen-ciphertext attack on the assumption that the
underlying symmetric encryption and MAC schemes are
secure, and assuming the hardness of certain variants of
the elliptic curve Diffie-Hellman problem.

In order to correctly balance the security of the
ECAES cryptographic components, one should ideally
employ ak

2-bit block cipher and ak-bit hash function for
HMAC when using ak-bit elliptic curve (see Table 1).
Our implementation used the 112-bit block cipher Triple-
DES in CBC-mode and the160-bit hash function SHA-
1 for all 3 choices of ECC key lengths (163, 233 and
283). A future version of our implementation should al-
low for a variable output-length hash function (e.g., the
forthcoming SHA-2) and a variable-length block cipher
(e.g., the AES).

SECURITY OF ECDSA. ECDSA is the straightforward
elliptic curve analogue of the DSA, which has been ex-
tensively scrutinized since it was proposed in 1991. For
a summary of the security properties of the ECDSA, see
[26].

Our implementation used the 160-bit hash function
SHA-1 for all 3 choices of ECC key lengths (163, 233
and 283). As with the ECAES, a future version of
our ECDSA implementation should allow for a variable
output-length hash function.

5.5 Timings

This section presents timings for the ECC operations on
a Pentium II 400 MHz machine, a PalmPilot and the RIM
pager, and compares them with timings for RSA and DL
operations.

ECC TIMINGS. Our ECC code was written entirely in
C on a Sun Sparcstation and, in order to ensure porta-



bility, no assembler was used. We encountered no prob-
lems in porting the code to the Pentium II, RIM pager,
and PalmPilot platforms, although some changes were
required in order to cooperate with the 16-bit options
used in the Palm version of the “big number” library of
OpenSSL. No effort was made to optimize the ECC code
for these particular platforms; it is very likely that signif-
icant performance improvements could be obtained by
optimizing the ECC (and DL and RSA) code for these
platforms. Further details of our ECC implementations
are reported in [23].

For other ECC implementation reports, see [42] for a
C implementation of elliptic curve arithmetic overF2155,
[49] for a C/C++ of elliptic curve arithmetic overF2191

and over a 191-bit prime field, and [22] for an assem-
bly language implementation of elliptic curve arithmetic
over a 160-bit prime field on a 10 MHz 16-bit microcom-
puter.

Tables 3, 4 and 5 present timings of our implemen-
tation for ECC operations using the Koblitz curves and
random curves overF2163, F2233 andF2283.

RSA TIMINGS. The RSA code, written entirely in C,
was taken from the OpenSSL library [37]. Tables 6 and
7 present timings for 512, 768, 1024, and 2048-bit RSA
operations.

DL TIMINGS. The DSA and ElGamal code, also writ-
ten entirely in C, was obtained from the OpenSSL and
OpenPGP libraries. For ElGamal, the primep was cho-
sen to be a safe prime; that isp = 2q + 1 whereq is
also prime. Table 8 presents timings for 512, 768 and
1024-bit DSA and ElGamal operations. For encryption,
the per-message secret key is not of full length (i.e., the
bitlength ofp), but of bitlength 200 + (bitlength ofp)/32;
this explains why ElGamal encryption is faster than El-
Gamal decryption. The ElGamal operations could be
sped up significantly if DSA-like parameters were used
(i.e., p = kq+ 1, whereq is a 160-bit prime).

COMPARISON. The performance of all three families of
public-key systems (ECC, RSA and DL) are sufficiently
fast for PGP implementations on a Pentium machine—it
hardly matters whether a user has to wait 10 ms or 100
ms to sign and encrypt a message.

On the pager, RSA public-key operations (encryption
and signature verification) are faster than ECC public-
key operations, especially when the public exponent is
e= 3. For example, verifying a 1024-bit RSA signature
takes about 300 ms, while verifying a 163-bit ECC signa-
ture (using a Koblitz curve) takes about 1,800 ms. On the
other hand, RSA private-key operations (decryption and
signature generation) are slower than ECC private-key
operations. For example, signing with a 1024-bit RSA
key takes about 16,000 ms, while signing with a 163-bit

ECC key takes about 1,000 ms. ECC has a clear ad-
vantage over RSA for PGP operations that require both
private key and public key computations. Signing-and-
encrypting together takes 16,400 ms with 1024-bit RSA
(usinge = 3), and 2800 ms with 163-bit ECC (using a
Koblitz curve). Verifying-and-decrypting together takes
16,200 ms with 1024-bit RSA, and 2,900 ms with 163-bit
ECC.

Similar conclusions are drawn when comparing RSA
and ECC performance on the PalmPilot.

Private key operations with 2048-bit RSA are too slow
for the pager and the PalmPilot, while 233-bit ECC and
283-bit ECC operations are tolerable for PGP applica-
tions on the pager.

Since domain parameters are used in our ECC imple-
mentation, ECC key generation only involves a single
scalar multiplication and thus is very fast on the pager.
RSA, ElGamal and DSA key generation on the pager
is prohibitively slow. However, ElGamal and DSA key
generation would be feasible on the pager if precomputed
domain parameters (primesp and q, and generatorg)
were used.

5.6 Interoperability

The elliptic curves and protocols were selected to con-
form with the prevailing ECC standards and draft stan-
dards.

The Koblitz and random curves overF2163, F2233 and
F2283 are from the list of NIST recommended curves [34].
The representations, for both field elements and for ellip-
tic curve points, are compliant with the ANSI X9.62 [4],
ANSI X9.63 [5], IEEE P1363 [24] and FIPS 186-2 [34]
standards. In addition, the Koblitz curve overF2163 is
explicitly listed in the WAP wTLS specification [51].

Our ECDSA implementation conforms to the security
and interoperability requirements of ANSI X9.62, IEEE
P1363, and FIPS 186-2. Our ECAES implementation
conforms to the security and interoperability require-
ments of ANSI X9.63. The cryptographic components
HMAC and Triple-DES (in CBC mode) of ECAES are
compliant, respectively, with RFC 2104 [30] and ANSI
X9.52 [3].

6 Porting PGP to the Pager

There are now a number of cryptographic libraries and
PGP applications which have received extensive devel-
opment and for which source code is available; see, for
example, cryptlib by Peter Gutmann [20] and Crypto++
by Wei Dai [10]. Our plan was to adapt existing code,
adding public-key schemes based on elliptic curves. For
comparisons and development, it was essential that the



Koblitz curve overF2163 Random curve overF2163

RIM pager PalmPilot Pentium II RIM pager PalmPilot Pentium II

Key generation 751 1,334 1.47 1,085 1,891 2.12
ECAES encrypt 1,759 2,928 4.37 3,132 5,458 6.67
ECAES decrypt 1,065 1,610 2.85 2,114 3,564 4.69
ECDSA signing 1,011 1,793 2.11 1,335 2,230 2.64
ECDSA verifying 1,826 3,263 4.09 3,243 5,370 6.46

Table 3: Timings (in milliseconds) for ECC operations overF2163 on various platforms.

Koblitz curve overF2233 Random curve overF2233

RIM pager PalmPilot Pentium II RIM pager PalmPilot Pentium II

Key generation 1,552 2,573 3.11 2,478 3,948 4.58
ECAES encrypt 3,475 5,563 7.83 6,914 11,373 13.99
ECAES decrypt 2,000 2,969 4.85 4,593 7,551 9.55
ECDSA signing 1,910 3,080 4.03 3,066 4,407 5.52
ECDSA verifying 3,701 5,878 7.87 7,321 11,964 14.08

Table 4: Timings (in milliseconds) for ECC operations overF2233 on various platforms.

code run on several platforms in addition to the RIM de-
vice.

Our initial work was with GNU Privacy Guard
(GnuPG) [18], an OpenPGP-compliant freely dis-
tributable replacement for PGP, which was nearing a
post-beta release in 1999. Initial tests on the pager with
several fragments adapted from GnuPG sources were
promising, and the code appeared to be ideal for adding
the elliptic curve routines and testing on Unix-based and
other systems. However, it appeared that untangling code
dependencies for our use on the pager would be unpleas-
ant. (Perhaps a better understanding of GnuPG internals
and design decisions would have changed our opinion.)

Jonathan Callas suggested that we look again at the
OpenPGP reference implementation [8], which we had
put aside after initial testing revealed a few portability
and alignment problems in the code. The reference im-
plementation relied on the OpenSSL library [37].

The OpenPGP reference implementation is surpris-
ingly complete for the amount of code, although it is
admittedly a little rough on the edges.4 The code was de-
veloped on a Linux/x86 system, and modifications were
required for alignment errors which prevented the pro-
gram from running on systems such as Solaris/SPARC.
In addition, some portability changes were required, in-
cluding code involving the “long long” data type. For
the RIM pager, the separation of the PGP code from the
well-tested OpenSSL library, along with the small size
of the OpenPGP sources, were definite advantages. Fi-

4Zerucha writes that he wasn’t “careful about wiping memory and
preventing memory leaks and other things to make the code robust” [8].

nally, it should be noted that the OpenSSL libraries build
easily on Unix and Microsoft Windows systems, and are
designed so that adding routines such as the elliptic curve
code is straightforward.

Although applications for the pager are built as Win-
dows DLLs, the pager is not a Windows-based system.
There are significant restrictions on the calls that can be
used, extending to those involving memory allocation,
time and character handling, and the file system. There
is no floating-point processor on the pager. In order to
adapt code developed on more traditional systems, we
wrote a library of compatibility functions to use with the
pager. Some functions were trivial (such as those involv-
ing memory allocation, since the SDK included equiv-
alent calls); others, such as the stream I/O calls, were
written to speed testing and porting and cannot be rec-
ommended as particularly robust or elegant.

We used portions of OpenSSL 0.9.4, along with the
library in the OpenPGP reference implementation. Rela-
tively few changes to OpenSSL were required, and could
be restricted to header files in many cases. The ellip-
tic curve routines were integrated, including additions to
the scripts used to build OpenSSL. For some platforms,
OpenSSL can be built using assembly-language versions
of certain key routines to improve execution speed. Some
of these files for the Intel x86 include instructions (such
as bswap) which were introduced for the 486, and cannot
be used on the pager.

The OpenPGP sources were modified to correct the
alignment bugs and portability problems mentioned
above, and necessary changes were made for the elliptic
curve schemes (public-key algorithms 18 and 19 in the



Koblitz curve overF2283 Random curve overF2283

RIM pager PalmPilot Pentium II RIM pager PalmPilot Pentium II

Key generation 2,369 4,062 4.50 3,857 6,245 6.88
ECAES encrypt 5,227 8,579 11.02 11,264 18,273 20.86
ECAES decrypt 2,932 4,495 6.78 7,498 12,046 13.88
ECDSA signing 2,760 4,716 5.64 4,264 6,816 8.08
ECDSA verifying 5,485 9,059 11.46 11,587 18,753 21.15

Table 5: Timings (in milliseconds) for ECC operations overF2283 on various platforms.

512-bit modulus 768-bit modulus
Pager Pilot Pentium II Pager Pilot Pentium II

RSA key generation 73,673 189,461 346.77 287,830 496,356 953.01
RSA encrypt (e= 3) 213 317 1.13 388 587 1.87
RSA encrypt (e= 17) 262 410 1.28 451 753 2.17
RSA encrypt (e= 216+ 1) 428 743 1.90 793 1,347 3.32
RSA decrypt 2,475 5,858 11.05 7,905 16,262 28.05
RSA signing 2,466 5,751 10.78 7,889 16,047 27.72
RSA verifying (e= 3) 99 200 0.40 214 413 0.78
RSA verifying (e= 17) 147 293 0.56 273 577 1.07
RSA verifying (e= 216+ 1) 314 623 1.17 616 1,221 2.24

Table 6: Timings (in milliseconds) for 512-bit and 768-bit RSA operations on various platforms.

OpenPGP specification [9]). The compatibility library,
along with a few stream-to-memory conversion functions
allowed fairly direct use of the OpenPGP sources on the
pager.

The only code tested exclusively in the pager environ-
ment involved the user interface (see §7.1). The SDK
provides a fairly powerful and high-level API for work-
ing with the display and user input. The difficulties we
encountered were mostly due to the lack of support in
the API for direct manipulation of messages desired in a
PGP framework. In part, this reflects a deliberate design
decision by BlackBerry to develop a robust and intuitive
communication solution which provides some protection
against misbehaving applications.5

The pager DLLs for the interface and PGP library
were over 400 KB in combined size. This includes all
of the OpenPGP required algorithms and recommended
algorithms such as IDEA and RSA, along with the new
schemes based on elliptic curves. For a rough compar-
ison, the code size for the main executable from the
OpenPGP reference implementation (with the addition
of the elliptic curve routines) is 300–400KB, depending
on platform.

5During our work on this project, BlackBerry modified the API to
provide some of the access needed to smoothly integrate PGP into their
mail application.

7 Implementation

7.1 User interface

PGP in any form has not been an easy application for
novices to manage properly, in part due to the sophis-
tication required, but also because of poor interface de-
sign [47]. The goals for our user interface design were
rather modest: that a user who is familiar with using PGP
on a workstation, and is comfortable operating the RIM
device, should, without having to refer to a manual or
help pages, be easily able to figure out how to use PGP
on the pager and avoid dangerous errors (such as those
described in [47]). As mentioned in §3.1, the graphics
capabilities and screen size of the RIM device are very
limited. This forced us to keep our PGP implementation
simple and only offer the user the essential features.

A glimpse of our user interface is provided in Figures
1–5. Clicking on the PGP icon (see Figure 1) displays
the list of users whose keys are in the public key ring
(see Figure 2). Selecting a user name displays the menu
shown in Figure 3, which allows the user to view the
key’s attributes, compose a new key, delete a key, or send
a key.



1024-bit modulus 2048-bit modulus
Pager Pilot Pentium II Pager Pilot Pentium II

RSA key generation 580,405 1,705,442 2,740.87 — — 26,442.04
RSA encrypt (e= 3) 533 1,023 2.70 1,586 3,431 7.26
RSA encrypt (e= 17) 683 1,349 3.23 2,075 4,551 9.09
RSA encrypt (e= 216+ 1) 1,241 2,670 5.34 4,142 8,996 16.57
RSA decrypt 15,901 36,284 67.32 112,091 292,041 440.78
RSA signing 15,889 36,130 66.56 111,956 288,236 440.69
RSA verifying (e= 3) 301 729 1.23 1,087 2,392 4.20
RSA verifying (e= 17) 445 1,058 1.76 1,585 3,510 6.10
RSA verifying (e= 216+ 1) 1,008 2,374 3.86 3,608 7,973 13.45

Table 7: Timings (in milliseconds) for 1024-bit and 2048-bit RSA operations on various platforms.

512-bit modulus 768-bit modulus 1024-bit modulus
Pager Pilot PII Pager Pilot PII Pager Pilot PII

ElGamal key gen — — 51,704 — — 219,820 — — 1,200,157
ElGamal encrypt 7,341 17,338 19.13 16,078 34,904 35.91 26,588 73,978 67.78
ElGamal decrypt 8,704 19,060 22.55 26,958 56,708 59.53 57,248 148,059 144.73
DSA key gen — — 3,431 — — 14,735 — — 54,674
DSA signing 2,955 6,329 7.53 6,031 11,875 15.55 9,529 25,525 24.28
DSA verifying 5,531 12,389 14.31 11,594 24,277 26.13 18,566 52,286 47.23

Table 8: Timings (in milliseconds) for DL operations on various platforms.

Figure 2: Listing of PGP keys.

7.2 Key generation and storage

The main PGP menu (Figure 3) has an option “New
Key” for creating a key pair. Users can enter their name,
email address, pager PIN, and select a key type and
key length (see Figure 4). The key types and key sizes
presently available are ECC (random curve or Koblitz
curve; overF2163, F2233 or F2283), DH/DSS (512/512,
768/768, 1024/1024, 1536/1024 or 2048/1024 bits), and
RSA (512, 768, 1024, 1536 or 2048 bits). The DH/DSS
and RSA key sizes are the ones available in many exist-
ing PGP implementations. For the DSA, the maximum
bitsize of the primep is 1024 bits in conformance with
the DSS [34]. For ECC, separate key pairs are generated
for public-key encryption and digital signatures.

Public keys and private keys are stored in separate
key rings. Public key attributes (see Figure 5) can be

Figure 3: The main menu.

viewed using the “View Key” function available on the
main menu. As required by OpenPGP, private keys are
encrypted under a user-selected passphrase, and the en-
crypted private key is stored. The passphrase has to be
entered whenever a private key is required to sign or de-
crypt a message.

7.3 Cryptographic services

The three basic PGP services are available: sign only,
encrypt only, or sign-and-encrypt. Users can decide to
sign an email, or to encrypt an email, after composing
the message. The user is prompted for the passphrase to
unlock the private signing key, and to select the public
encryption key of the intended recipient. In addition to
the times given in Tables 3–8 for the main operations,
there is additional overhead which can be apparent to the



Figure 4: Screen for creating a new key pair.

Figure 5: Screen for viewing a (portion of the) public
key’s attributes.

user. Verifying the passphrase, for example, may require
20 seconds if the default iteration count is used when
hashing the salted passphrase; our implementation used
a smaller default iteration count. A small amount of time
is added for interaction with the database filesystem for
large memory transfers.

7.4 Key management

The key management system we implemented was the
simplest one possible—the direct trust model (see §2.2).
A menu item is available (see Figure 3) for emailing
one’s public key to another user. A function is also avail-
able for extracting and storing a public key received in an
email message. If desired, a public key can be authenti-
cated by verifying its fingerprint by some direct means
(e.g., communicating it over the telephone—authenticity
is provided by voice recognition).

8 Future Work

The following are some directions for future work.

RANDOM NUMBER GENERATION. Many systems im-
plement a “random gathering device” which attempts to
use environmental noise (keyboard data, system timers,
disk characteristics, etc.) to build a cryptographically se-
cure source of random bits [21]. Our pager application
used only a rather simple (and most likely not sufficiently
secure) seeding process involving the clock and a few
other sources. A more sophisticated solution is essential,
perhaps tapping into the radio apparatus as a source.

CODE SIZE. No serious effort was made to minimize
the size of the programs loaded to the pager. There is
some code linked from the OpenSSL cryptographic li-
brary which could easily be removed (in fact, we were
somewhat surprised that the library with the added ellip-
tic curve routines could be used with relatively few mod-
ifications for the pager). The library routines adapted
from OpenSSL and OpenPGP along with various glue
needed to adapt to the pager accounts for approximately
3/4 of the 370 KB loaded on the device (with the re-
mainder attributed to code involving the screen and user-
interface). If some interoperability can be sacrificed,
then the code size can also be reduced by removing rou-
tines such as CAST or some of the hash algorithms.

MAKING THE OPENPGP CODE MORE ROBUST. The
OpenPGP reference implementation provides minimal
diagnostics and can easily break on bad data. The occa-
sional segmentation fault triggered by bad user data may
be merely unpleasant when an application is used on a
workstation; such errors on the pager are completely un-
acceptable. Our application corrects some of the most
troublesome shortcomings, but better error-handling is
needed.

KEY MANAGEMENT. We would like to implement an
X.509-based PKI or the web of trust model. In either
case, we would implement a key server for retrieving
and storing keys in a key repository. This would involve
setting up a proxy wireless server with which the pager
would communicate directly. The proxy server in turn
would communicate with existing key servers on the In-
ternet.

9 Conclusions

IMPLEMENTING PGP ON THE RIM PAGER. The 32-
bit architecture, relatively sophisticated operating system
and development environment, and relatively large mem-
ory size means that development for the pager is closer to
that done for more traditional systems than the small size
might suggest. The user interface must be customized for
the device, but “generic code” which does not involve file
I/O moves fairly easily to the pager.

On the other hand, it appears likely that such de-
vices will continue to have processors which run much
more slowly than their desktop counterparts. Long de-
lays in handling encrypted messages or signatures will
be a considerable annoyance for users of this type of de-
vice. While we used a significant amount of the available
memory on the pager, it would be desirable to reduce the
resource consumption in a production version of PGP.
Battery life will continue to be a major concern, and the
overhead of authentication and confidentiality competes
with the need to minimize transmissions from the device.



INTEROPERABILITY. The goal of interoperability was
met. All of the required algorithms from RFC 2440
are included, along with several listed as recommended
and the elliptic curve routines. Our PGP implementa-
tion interoperated with existing implementations for the
PalmPilot and workstations.

ELLIPTIC CURVE CRYPTOGRAPHY. Elliptic curve so-
lutions fit particularly well into the constrained environ-
ment. 1024-bit and 2048-bit RSA private-key operations
are too slow for PGP applications, while the performance
of 163-bit, 233-bit and 283-bit ECC operations is tolera-
ble for PGP applications. If PGP (or other email security
solutions) is to be used for securing email communica-
tions between constrained wireless devices and desktop
machines, then our timings show that ECC is preferable
to RSA since the performance of the latter on some wire-
less devices is too slow, while both systems perform suf-
ficiently well on workstations.

GENERAL. This paper concentrated on PGP, although
the results are more widely applicable. Many of the ser-
vices targeted at the growing wireless market will require
security solutions involving the cryptographic mecha-
nisms used by PGP. The constraints on small wireless
devices are likely to be with us for some time, and will re-
quire a balance of usability, computational requirements,
security, and battery life.
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