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Introduction: the botnet threat

What do botnets do?

� Support large-scale malicious activities and the underground economy

� Coordination of malicious attacks
e.g., denial of service, spam campaigns, click fraud

� Sensitive information theft
e.g., credentials, credit card numbers

Why are botnets so convenient for attackers?

� Command & Control (C&C) infrastructure for remote control

� Incoming commands to trigger attacks and updates

� Outgoing responses for status monitoring and information leakage
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Introduction: fighting against botnets

Botnet detection and mitigation

� Host-based techniques

- Traditional malware detection and mitigation
- Signature matching and behavior monitoring

� Network-based techniques

- Blacklisting IPs related to C&C servers
- Signatures matching C&C protocol and commands

� Automatic generation of these signatures, IP lists or models

- Clean C&C only logs needed for traffic and system calls

Difficulty of identifying C&C traffic

� Potentially encrypted C&C traffic

� Non-C&C or “noise” traffic interleaved

- Malicious connections to 3rd party websites (e.g., part of the attacks)
- Configuration connections (e.g., connectivity tests, time recovery)
- Fake benign connections (e.g., mimicry of legitimate applications)
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Introduction: identifying C&C traffic

Our approach: Jackstraws

� Combination of network traces and host-based activity

- Rationale: C&C traffic results in observable host activity
e.g. system modifications, critical information accesses

- Host-based model: system call graphs with data dependency
- Network-related link: each graph associated to a network connection

� Machine learning to identify and generalize C&C-related host activity

- Rationale: similar commands result in similar core activities
even for different bots

- Mining significant activities: graph mining over known connections
- Identifying similar activity types: graph clustering
- Abstracting activity types: graph merging into templates
- Detecting C&C activity: template matching over unknown connections
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System: Jackstraws overview

System architecture
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System: graph collection

Analysis environment

� Logging: system calls and network API calls

� Tainting: data flows in memory and over the file system

Graph generation

� Input: trace of system and network calls

� Output: a call graph for each successful connection

� Algorithm:
- Graph root: successful connect and associated sends/recvs
- Nodes extension: recursive backward dependency over system calls
- Nodes labeling: call parameters, resource names being abstracted
- Graph collapsing: collapse duplicate nodes
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System: graph collection

Graph generation

network: recv
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System: graph mining

Frequent subgraph mining:

� Input: call graphs associated to malicious vs. benign connections

� Output: significant subgraphs covering only malicious (C&C) activity

� Algorithm:
- Graph mining: frequent subgraphs from malicious connections
- Maximization: stripping induced subgraphs from the mined set
- Set difference: stripping subgraphs included in benign connections
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System: graph mining

Frequent subgraph mining
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System: graph clustering and template generation

Graph clustering:

� Input: significant malicious subgraphs

� Output: clusters group graphs that represent similar activity

� Algorithm:
- Graph similarity: common edges in the maximal common subgraph
- Graph clustering: clustering by repeated bisection

Template generation:

� Input: clusters of similar malicious subgraphs

� Output: graph template covering the graphs of the cluster

� Algorithm:
- Template construction: minimal common supergraph
- Template generalization: supergraph weighted by node frequency

+ Frequent nodes constitute the core activity shared by bots

+ Infrequent nodes constitute optional activity specific to different bots
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System: graph clustering and template generation

Graph clustering and template generation
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System: template matching

Template matching:

� Input: template, unlabeled collected call graphs

� Output: match result

� Algorithm:
- Core matching: subgraph isomorphism with core nodes

+ Mandatory nodes must be present

- Extended match: maximal common supergraph for optional nodes
+ Isomorphism result used to initialize search
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System: template matching

Template matching
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Evaluation: dataset presentation

Collected botnet traffic

� 37,572 bot samples corresponding to 745 families
(e.g. EgroupDial, Palevo, Virut)

� 130,635 network connections and associated behavior graphs
(successful connections only)

Labeling connections for ground truth

� Manually-crafted network signatures: 385 C&C, 162 benign

� 10,801 malicious connections

� 12,367 benign connections

� 66,538 unknown connections

� 40,929 incomplete or irrelevant graphs removed
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Evaluation: dataset presentation

Training and testing sets
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Evaluation: training the system

System configuration

� Mining frequency threshold: 10%
- Trade-off between maximum coverage and mining runtime

� Bisection threshold: 60% average and 40% minimal similarity
- Higher thresholds reduce the effect of generalization

System runtime

� Mining: 16h, Clustering: 4.5h, Generalization: 30min

� Reasonable processing time wrt. the NP-hardness of algorithms

Templates quality

� 417 templates generated
- 397 templates semantically meaningful

� Different types of commands covered
- Information leakage, download and execute, startup, stealth
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Evaluation: testing the system

Testing over labeled connections

� Detection rate: 81.6%

� Detection without the generalization: 66.0%

� Detection of new families that were missing in the training set

� False negatives: 18.4% mainly due to incomplete/infrequent activity

� False positives: 0.2% mainly due to weaker templates

G. Jacob (UCSB) Fri Aug 12 2011 17 / 20



Evaluation: testing the system

Testing over unknown connections

� 66,538 unknow connections

� New matches: 9,464 connections

� New detected families: 193 not covered by network signatures

� New detected variants: missed by outdated network signatures

� False negatives: high proportion of benign traffic (manual verification)

� False positives: 27
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Evaluation: system limitations

Testing over unknown connections

Weakness Consequences Potential remediation Supported

Dynamic analysis Incomplete Enhanced analysis environment:
call logs e.g. multi-path execution 5

Computational Non-termination Algorithm optimizations:
time e.g. node labeling, 3

graph collapsing 3

Interleaved calls Noise against System calls selection:
mining e.g. calls with data dependency 3

Functional No core activity Normalizing graphs:
polymorphism e.g. duplicate nodes collapsing, 3

Rewriting rules:
e.g. equivalent operations 5
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Conclusion: Jackstraws

Contributions

� Solution to the problem of identifying C&C traffic from noise

� Automated generation of templates representing C&C behaviors

� Gains provided by the template generalization:
- Protocol-agnostic representation of C&C activity
- Increased level of understanding for analysts
- Coverage extended to families unknown during training

G. Jacob (UCSB) Fri Aug 12 2011 20 / 20


