Static Detection of

Access Control Vulnerabilities
in Web Applications

Fanggqgi Sun, Liang Xu, Zhendong Su

UCDAVIS

Access Control Vulnerability

Failure to guard privileged resource
A chain is as strong as its weakest link

14.15% web applications have it [07° WASC]
Difficult to design and implement perfect checks

Culprit of privilege escalation attacks
Exposure of sensitive information or operations

Predictable URLs

- Bloomberg obtained un(g)ublished earnings of NetApp
and Disney in Nov., 201

LEAKED

http://media.netapp.com/documents/financial-fyll-q2.pdf
http://media.netapp.com/documents/financial-q1-fyll.pdf
http://media.netapp.com/documents/financial-10-g4.pdf

Bloomberg { File posted without any required password J

" ﬁFile obtained from “a restricted area of the company’s website”]
NetApp-

o Lohmus Haavel & Viisemann obtained trading
information of Business Wire and profited $8 million

http://website/press_release/08/29/2007/00001.html

Cause of Access Control Vulnerability

Forced browsing

Directly accessing hidden URLs
Often in violation of developers’ intensions
URLs are predicted

Root cause of access control vulnerability

Developers often make implicit assumptions
with regard to allowed accesses

Security by obscurity is insufficient

Key Challenge

Automated detection

Lack of a general characterization and
specification for access control vulnerability

Specification for automated detection

Manual specification
Time-consuming, and often absent

Probabilistic-based inference
Imprecise and computationally expensive /7=~

Key Insights

Source code of an application implicitly
documents intended accesses of each ro/e

Access control policy can be extracted from
differences in per-role sitermaps

index.php

include(‘““functions.php’);
Add user
Delete user

4

userDelete.php userAdd.php

include(“functions.php”);
delete user(); add_user();

y 4

functions.php

if (!1$_SESSION[*“admin’])
die(“Access denied!”)

r

Entry index.php .

\ 4

userDelete.php .

include(“functions.php”);

delete user();

Sitemap for

administrators

include(“functions.php”);
Add user
Delete user

4

Y
userAdd.php D

add_user();

y 4

>

v

functions.php

if (!$ SESSION[“admin”])*]$ SESSION[“admin”]= true]
die(*“Access denied!™)

Entry index.php .

include(“functions.php”);
Add user
Delete user

Sitemap for
normal users

4

userDelete.php userAdd.php

include(“functions.php”);
delete user(); add_user();

y r
\ 4

functions.php

if (!$ SESSION[“admin”]f] $ SESSION[“admin”]= false]
die(*“Access denied!™)

Sitemap for
administrators

userDelete

Sitemap for
normal users

index.php

Vulnerability

Detection

include(“functions.php”);
Add user
Delete user

4

Privileged Privileged

userDelete.php userAdd.php

include(“functions.php”);

delete user(); add_user();

functions.php

if (1$ SESSION[“admin”]¥]$ SESSION[“admin”]= false]
die(“Access denied!”)

>

Technical Approach

Sitemap Builder

Context-Free

Grammar
Vulnerabilit
Constructor Privile e? ector y

(_/'nputs (source code, entry points, and role-based states) b
N, explicitly reachable nodes of role a (administrators)
N, explicitly reachable nodes of role 6 (nhormal users)
Privileged privileged nodes

\l/u/S vulnerabilities Y,

Sitemap Builder

@ D
Sitemap Builder

Context-Free

Grammar

Constructor Mgg%

Link Extractor

AN)

Context-Free
Grammar
Constructor

Extracts explicit links from CFGs

Statically generates CFGs to approximate
dynamic outputs of web pages

Sitemap Builder

Context-Free Grammar Constructor IRz

Grammar
Constructor

Link Extractor
1 CFG approximates dynamic output -
PHP page — AST — IR — grammar rules — CFG

o Path exploration based on branch feasibilities
Z3 for arithmetic constraints
Our own string constraint solver for string constraints

-
function checkUser() {)/Constraint: $ SESSION[“validUser”] = false
if (!$_SESSION[*“validUser”’]) L-Only administrators can pass this check and

header(“Location: login.php”); reach sensitiveOperation()
= Normal users are redirected to “login.php”

}
checkUser();

sensitiveOperation();
L y,

J

Sitemap Builder

Link Extractor Coner e
Constructor
N
o Our link extraction algorithm

Does not directly intersect CFG with DFA
Efficiently extracts links from CFG based on DFA

echo “<div>Anchor</div>";

S0 — 5152 CFG Links
S1 — “<div><a href=" o “english.php”

S2 - S3 54 — | o “spanish.php’

S3 — “english” | “spanish” | “french” o “french.php”

S4 — “.php>Anchor</div>" L)

Vulnerability Detector

Forced browsing on privileged pages with

critical states of normal users ‘ J@ privileged

Failed forced browsing
Redirects users to another location

Displays error messages
No sensitive information or operations

When is a forced browsing successful?

CFG of administrators vs. CFG of normal users
No additional redirections in CFG of normal users
The CFG sizes are not significantly different

Implementation

A static PHP analyzer mcalil]
Based on work of Wassermann and Minamide

Adds support for roles
Connects nodes of a web application
Explores paths based on branch feasibilities

Specification rules

Support abstract and concrete values of built-
In types, and regular expressions

Evaluation
I e

1 Subjects
o Seven applications Subject Files

o Less than ten lines of
specifications for each

LOC

PHP HTML
SCARF 25 1,318 0

Events Lister 37 2,076 544

O Metrics PHP Calendars 67 1,350 0
n Effectiveness PHPoll 93 2571 0
= Vulnerable nodes iCalendar 183 8,276 0
= False positives AWCM 668 12942 5106

n Performance
YaPiG 134 4,801 1271

= Coverage
= Analysis time

Admin Normal

Project Privileged Vulnerable FP Guarded ———————

Node Edge Node Edge
SCARF 4 1 0 3 19 149 15 69
SCARF (patched) 4 0 0 4 19 149 15 69
Events Lister v203 9 2 5 23 113 14 26
PHP Calendars 3 1 0 2 19 35 19 30
PHPOIlv0.97 beta 3 0 0 21 63 19 58
iCalendar v1.1 1 0 0 1 51 292 50 292
AWCM v2.1 47 1 0 46 176 2,634 129 2438
AWCM v2.2 final 47 0 0 47 180 2,851 133 2,612
YaPiG v0.95 11 0 0 11 54 260 44 154

Nodes Context-Free Gramma

A Entry Active Orphan Variables Productions
SCARF 1 19 0 158 719 100.0% 6.02
SCARF (patched) 1 19 0 159 719 100.0% 6.01
Events Lister v2.03 4 23 5 100 2,083 100.0% 3.84
PHP Calendars 3 15 0 48 255 80.0% 5.09
PHPoll v0.97 beta 5 21 6 115 224 100.0% 4.26
iCalendar v1.1 2 52 2 811 4,774 90.4% 760.62
AWCM v2.1 17 208 22 410 422 79.3% « 89.48
AWCM v2.2 final 16 209 14 451 484 79.9% 108.51
YaPiG v0.95 7 59 3 332 532 91.5% 208.38

Conclusion

First role-based static analysis
Detects access control vulnerabilities
Requires minimal manual effort

Per-role sitemaps
Inference of privileged pages
Forced browsing to detect vulnerabilities

Effective and scalable technique

