
Fangqi Sun, Liang Xu, Zhendong Su

Static Detection of
Access Control Vulnerabilities

in Web Applications

Access Control Vulnerability

 Failure to guard privileged resource
A chain is as strong as its weakest link

 14.15% web applications have it [07’ WASC]

Difficult to design and implement perfect checks

 Culprit of privilege escalation attacks
 Exposure of sensitive information or operations

Predictable URLs

 Bloomberg obtained unpublished earnings of NetApp
and Disney in Nov., 2010

 Lohmus Haavel & Viisemann obtained trading
information of Business Wire and profited $8 million

http://media.netapp.com/documents/financial-fy11-q2.pdf
http://media.netapp.com/documents/financial-q1-fy11.pdf
http://media.netapp.com/documents/financial-10-q4.pdf

File posted without any required password

File obtained from “a restricted area of the company’s website”

http://website/press_release/08/29/2007/00001.html

LEAKED

Cause of Access Control Vulnerability

 Forced browsing
Directly accessing hidden URLs
Often in violation of developers’ intensions

URLs are predicted

 Root cause of access control vulnerability
Developers often make implicit assumptions

with regard to allowed accesses

 Security by obscurity is insufficient

Key Challenge

 Automated detection
 Lack of a general characterization and

specification for access control vulnerability

 Specification for automated detection
Manual specification
 Time-consuming, and often absent

 Probabilistic-based inference
 Imprecise and computationally expensive

Key Insights

 Source code of an application implicitly

documents intended accesses of each role

 Access control policy can be extracted from

differences in per-role sitemaps

userAdd.php

add_user();

functions.php

if (!$_SESSION[“admin”])

die(“Access denied!”)

index.php

include(“functions.php”);

Add user

Delete user

userDelete.php

include(“functions.php”);

delete_user();

administrators
Sitemap for

administrators

userAdd.php

add_user();

functions.php

if (!$_SESSION[“admin”])

die(“Access denied!”)

index.php

include(“functions.php”);

Add user

Delete user

userDelete.php

include(“functions.php”);

delete_user();

$_SESSION[“admin”]=true

Entry

Sitemap for Sitemap for
normal users

userAdd.php

add_user();

functions.php

if (!$_SESSION[“admin”])

die(“Access denied!”)

index.php

include(“functions.php”);

Add user

Delete user

userDelete.php

include(“functions.php”);

delete_user();

$_SESSION[“admin”]=false

Entry

userAdd

functions

index

userDelete

administrators
Sitemap for

administrators

Sitemap for
normal users
Sitemap for
normal users

functions

index

VulnerabilityVulnerability
Detection

userAdd.php

add_user();

functions.php

if (!$_SESSION[“admin”])

die(“Access denied!”)

index.php

include(“functions.php”);

Add user

Delete user

userDelete.php

include(“functions.php”);

delete_user();

Privileged Privileged

$_SESSION[“admin”]=false

Technical Approach

Vulnerability

Detector

Vulnerability

Detector
VulsVuls

Inputs (source code, entry points, and role-based states)
Na explicitly reachable nodes of role a (administrators)
Nb explicitly reachable nodes of role b (normal users)
Privileged privileged nodes
Vuls vulnerabilities

Reachable
Nodes

Comparator

Reachable
Nodes

Comparator

NaNa

Sitemap BuilderSitemap Builder

Context-Free
Grammar

Constructor

Link Extractor

NbNb

PrivilegedPrivilegedInputsInputs

Sitemap Builder

Reachable
Nodes

Comparator

Reachable
Nodes

Comparator

NaNa

Sitemap BuilderSitemap Builder

Context-Free
Grammar

Constructor

Link Extractor

NbNb

PrivilegedPrivilegedInputsInputs

Statically generates CFGs to approximate
dynamic outputs of web pages

Extracts explicit links from CFGs

Context-Free
Grammar

Constructor

Link Extractor

Context-Free Grammar Constructor

 CFG approximates dynamic output
 PHP page → AST → IR → grammar rules → CFG

 Path exploration based on branch feasibilities
 Z3 for arithmetic constraints
 Our own string constraint solver for string constraints

function checkUser() {

if (!$_SESSION[“validUser”])

header(“Location: login.php”);

}

checkUser();

sensitiveOperation();

Constraint: $_SESSION[“validUser”] = false

Only administrators can pass this check and

reach sensitiveOperation()

 Normal users are redirected to “login.php”

Sitemap Builder

Context-Free
Grammar

Constructor

Link Extractor

Link Extractor

 Our link extraction algorithm
Does not directly intersect CFG with DFA

 Efficiently extracts links from CFG based on DFA

echo “<div>Anchor</div>”;

CFG LinksS0 → S1 S2

S1 → “<div><a href=”

S2 → S3 S4

S3 → “english” | “spanish” | “french”

S4 → “.php>Anchor</div>”

 “english.php”

 “spanish.php”

 “french.php”

Sitemap Builder

Context-Free
Grammar

Constructor

Link Extractor

Vulnerability Detector

 Forced browsing on privileged pages with
critical states of normal users

 Failed forced browsing
 Redirects users to another location
 Displays error messages
 No sensitive information or operations

 When is a forced browsing successful?
 CFG of administrators vs. CFG of normal users
 No additional redirections in CFG of normal users
 The CFG sizes are not significantly different

Vulnerability

Detector

Vulnerability

Detector

Page Privileged
PagePagePagePagePagePagePage

Implementation

 A static PHP analyzer
 Based on work of Wassermann and Minamide

Adds support for roles

 Connects nodes of a web application

 Explores paths based on branch feasibilities

 Specification rules
 Support abstract and concrete values of built-

in types, and regular expressions

Evaluation

 Subjects
 Seven applications
 Less than ten lines of

specifications for each

 Metrics
 Effectiveness
 Vulnerable nodes
 False positives

 Performance
 Coverage
 Analysis time

Subject Files
LOC

PHP HTML

SCARF 25 1,318 0

Events Lister 37 2,076 544

PHP Calendars 67 1,350 0

PHPoll 93 2,571 0

iCalendar 183 8,276 0

AWCM 668 12,942 5,106

YaPiG 134 4,801 1,271

Project Privileged Vulnerable FP Guarded
Admin Normal

Node Edge Node Edge

SCARF 4 1 0 3 19 149 15 69

SCARF (patched) 4 0 0 4 19 149 15 69

Events Lister v2.03 9 2 2 5 23 113 14 26

PHP Calendars 3 1 0 2 19 35 19 30

PHPoll v0.97 beta 3 3 0 0 21 63 19 58

iCalendar v1.1 1 0 0 1 51 292 50 292

AWCM v2.1 47 1 0 46 176 2,634 129 2,438

AWCM v2.2 final 47 0 0 47 180 2,851 133 2,612

YaPiG v0.95 11 0 0 11 54 260 44 154

Project
Nodes Context-Free Grammar

Coverage Time(s)
Entry Active Orphan Variables Productions

SCARF 1 19 0 158 719 100.0% 6.02

SCARF (patched) 1 19 0 159 719 100.0% 6.01

Events Lister v2.03 4 23 5 100 2,083 100.0% 3.84

PHP Calendars 3 15 0 48 255 80.0% 5.09

PHPoll v0.97 beta 5 21 6 115 224 100.0% 4.26

iCalendar v1.1 2 52 2 811 4,774 90.4% 760.62

AWCM v2.1 17 208 22 410 422 79.3% 89.48

AWCM v2.2 final 16 209 14 451 484 79.9% 108.51

YaPiG v0.95 7 59 3 332 532 91.5% 208.38

Conclusion

 First role-based static analysis
Detects access control vulnerabilities

 Requires minimal manual effort

 Per-role sitemaps
 Inference of privileged pages

 Forced browsing to detect vulnerabilities

 Effective and scalable technique

