
A. Haeberlen

Differential Privacy Under Fire

1
USENIX Security (August 12, 2011)

Andreas Haeberlen Benjamin C. Pierce Arjun Narayan

University of Pennsylvania

A. Haeberlen

Motivation: Protecting privacy

  Lots of potentially useful data exists
  But: Releasing it can violate privacy!

  We can try to anonymize/scrub it…
  … but this can go horribly wrong (see Netflix, AOL, …)

2
USENIX Security (August 12, 2011)

Alice (Star Wars, 5) (Alien, 4)
Bob (Godfather, 1) (Porn, 5)
Cindy (Die Hard, 4) (Toy Story, 2)
Dave (Avatar, 5) (Gandhi, 4)
Eva (Amélie, 4) (Rocky, 1)
...

Better recom-
mendations?

Does Bob
watch porn?

Data

#1
#2
#3
#4
#5

I know Bob
hates 'Godfather'

A. Haeberlen

Promising approach: Differential privacy

  Idea: Use differential privacy [Dwork et al.]
  Only allow queries
  [lots of mathematical details omitted]
  Result: Strong, provable privacy guarantees
  Implemented, e.g., by PINQ [McSherry] and Airavat [Roy et al.]

3
USENIX Security (August 12, 2011)

Alice (Star Wars, 5) (Alien, 4)
Bob (Godfather, 1) (Porn, 5)
Cindy (Die Hard, 4) (Toy Story, 2)
Dave (Avatar, 5) (Gandhi, 4)
Eva (Amélie, 4) (Rocky, 1)
...

Private data

N(Star Wars>3, Alien>3)?

826,392 ±100

N("Bob", Porn>3)?
18 ±700

Noise

; add a certain amount of noise to results

?!?

A. Haeberlen

Differential Privacy under Fire

  What if the adversary uses a covert channel?
  Devastating effect on privacy guarantees
  Usual defenses are not strong enough (can't leak even one bit!)

  We show:
  Working attacks
  An effective (domain-specific) defense

4
USENIX Security (August 12, 2011)

Alice (Star Wars, 5) (Alien, 4)
Bob (Godfather, 1) (Porn, 5)
Cindy (Die Hard, 4) (Toy Story, 2)
Dave (Avatar, 5) (Gandhi, 4)
Eva (Amélie, 4) (Rocky, 1)
...

Private data

(special query)

(noised response)

YES

Does Bob
watch porn?

A. Haeberlen

Outline

  Motivation
  Differential Privacy primer
  Attacks on PINQ and Airavat
  Our defense
  The Fuzz system
  Evaluation

5
USENIX Security (August 12, 2011)

NEXT

A. Haeberlen

?

Background: Queries

  Queries are programs
  PINQ is based on C#, Airavat on MapReduce

  These programs have a specific structure
  Some overall program logic, e.g., aggregation
  Some computation on each database row (microquery)

6
USENIX Security (August 12, 2011)

noisy sum, foreach r in db, of {

}

Data

 if (r.score("Godfather")>4)
 then return 1
 else return 0

Microquery

A. Haeberlen

Background: Sensitivity

  How much noise should we add to results?
  Depends on how much the output can change if we add or

remove a single row (the sensitivity of the query)

7
USENIX Security (August 12, 2011)

noisy sum, ∀r in db, of {
 if (r.score("Godfather")>4)
 then return 1200
 else return 200
}

noisy sum, ∀r in db, of {
 if (r.score("Godfather")>4)
 then return 1
 else return 0
}

Sensitivity 1 Sensitivity 1,000

A. Haeberlen

Background: Privacy budget

  How many queries should we answer?
  Set up a privacy 'budget' for answering queries
  Deduct a 'cost' for each query, depending on 'how private' it is

8
USENIX Security (August 12, 2011)

Data

Privacy
budget

noisy sum, ∀r in db, of {
 if (r.score("Godfather")>4)
 then return 1
 else return 0
}

Query

Answer

A. Haeberlen

Covert-channel attacks

  The above query...
  ... is differentially private (sensitivity zero)
  ... takes 1 second longer if the database contains Bob's data
  Result: Adversary can learn private information with certainty!

  Other channels we have exploited:
  Privacy budget
  Global state

9
USENIX Security (August 12, 2011)

noisy sum, foreach r in db, of {
 if (r.name=="Bob" && r.hasRating("Porn"))
 then {
 loop(1 second);
 };
 return 0
}

expensive_subquery(); b=1;

b

A. Haeberlen

Our attacks work in practice

  Both PINQ and Airavat are vulnerable

  What went wrong?
  The authors were aware of this attack vector
  Both papers discuss some ideas for possible defenses
  But: Neither system has a defense that is fully effective

10
USENIX Security (August 12, 2011)

A. Haeberlen

Threat model

  Too many channels!! Is it hopeless?
  Reasonable assumption: Querier is remote
  This leaves just three channels:

  The actual answer to the query
  The time until the answer arrives
  The decision whether the remaining budget is sufficient

11
USENIX Security (August 12, 2011)

Memory
consumption

Electromagnetic
radiation

Power

Cache
usage

Sound

Light

Query completion
time

Privacy
budget

Answer
Query

Short-range channels

A. Haeberlen

Our approach

  We can close the remaining channels completely
through a combination of systems and PL techniques

  Language design rules out state attacks etc.
  Example: Simply don't allow global variables!

  Program analysis closes the budget channel
  Idea: Statically determine the 'cost' of a query before running it
  Uses a novel type system [Reed and Pierce]

  Special runtime to close the timing channel

12
USENIX Security (August 12, 2011)

Details
in the
paper

NEXT

A. Haeberlen

Plugging the timing channel

  How to avoid leaking information via query
completion time?
  Could treat time as an additional output
  But: Unclear how to determine sensitivity

  Our approach: Make timing predictable
  If time does not depend on the contents of the database,

it cannot leak information

13
USENIX Security (August 12, 2011)

A. Haeberlen

Timeouts and default values

  Querier specifies for each microquery:
  a timeout T, and
  a default value d

  Each time the microquery processes a row:
  If completed in less than T, wait
  If not yet complete at T, abort and proceed to next row

14
USENIX Security (August 12, 2011)

A. Haeberlen

Example: Timeouts and default values

15
USENIX Security (August 12, 2011)

noisy sum, ∀r∈db, of {
 if r.name=="Bob"
 then loop(1 sec);
 return 0
}

Alice (Star Wars, 5) (Alien, 4)
Bob (Godfather, 1) (Porn, 5)
Cindy (Die Hard, 4) (Toy Story, 2)
Dave (Avatar, 5) (Gandhi, 4)
Eva (Amélie, 4) (Rocky, 1)

0
Time 0

, T=20µs, d=1

0 0 0
Bob not in db:

Bob in db:

Rob

0 0 0 0

Observable

0

Time

Bob not in db:

Bob in db: 0 0 0 0

0 0 0 0 0

sum=0

sum=0

sum=0

sum=1 1

20µs

A. Haeberlen

Default values do not violate privacy

  Don't default values change the query's answer?
  Yes, but that's okay:

  Remember that the answer is still noised before it is returned
  Noise depends on the sensitivity, which is now 1
  It's just as if we had written "If r.name=='Bob', return 1"

  Impact on non-adversarial queriers?
  Default value is never included if timeout is sufficiently high

16
USENIX Security (August 12, 2011)

noisy sum, ∀r∈db, of {
 if r.name=="Bob"
 then loop(1 sec);
 return 0
} , T=20µs, d=1

Bob not in db:

Bob in db: 0 0 0 0

0 0 0 0 0

1

A. Haeberlen

Outline

  Motivation
  Differential Privacy primer
  Attacks on PINQ and Airavat
  Our defense
  The Fuzz system
  Evaluation

17
USENIX Security (August 12, 2011)

NEXT

A. Haeberlen

The Fuzz system

  Fuzz: A programming language for writing
differentially private queries
  Designed from scratch → Easier to secure
  Functionality roughly comparable to PINQ/Airavat
  Novel type system for statically checking sensitivity

  Runtime supports timeouts + default values
  Turns out to be highly nontrivial
  Problem: How to make a potentially adversarial computation

take exactly a given amount of time?
  Uses a new primitive called predictable transactions

18
USENIX Security (August 12, 2011)

A. Haeberlen

Predictable transactions

  Isolation: Microquery must not interfere with
the rest of the computation in any way
  Examples: Trigger garbage collector, change runtime state, ...

  Preemptability: Must be able to abort
microqueries at any time
  Even in the middle of memory allocation, ...

  Bounded deallocation: Must be able to free any
allocated resources within bounded time
  Example: Microquery allocates lots of memory, acquires locks...

  Details are in the paper

19
USENIX Security (August 12, 2011)

A. Haeberlen

Outline

  Motivation
  Differential Privacy primer
  Attacks on Differential Privacy
  Defenses
  The Fuzz system
  Evaluation

  Is Fuzz expressive enough to handle realistic queries?
  Is Fuzz fast enough to be practical?
  Does Fuzz effectively prevent side-channel attacks?
  More experiments are described in the paper

20
USENIX Security (August 12, 2011)

NEXT

A. Haeberlen

Experimental setup

  Implemented three queries from prior work:
  K-means clustering (inspired by Blum et al., PODS'05)
  Census query (inspired by Chawla et al., TCC'05)
  Web server log analysis (inspired by Dwork et al., TCC'06)
  Fuzz is expressive enough to run all three queries

  Also crafted several adversarial queries
  Using different variants of our attacks

  Evaluated on a commodity system
  3GHz Core 2 Duo running Linux 2.6.38
  Synthetic database with 10,000 rows

21
USENIX Security (August 12, 2011)

A. Haeberlen

Performance: Non-adversarial queries

  Query completion time increased by 2.5x-6.8x
  But: Most expensive query took 'only' 12.7s

  Most of the increase was due to time padding
  Timeouts were set conservatively
  More detailed results are in the paper

22
USENIX Security (August 12, 2011)

Original runtime

Fuzz (no padding)

Fuzz

Q
ue

ry
 c

om
pl

et
io

n
tim

e
(s

)

kmeans census weblog

14

12

10

8

6

4

2

0

6.8x

3.4x
2.5x

Due to
padding

A. Haeberlen

Attack type
 Protection disabled
 Hit Miss Δ	

 Protected
 Hit Miss Δ

1 Memory allocation

2 Garbage collection

3 Artificial delay

4 Early termination

5 Artificial delay

Performance: Adversarial queries

  Evaluated five adversarial queries
  Unprotected runtime: Attacks cause large timing variation
  Protected runtime: Completion times are extremely stable

  Timing channel now too narrow to be useful!
  Remember: State and budget channels closed by design

23
USENIX Security (August 12, 2011)

0.32s

0.32s

0.32s

26.38s

0.90s

1.96s

1.57s

1.62s

26.37s

2.17s

1.6s

1.2s

1.3s

6ms

1.3s

1.10s

1.10s

1.10s

1.10s

2.40s

1.10s

1.10s

1.10s

1.10s

2.40s

<1µs

<1µs

<1µs

<1µs

<1µs

A. Haeberlen

Summary

  Differentially private query processors must
be protected against covert-channel attacks
  Leaking even a single bit can destroy the privacy guarantees

  Vulnerabilities exist in PINQ and Airavat

  Proposed defense: Fuzz
  Uses static analysis and predictable transactions
  Specific to differential privacy, but very strong: Closes all

remotely measurable channels completely

24
USENIX Security (August 12, 2011)

More information at: http://privacy.cis.upenn.edu/

