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Abstract

Program state-space exploration is central to software se-

curity, testing, and verification. In this paper, we propose

a novel technique for state-space exploration of software

that maintains an ongoing interaction with its environ-

ment. Our technique uses a combination of symbolic and

concrete execution to build an abstract model of the ana-

lyzed application, in the form of a finite-state automaton,

and uses the model to guide further state-space explo-

ration. Through exploration, MACE further refines the

abstract model. Using the abstract model as a scaffold,

our technique wields more control over the search pro-

cess. In particular: (1) shifting search to different parts of

the search-space becomes easier, resulting in higher code

coverage, and (2) the search is less likely to get stuck in

small local state-subspaces (e.g., loops) irrelevant to the

application’s interaction with the environment. Prelim-

inary experimental results show significant increases in

the code coverage and exploration depth. Further, our

approach found a number of new deep vulnerabilities.

1 Introduction

Designing secure systems is an exceptionally hard prob-

lem. Even a single bug in an inopportune place can create

catastrophic security gaps. Considering the size of mod-

ern software systems, often reaching tens of millions of

lines of code, exterminating all the bugs is a daunting

task. Thus, innovation and development of new tools

and techniques that help closing security gaps is of crit-

ical importance. In this paper, we propose a new tech-

nique for exploring the program’s state-space. The tech-

nique explores the program execution space automati-
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cally by combining exploration with learning of an ab-

stract model of program’s state space. More precisely,

it alternates (1) a combination of concrete and symbolic

execution [22] to explore the program’s state-space, and

(2) the L∗ [1] online learning algorithm to construct high-

level models of the state-space. Such abstract models, in

turn, guide further search. In contrast, the prior state-

space exploration techniques treat the program as a flat

search-space, without distinguishing states that corre-

spond to important input processing events.

A combination of concrete execution and symbolic

reasoning, known as DART, concolic (concrete and

symbolic) execution, and dynamic symbolic execution

[17, 25, 8, 7], exploits the strengths of both. The con-

crete execution creates a path, followed by symbolic ex-

ecution, which computes a symbolic logical formula rep-

resenting the branch conditions along the path. Manipu-

lation of the formula, e.g., negation of a particular branch

predicate, produces a new symbolic formula, which is

then solved with a decision procedure. If a solution ex-

ists, the solution represents an input to the concrete exe-

cution, which takes the search along a different path. The

process is repeated iteratively until the user reaches the

desired goal (e.g., number of bugs found, code coverage,

etc.).

We identified two ways to improve this iterative pro-

cess. First, dynamic symbolic execution has no high-

level information about the structure of the overall pro-

gram state-space. Thus, it has no way of knowing how

close (or how far) it is from reaching important states

in the program and is likely to get stuck in local state-

subspaces, such as loops. Second, unlike decision proce-

dures that learn search-space pruning lemmas from each

iteration (e.g., [30]), dynamic symbolic execution only

tracks the most promising path prefix for the next iter-

ation [17], but does not learn in the sense that informa-



tion gathered in one iteration is used either to prune the

search-space or to get to interesting states faster in later

iterations.

These two insights led us to develop an approach

— Model-inference-Assisted Concolic (concrete and

symbolic) Exploration (MACE) — that learns from each

iteration and constructs a finite-state model of the search-

space. We primarily target applications that maintain

an ongoing interaction with its environment, like servers

and web services, for which a finite-state model is fre-

quently a suitable abstraction of the communication pro-

tocol, as implemented by the application. At the same

time, we both learn the protocol model and exploit the

model to guide the search.

MACE relies upon dynamic symbolic execution to

discover the protocol messages, uses a special filtering

component to select messages over which the model

is learned, and guides further search with the learned

model, refining it as it discovers new messages. Those

three components alternate until the process converges,

automatically inferring the protocol state machine and

exploring the program’s state-space.

We have implemented our approach and applied it to

four server applications (two SMB and two RFB im-

plementations). MACE significantly improved the line

coverage of the analyzed applications, and more im-

portantly, discovered four new vulnerabilities and three

known ones. One of the discovered vulnerabilities re-

ceived Gnome’s “Blocker” severity, the highest severity

in their ranking system meaning that the next release can-

not be shipped without a fix. Our work makes the follow-

ing contributions:

• Although dynamic symbolic execution and decision

procedures perform very similar tasks, the state-

of-the-art decision procedures feature many tech-

niques, like learning, that yet have to find their way

into dynamic symbolic execution. While in deci-

sion procedures, learned information can be conve-

niently represented in the same format as the solved

formula, e.g., in the form of CNF clauses in SAT

solvers, it is less clear how would one learn or rep-

resent the knowledge accumulated during the dy-

namic symbolic execution search process. We pro-

pose that for applications that interact with their en-

vironment through a protocol, one could use finite-

state machines to represent learned information and

use them to guide the search.

• As the search progresses, it discovers new infor-

mation that can be used to refine the model. We

show one possible way to keep refining the model

by closing the loop — search incrementally refines

the model, while the model guides further search.

• At the same time, MACE both infers a model of

the protocol, as implemented by a program, and

explores the program’s search space, automatically

generating tests. Thus, our work contributes both to

the area of automated reverse-engineering of proto-

cols and automated program testing.

• MACE discovered seven vulnerabilities (four of

which are new) in four applications that we ana-

lyzed. Furthermore, we show that MACE performs

deeper state-space exploration than the baseline dy-

namic symbolic execution approach.

2 Related Work

Model-guided testing has a long history. The hard-

ware testing community has developed modeling lan-

guages, like SystemVerilog, that allow verification teams

to specify input constraints that are solved with a deci-

sion procedure to generate random inputs. Such inputs

are randomized, but adhere to the specified constraints

and therefore tend to reach much deeper into the tested

system than purely random tests. Constraint-guided ran-

dom test generation is nowadays the staple of hardware

testing. The software community developed its own lan-

guages, like Spec# [3], for describing abstract software

models. Such models can be used effectively as con-

straints for generating tests [27], but have to be written

manually, which is both time consuming and requires a

high level of expertise.

Grammar inference (e.g., [16]) promises automatic in-

ference of models, and has been an active area of re-

search in security, especially applied to protocol infer-

ence. Comparetti et al. [12] infer incomplete (possibly

missing transitions) protocol state machines from mes-

sages collected by observing network traffic. To reduce

the number of messages, they cluster messages according

to how similar the messages are and how similar their ef-

fects are on the execution. Comparetti et al. show how

the inferred protocol models can be used for fuzzing.

Our work shares similar goals, but features a few im-

portant differences. First, MACE iteratively refines the

model using dynamic symbolic execution [18, 25, 9, 7]

for the state-space exploration. Second, rather than fil-

tering out individual messages through clustering of in-

dividual messages, we look at the entire sequences. If

there is a path in the current state machine that produces

the same output sequence, we discard the corresponding

input sequence. Otherwise, we add all the input mes-

sages to the set used for inferring the state machine in

the next iteration. Third, rather than using the inferred



model for fuzzing, we use the inferred model to initialize

state-space exploration to a desired state, and then run

dynamic symbolic execution from the initialized state.

In our prior work [10], we proposed an alternative pro-

tocol state machine inference approach. There we as-

sume the end users would provide abstraction functions

that abstract concrete input and output messages into

an abstract alphabet, over which we infer the protocol.

Designing such abstraction functions is sometimes non-

trivial and requires multiple iterations, especially for pro-

prietary protocols, for which specifications are not avail-

able. In this paper, we drop the requirement for user-

provided input message abstraction, but we do require a

user-provided output message abstraction function. The

output abstraction function determines the granularity of

the inferred abstraction. The right granularity of abstrac-

tion is important for guiding state-space exploration, be-

cause too fine-grained abstractions tend to be too expen-

sive to infer automatically, and too abstract ones fail to

differentiate interesting protocol states. Furthermore, our

prior work is a purely black-box approach, while in this

paper we do code analysis at the binary level in combi-

nation with grammatical inference.

In this paper, we analyze implementations of protocols

for which the source code or specifications are available.

However, MACE could also be used for inference of

proprietary protocols and for state-exploration of closed-

source third-party binaries. In that case, the users would

need to rely upon the prior research to construct a suit-

able output abstraction function. The first step in con-

structing a suitable output abstraction function is under-

standing the message format. Cui et al. [14, 15] and Ca-

ballero et al. [6] proposed approaches that could be used

for that purpose. Further, any automatic protocol infer-

ence technique has to deal with encryption. In this paper,

we simply configure the analyzed server applications so

as to disable encryption, but that might not be an option

when inferring a proprietary protocol. The work of Ca-

ballero et al. [5] and Wang et al. [29] addresses automatic

reverse-engineering of encrypted messages.

Software model checking tools, like SLAM [2] and

Blast [20], incrementally build predicate abstractions of

the analyzed software, but such abstractions are very dif-

ferent from the models inferred by the protocol inference

techniques [12, 11]. Such abstractions closely reflect the

control-flow structure of the software from which they

were inferred, while our inferred models are more ab-

stract and tend to have little correlation with the low-level

program structure. Further, depending on the inference

approach used, the inferred models can be minimal (like

in our work), which makes guidance of state-space ex-

ploration techniques more effective.

The Synergy algorithm [19] combines model-

checking and dynamic symbolic execution to try to cover

all abstract states of a program. Our work has no ambi-

tion to produce proofs, and we expect that our approach

could be used to improve the dynamic symbolic execu-

tion part of Synergy and other algorithms that use dy-

namic symbolic execution as a component.

The Ketchum approach [21] combines random sim-

ulation to drive a hardware circuit into an interesting

state (according to some heuristic), and performs local

bounded model checking around that state. After reach-

ing a predefined bound, Ketchum continues random sim-

ulation until it stumbles upon another interesting state,

where it repeats bounded model checking. Ketchum be-

came the key technology behind MagellanTM, one of

the most successful semi-formal hardware test genera-

tion tools. MACE has similar dynamics, but the com-

ponents are very different. We use the L∗ [1] finite-state

machine inference algorithm to infer a high-level abstract

model and declare all the states in the model as interest-

ing, while Ketchum picks interesting states heuristically.

While Ketchum uses random simulation, we drive the

analyzed software to the interesting state by finding the

shortest path in the abstract model. Ketchum explores the

vicinity of interesting states via bounded model check-

ing, while we start dynamic symbolic execution from the

interesting state.

3 Problem Definition and Overview

We begin this section with the problem statement and a

list of assumptions that we make in this paper. Next, we

discuss possible applications of MACE. At the end of

this section, we introduce the concepts and notation that

will be used throughout the paper.

3.1 Problem Statement

We have three, mutually supporting, goals. First, we

wish to automatically infer an abstract finite-state model

of a program’s interaction with its environment, i.e., a

protocol as implemented by the program. Second, once

we infer the model, we wish to use it to guide a com-

bination of concrete and symbolic execution in order to

improve the state-space exploration. Third, if the explo-

ration phase discovers new types of messages, we wish

to refine the abstract model, and repeat the process.

There are two ways to refine the abstract finite-state

model; by adding more states, and by adding more mes-

sages to the state machine’s input (or output) alphabet,
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Figure 1: An Abstract Rendition of the MACE State-

Space Exploration. The figure on the left shows an

abstract model, i.e., a finite-state machine, inferred by

MACE. The figure on the right depicts clusters of con-

crete states of the analyzed application, such that clus-

ters are abstracted with a single abstract state. We infer

the abstract model with L∗, initialize the analyzed appli-

cation to the desired state, and then use the state-space

exploration component of MACE to explore the concrete

clusters of states.

which can result in inference of new transitions and

states. Black box inference algorithms, like L∗ [1], in-

fer a state machine over a fixed-size alphabet by itera-

tively discovering new states. Such algorithms can be

used for the first type of refinement. Any traditional pro-

gram state-space exploration technique could be used to

discover new input (or output) messages, but adding all

the messages to the state machine’s alphabets would ren-

der the inference computationally infeasible. Thus, we

also wish to find an effective way to reduce the size of

the alphabet, without missing states during the inference.

The constructed abstract model can guide the search in

many ways. The approach we take in this paper is to use

the abstract model to generate a sequence of inputs that

will drive the abstract model and the program to the de-

sired state. After the program reaches the desired state,

we explore the surrounding state-space using a combina-

tion of symbolic and concrete execution. Through such

exploration, we might visit numerous states that are all

abstracted with a single state in the abstract model and

discover new inputs that can refine the abstract model.

Figure 1 illustrates the concept.

In our work, we make a few assumptions:

Determinism We assume the analyzed program’s com-

munication with its environment is deterministic,

i.e., the same sequence of inputs always leads

to the same sequence of outputs and the same

state. In practice, programs can exhibit some non-

determinism, which we are abstracting away. For

example, the same input message could produce

two different outputs from the same state. In such

a case, we put both output messages in the same

equivalence class by adjusting our output abstrac-

tion (see below).

Resettability We assume the analyzed program can be

easily reset to its initial state. The reset may be

achieved by restarting the program, re-initializing

its environment or variables, or simply initiating a

new client connection. In practice, resetting a pro-

gram is usually straightforward, since we have a

complete control of the program.

Output Abstraction Function We assume the exis-

tence of an output abstraction function that ab-

stracts concrete response (output) messages from

the server into an abstract set of messages (alpha-

bet) used for state machine inference. In practice,

this assumption often reduces to manually identi-

fying which sub-fields of output messages will be

used to distinguish output message types. The out-

put alphabet, in MACE, determines the granularity

of abstraction.

3.2 Applications

The primary intended application of MACE is state-

space exploration of programs communicating with their

environment through a protocol, e.g., networked appli-

cations. We use the inferred protocol state machine as a

map that tells us how to quickly get to a particular part

of the search-space. In comparison, model checking and

dynamic symbolic execution approaches consider the ap-

plication’s state-space flat, and do not attempt to exploit

the structure in the state machine of the communication

protocol through which the application communicates

with the world. Other applications of MACE include

proprietary protocol inference, extension of the existing

protocol test suites, conformance checking of different

protocol implementations, and fingerprinting of imple-

mentation differences.



3.3 Preliminaries

Following our prior work [10], we use Mealy machines

[23] as abstract protocol models. Mealy machines are

natural models of protocols because they specify transi-

tion and output functions in terms of inputs. Mealy ma-

chines are defined as follows:

Definition 1 (Mealy Machine). A Mealy machine, M, is

a six-tuple (Q,ΣI ,ΣO,δ ,λ ,q0), where Q is a finite non-

empty set of states, q0 ∈ Q is the initial state, ΣI is a

finite set of input symbols (i.e., the input alphabet), ΣO is

a finite set of output symbols (i.e., the output alphabet),

δ : Q×ΣI −→ Q is the transition relation, and λ : Q×
ΣI −→ ΣO is the output relation.

We extend the δ and λ relations to sequences of

messages m j ∈ ΣI as usual, e.g., δ (q,m0 ·m1 ·m2) =
δ (δ (δ (q,m0) ,m1) ,m2) and λ (q,m0 ·m1 ·m2) =
λ (q,m0) · λ (δ (q,m0) ,m1) · λ (δ (q,m0 ·m1) ,m2). To

denote sequences of input (resp. output) messages

we will use lower-case letters s, t (resp. o). For

s ∈ Σ∗I ,m ∈ ΣI , the length |s| is defined inductively:

|ε| = 0, |s ·m| = |s|+ 1, where ε is the empty sequence.

The j-th message m j in the sequence s = m0 ·m1 · · ·mn−1

will be referred to as s j . We define the support function

sup as sup(s) =
{

s j | 0≤ j < |s|
}

. If for some state

machine M = (Q,ΣI ,ΣO,δ ,λ ,q0) and some state q ∈ Q

there is s ∈ Σ∗I such that δ (q0,s) = q, we say there is a

path from q0 to q, i.e., that q is reachable from the initial

state, denoted q0
∗
−→ q. Since L∗ infers minimal state

machines, all states in the abstract model are reachable.

In general, each state could be reachable by multiple

paths. For each state q, we (arbitrary) pick one of the

shortest paths formed by a sequence of input messages

s, such that q0
s
−→ q, and call it a shortest transfer

sequence.

Our search process discovers numerous input and out-

put messages, and using all of them for the model in-

ference would not scale. Thus, we heuristically discard

redundant input messages, defined as follows:

Definition 2 (Redundant Input Symbols). Let M =
(Q,ΣI ,ΣO,δ ,λ ,q0) be a Mealy machine. A symbol m ∈
ΣI is said to be redundant if there exists another sym-

bol, m′ ∈ ΣI , such that m 6= m′ and ∀q ∈ Q . λ (q,m) =
λ (q,m′)∧δ (q,m) = δ (q,m′).

We say that a Mealy machine M = (Q,ΣI ,ΣO,δ ,λ ,q0)
is complete iff δ (q, i) and λ (q, i) are defined for every

q ∈Q and i ∈ ΣI . In this paper, we infer complete Mealy

machines. There is also another type of completeness

— the completeness of the input and output alphabet.

MACE cannot guarantee that the input alphabet is com-

plete, meaning that it might not discover some types of

messages required to infer the full state machine of the

protocol.

To infer Mealy machines, we use Shahbaz and Groz’s

[26] variant of the classical L∗ [1] inference algorithm.

We describe only the intuition behind L∗, as the algo-

rithm is well-described in the literature.

L∗ is an online learning algorithm that proactively

probes a black box with sequences of messages, listens to

responses, and builds a finite state machine from the re-

sponses. The black box is expected to answer the queries

in a faithful (i.e., it is not supposed to cheat) and deter-

ministic way. Each generated sequence starts from the

initial state, meaning that L∗ has to reset the black box

before sending each sequence. Once it converges, L∗

conjectures a state machine, but it has no way to ver-

ify that it is equivalent to what the black box imple-

ments. Three approaches to solving this problem have

been described in the literature. The first approach is to

assume an existence of an oracle capable of answering

the equivalence queries. L∗ asks the oracle whether the

conjectured state machine is equivalent to the one im-

plemented by the black box, and the oracle responds ei-

ther with ‘yes’ if the conjecture is equivalent, or with

a counterexample, which L∗ uses to refine the learned

state machine and make another conjecture. The pro-

cess is guaranteed to terminate in time polynomial in

the number of states and the size of the input alphabet.

However, in practice, such an oracle is unavailable. The

second approach is to generate random sampling queries

and use those to test the equivalence between the con-

jecture and the black box. If a sampling query discovers

a mismatch between a conjecture and the black box, re-

finement is done the same way as with the counterexam-

ples that would be generated by equivalence queries. The

sampling approach provides a probabilistic guarantee [1]

on the accuracy of the inferred state machine. The third

approach, called black box model checking [24], uses

bounded model checking to compare the conjecture with

the black box.

As discussed in Section 3.1, MACE requires an out-

put message abstraction function αO : MO→ ΣO, where

MO is the set of all concrete output messages, that ab-

stracts concrete output messages into the abstract output

alphabet. However, unlike the prior work [10], MACE

requires no input abstraction function. We will extend

the output abstraction function to sequences as follows.

Let o ∈M ∗
O be a sequence of concrete output messages

such that |o| = n. The abstraction of a sequence is de-

fined as αO(o) = αO(o0) · · ·αO(on−1).
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Figure 2: The MACE Approach Diagram. The L∗ algorithm takes in the input and output alphabets, over which it

infers a state-machine. L∗ sends queries and receives responses from the analyzed application, which is not shown in

the figure. The result of inference is a finite-state machine (FSM). For every state in the inferred state machine, We

generate a shortest transfer sequence (Section 3.3) that reaches the desired state, starting from the initial state. Such

sequences are used to initialize the state-space explorer, which runs dynamic symbolic execution after the initialization.

The state-space explorers run the analyzed application (not shown) in parallel.

4 Model-inference-Assisted Concolic

Exploration

We begin this section by a high-level description of

MACE, illustrated in Figure 2. After the high-level de-

scription, each section describes a major component of

MACE: abstract model inference, concrete state-space

exploration, and filtering of redundant concrete input

messages together with the abstract model refinement.

4.1 A High-Level Description

Suppose we want to infer a complete Mealy machine

M = (Q,ΣI ,ΣO,δ ,λ ,q0) representing some protocol, as

implemented by the given program. We assume to know

the output abstraction function αO that abstracts con-

crete output messages into ΣO. To bootstrap MACE, we

also assume to have an initial set ΣI0 ⊆ ΣI of input mes-

sages, which can be extracted from either a regression

test suite, collected by observing the communication of

the analyzed program with the environment, or obtained

from DART and similar approaches [17, 25, 8, 7]. The

initial ΣI0 alphabet could be empty, but MACE would

take longer to converge. In our work, we used regression

test suites provided with the analyzed applications, or ex-

tracted messages from a single observed communication

session if the test suite was not available.

Next, L∗ infers the first state machine M0 =
(Q0,ΣI0,ΣO,δ0,λ0,q

0
0) using ΣI0 and ΣO as the abstract

alphabets. In M0, we find a shortest transfer sequence

from q0
0 to every state q ∈ Q0. We use such sequences

to drive the program to one of the concrete states repre-

sented by the abstract state q. Since each abstract state

could correspond to a large cluster of concrete states

(Fig. 1), we use dynamic symbolic execution to explore

the clusters of concrete states around abstract states.

The state-space exploration generates sequences of

concrete input and the corresponding output messages.

Using the output abstraction function αO, we can abstract

the concrete output message sequences into sequences

over Σ∗O. However, we cannot abstract the concrete in-

put messages into a subset of ΣI , as we do not have the

concrete input message abstraction function. Using all

the concrete input messages for the L∗-based inference

would be computationally infeasible. The state-space

exploration discovers hundreds of thousands of concrete

messages, because we run the exploration phase for hun-

dreds of hours, and on average, it discovers several thou-

sand new concrete messages per hour.

Thus, we need a way to filter out redundant messages

and keep the ones that will allow L∗ to discover new

states. The filtering is done as follows. Suppose that s

is a sequence of concrete input messages generated from

the exploration phase and o∈Σ∗O a sequence of the corre-

sponding abstract output messages. If there exists t ∈ Σ∗I0
such that M0 accepts t generating o, we discard s. Oth-

erwise, at least one concrete message in the s sequence

generates either a new state or a new transition, so we re-

fine the input alphabet and compute ΣI1 = ΣI0∪ sup(s).

With the new abstract input alphabet ΣI1, we infer a

new, more refined, abstract model M1 and repeat the pro-

cess. If the number of messages is finite and either the

exploration phase terminates or runs for a predetermined

bounded amount of time, MACE terminates as well.



4.2 Model Inference with L∗

MACE learns the abstract model of the analyzed pro-

gram by constructing sequences of input messages, send-

ing them to the program, and reasoning about the re-

sponses. For the inference, we use Shahbaz and Groz’s

[26] variant of L∗ for learning Mealy machines. The in-

ference process is similar as in our prior work [10].

In every iteration of MACE, L∗ infers a new state ma-

chine over ΣIi and the new messages discovered by the

state-space exploration guided by Mi, and conjectures

Mi+1, a refinement of Mi. Out of the three options for

checking conjectures discussed in Section 3.3, we chose

to check conjectures using the sampling approach. We

could use sampling after each iteration, but we rather

defer it until the whole process terminates. In other

words, rather than doing sampling after each iteration,

we use the subsequent MACE iterations instead of the

traditional sampling. Once the process terminates, we

generate sampling queries, but in no experiment we per-

formed did sampling discover any new states.

4.3 The State-Space Exploration Phase

We use the model inferred in Section 4.2 to guide the

state-space exploration. For every state qi ∈ Qi of the

just inferred abstract model Mi, we compute a shortest

transfer sequence of input messages from the initial state

qi
0. Suppose the computed sequence is s ∈ Σ∗Ii. With

s, we drive the analyzed application to a concrete state

abstracted by the qi state in the abstract model. All mes-

sages sup(s) are concrete messages either from the set

of seed messages, or generated by previous state-space

exploration iterations. Thus, the process of driving the

analyzed application to the desired state consists of only

computing a shortest path in Mi to the state, collecting

the input messages along the path qi
0

+
−→ qi, and feeding

that sequence of concrete messages into the application.

Once the application is in the desired state qi, we

run dynamic symbolic execution from that state to ex-

plore the surrounding concrete states (Figure 1). In other

words, the transfer sequence of input messages produces

a concrete run, which is then followed by symbolic ex-

ecution that computes the corresponding path-condition.

Once the path-condition is computed, dynamic symbolic

execution resumes its normal exploration. We bound

the time allotted to exploring the vicinity of every ab-

stract state. In every iteration, we explore only the newly

discovered states, i.e., Qi\Qi−1. Re-exploring the same

states over and over would be unproductive.

Thanks to the abstract model, MACE can easily com-

pute the necessary input message permutations required

to reach any abstract model state, just by computing a

shortest path. On the other hand, approaches that com-

bine concrete and symbolic execution have to negate

multiple predicates and get the decision procedure to

generate the required sequence of concrete input mes-

sages to get to a particular state. MACE has more con-

trol over this process, and our experimental results show

that the increased control results in higher line coverage,

deeper analysis, and more vulnerabilities found.

4.4 Model Refinement

The exploration phase described in Section 4.3 generates

a large number (hundreds of thousands in our setting) of

new concrete messages. Using all of them to refine the

abstract model is both unrealistic, as inference is polyno-

mial in the size of the alphabet, and redundant, as many

messages are duplicates and belong to the same equiv-

alence class. To reduce the number of input messages

used for inference, Comparetti et al. [12] propose a mes-

sage clustering technique, while we used a handcrafted

an abstraction function in our prior work. In this paper,

we take a different approach.

In the spirit of dynamic symbolic execution, the explo-

ration phase solves the path-condition (using a decision

procedure) to generate new concrete inputs, more pre-

cisely, sequences of concrete input messages. During the

concrete part of the exploration phase, such sequences

of input messages are executed concretely, which gen-

erates the corresponding sequence of output messages.

We abstract the generated sequence of output messages

using αO. If the abstracted sequence can be generated

by the current abstract model, we discard the sequence,

otherwise we add all the corresponding concrete input

messages to ΣIi. We define this process more formally:

Definition 3 (Filter Function). Let MI (resp. MO) be

a (possibly infinite) set of all possible concrete input

(resp. output) messages. Let s ∈M ∗
I (resp. o ∈M ∗

O)

be a sequence of concrete input (resp. output) messages

such that |s| = |o|. We assume that each input message

s j produces o j as a response. Let Mi ∈ A be the ab-

stract model inferred in the last iteration and A the uni-

verse of all possible Mealy machines. The filter function

f : A ×M ∗
I ×M ∗

O→ 2MI is defined as follows:

f (Mi,s,o) =

{

/0 if ∃t ∈ Σ∗Ii . λi(t) = αO(o)
sup(s) otherwise

In practice, a single input message could produce ei-

ther no response or multiple output messages. In the

first case, our implementation generates an artificial no-

response message, and in the second case, it picks the



first produced output message. A more advanced im-

plementation could infer a subsequential transducer [28],

instead of a finite-state machine. A subsequential trans-

ducer can transduce a single input into multiple output

messages.

Once the exploration phase is done, we apply the filter

function to all newly found input and output sequences

s j and o j, and refine the alphabet ΣIi by adding the mes-

sages returned by the filter function. More precisely:

ΣI(i+1)← ΣIi∪
⋃

j

f (Mi,s j,o j)

In the next iteration, L∗ learns a new model Mi+1, a re-

finement of Mi, over the refined alphabet ΣI(i+1).

5 Implementation

In this section, we describe our implementation of

MACE. The L∗ component sends queries to and collects

responses from the analyzed server, and thus can be seen

as a client sending queries to the server and listening to

the corresponding responses. Section 5.1 explains this

interaction in more detail. Section 5.2 surveys the main

model inference optimizations, including parallelization,

caching, and filtering. Finally, Section 5.3 introduces our

state-space exploration component, which is used as a

baseline for the later provided experimental results.

5.1 L∗ as a Client

Our implementation of L∗ infers the protocol state ma-

chine over the concrete input and abstract output mes-

sages. As a client, L∗ first resets the server, by clearing its

environment variables and resetting it to the initial state,

and then sends the concrete input message sequences di-

rectly to the server.

Servers have a large degree of freedom in how quickly

they want to reply to the queries, which introduces non-

deterministic latency that we want to avoid. For one

server application we analyzed (Vino), we had to slightly

modify the server code to assure synchronous response.

We wrote wrappers around the poll and read system

calls that immediately respond to the L∗’s queries, mod-

ifying eight lines of code in Vino.

5.2 Model Inference Optimizations

We have implemented the L∗ algorithm with distributed

master-worker parallelization of queries. L∗ runs in the

master node, and distributes its queries among the worker

nodes. The worker nodes compute the query responses,

by sending the input sequences to the server, collecting

and abstracting responses, and sending them back to L∗.

Since model refinement requires L∗ to make repeated

queries across iterations, we maintain a cache to avoid

re-computing responses to the previously seen queries.

L∗ looks up the input in the cache before sending queries

to worker nodes.

As L∗’s queries could trigger bugs in the server appli-

cation, responses could be inconsistent. For example, if

L∗ emits two sequences of input messages, s and t, such

that s is a prefix of t, then the response to s should be a

prefix of the response to t. Before adding an input-output

sequence pair to the cache, we check that all the prefixes

are consistent with the newly added pair, and report a

warning if they are inconsistent.

After each inference iteration, we analyze the state

machine to find redundant messages (Definition 2) and

discard them. This is a simple, but effective, optimiza-

tion that reduces the load on the subsequent MACE it-

erations. This optimization is especially important for

inferring the initial state machine from the seed inputs.

5.3 State-Space Exploration

Our implementation of the state-space exploration con-

sists of two components: a shortest transfer sequence

generator and the state-space explorer. A shortest trans-

fer sequence generator is implemented through a simple

modification of the L∗ algorithm. The algorithm main-

tains a data structure (called observation table [1]) that

contains a set of shortest transfer sequences, one for each

inferred state. We modify the algorithm to output this

set together with the final model. MACE uses sequences

from the set to launch and initialize state-space explorers.

Our state-space explorer uses a combination of dy-

namic and symbolic execution [17, 25, 8, 7]. The imple-

mentation consists of a system emulator, an input gener-

ator, and a priority queue. The system emulator collects

execution traces of the analyzed program with respect

to given concrete inputs. Given a collected trace, the

input generator performs symbolic execution along the

traced path, computes the path-condition, modifies the

path condition by negating predicates, and uses a deci-

sion procedure to solve the modified path condition and

to generate new inputs that explore different execution

paths. The generated inputs are then provided back to the

system emulator and the exploration continues. We use

the priority queue, like [18], to prioritize concrete traces

that are used for symbolic execution. The traces that visit

a larger number of new basic blocks, unexplored by the

prior traces, have higher priority.



The system emulator provides the capability to save

and restore program snapshots. To perform model-

assisted exploration from a desired state in the model,

we first set the program state to the snapshot of the ini-

tial state. Then, we drive the program to the desired state

using the corresponding shortest transfer sequence, and

start dynamic symbolic execution from that state.

In all our experiments, we used the snapshot capability

to skip the server boot process. More precisely, we boot

the server, make a snapshot, and run all the experiments

on the snapshot. We do not report the code executed dur-

ing the boot in the line coverage results.

6 Evaluation

To evaluate MACE, we infer server-side models of two

widely-deployed network protocols: Remote Frame-

buffer (RFB) and Server Message Block (SMB). The

RFB protocol is widely used in remote desktop appli-

cations, including GNOME Vino and RealVNC. Mi-

crosoft’s SMB protocol provides file and printer shar-

ing between Windows clients and servers. Although the

SMB protocol is proprietary, it was reverse-engineered

and re-implemented as an open-source system, called

Samba. Samba allows interoperability between Win-

dows and Unix/Linux-based systems. In our experi-

ments, we use Vino 2.26.1 and Samba 3.3.4 as reference

implementations to infer the protocol models of RFB and

SMB respectively. We discuss the result of our model in-

ference in Section 6.2.

Once we infer the protocol model from one reference

implementation, we can use it to guide state-space ex-

ploration of other implementations of the same proto-

col. Using this approach, we analyze RealVNC 4.1.2

and Windows XP SMB, without re-inferring the proto-

col state machine.

MACE found a number of critical vulnerabilities,

which we discuss in Section 6.3. In Section 6.4, we eval-

uate the effectiveness of MACE, by comparing it to the

baseline state-space exploration component of MACE

without guidance.

6.1 Experimental Setup

For our state-space exploration experiments, we used the

DETER Security testbed [4] comprised of 3GHz Intel

Xeon processors. For running L∗ and the message fil-

tering, we used a few slower 2.27GHz Intel Xeon ma-

Vino is the default remote desktop application in GNOME

distributions; RealVNC reports over 100 million downloads

(http://www.realvnc.com).

Program Iter. |Q| |ΣI | |ΣO| Tot. Learning

(Protocol) Time (min)

Vino 1st 7 8 7 142

(RFB) 2nd 7 12 8 8

Samba 1st 40 40 14 2028

(SMB) 2nd 84 54 24 1840

3rd 84 55 25 307

Table 1: Model Inference Result at the End of Each Iter-

ation. The second column identifies the inference itera-

tion. The Q column denotes the number of states in the

inferred model. The ΣI (resp. ΣO) column denotes the

size of the input (resp. output) alphabet. The last column

gives the total time (sum of all parallel jobs together) re-

quired for learning the model in each iteration, including

the message filtering time. The learning process is incre-

mental, so later iterations can take less time, as the older

conjecture might need a small amount of refinement.

chines. When comparing MACE against the baseline ap-

proach, we sum the inference and the state-space explo-

ration time taken by MACE, and compare it to running

the baseline approach for the same amount of time. This

setup gives a slight advantage to the baseline approach

because inference was done on slower machines, but our

experiments still show MACE is significantly superior,

in terms of achieved coverage, found vulnerabilities and

exploration depth.

6.2 Model Inference and Refinement

We used MACE to iteratively infer and refine the pro-

tocol models of RFB and SMB, using Vino 2.26.1 and

Samba 3.3.4 as reference implementations respectively.

Table 1 shows the results of iterative model inference and

refinement on Vino and Samba.

As discussed in Section 4.2, once MACE terminates,

we check the final inferred model with sampling queries.

We used 1000 random sampling queries composed of 40

input messages each, and tried to refine the state machine

beyond what MACE inferred. The sampling did not dis-

cover any new state in any experiment we performed.

Vino. For Vino, we collected a 45-second network

trace of a remote desktop session, using krdc (KDE Re-

mote Desktop Connection) as the client. During this ses-

sion, the Vino server received a total of 659 incoming

packets, which were considered as seed messages. For

abstracting the output messages, we used the message

type and the encoding type of the outbound packets from

the server. MACE inferred the initial model consisting of

seven states, and filtered out all but 8 input and 7 output
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Figure 3: Model Inference of Vino’s RFB protocol. States in which MACE discovers vulnerabilities are shown in grey.

The edge labels show the list of input messages and the corresponding output message separated by the ‘/’ symbol.

The explanations of the state and input and output message encodings are in Figure 4.

messages, as shown in Figure 3a.

Using the initial inferred RFB protocol model, the

state-space explorer component of MACE discovered 4

new input messages and refined the model with new

edges without adding new states (Figure 3b). We manu-

ally inspected the newly discovered output message (la-

bel R6 in Figure 3b) and found that it represents an out-

going message type not seen in the initial model.

Since MACE found no new states that could be ex-

plored with the state-space explorer, the process termi-

nated. Through manual comparison with the RFB pro-

tocol specification, we found that MACE has discovered

all the input messages and all the states, except the states

related to authentication and encryption, both of which

we disabled in our experiments. Further, MACE found

all the responses to client’s queries.

We also performed an experiment with authentication

enabled (encryption was still disabled). With this con-

figuration, MACE discovered only three states, because

it was not able to get past the checksum used during au-

thentication, but discovered an infinite loop vulnerability

that can be exploited for denial-of-service attacks. Due

to space limits, we do not report the detailed results from

this experiment, only detail the vulnerability found.

Samba. For Samba, we collected a network trace

of multiple SMB sessions, using Samba’s gentest test

There are two other output message types that are triggered by the

server’s GUI events and thus are outside of our scope.

suite, which generates random SMB operations for test-

ing SMB servers. We used the default gentest configu-

ration, with the default random number generator seeds.

To abstract the outbound messages from the server, we

used the SMB message type and status code fields; er-

ror messages were abstracted into a single error message

type. The Samba server received a total of 115 input mes-

sages, from which MACE inferred an initial SMB model

with 40 states, with 40 input and 14 output messages (af-

ter filtering out redundant messages).

In the second iteration, MACE discovered 14 new in-

put and 10 new output messages and refined the initial

model from 40 states to 84 states. The model converged

in the third iteration after adding a new input and a new

output message without adding new states. Table 1 sum-

marizes all three inference rounds.

Manually analyzing the inferred state machine, we

found that some of the discovered input messages have

the same type, but different parameters, and therefore

have different effects on the server (and different roles

in the protocol). MACE discovered all the 67 message

types used in Samba, but the concrete messages gener-

ated by the decision procedure during the state-space ex-

ploration phase often had invalid message parameters, so

the server would simply respond with an error. Such re-

sponses do not refine the model and are filtered out dur-

ing model inference. In total, MACE was successful at

http://samba.org/∼tridge/samba testing/



Label Description

1 client’s protocol version

2 byte 0x01 (securityType=None, clientInit)

3 setPixelFormat message

4 setEncodings message

5 frameBufferUpdateRequest message

6 keyEvent message

7 pointer event message

8 clientCutText message

9 byte 0x22

10 malformed client’s protocol version

11 frameBufferUpdateRequest message with

bpp=8 and true-color=false

12 malformed client’s protocol version

(a) Input Legend.

Label Description

R1 server’s protocol version

R2 server’s supported security types

R3 serverInit message

R4 framebufferUpdate message with default en-

coding

R5 framebufferUpdate message with alternative

encoding

R6 setColourMapEntries message

N no explicit reply from server

T socket closed by server

(b) Output Legend.

Figure 4: Explanation of States and Input/Output Messages of the State Machine from Figure 3.

pairing message types with parameters for 23 (out of 67)

message types, which is an improvement of 10 message

types over the test suite, which exercises only 13 differ-

ent message types.

We identified several causes of incompleteness in mes-

sage discovery. First, message validity is configuration

dependent. For example, the spoolopen, spoolwrite,

spoolclose and spoolreturnqueue message types

need an attached printer to be deemed valid. Our experi-

mental setup did not emulate the complete environment,

precluding us from discovering some message types.

Second, a single echomessage type generated by MACE

induced the server to behave inconsistently and we dis-

carded it due to our determinism requirement. Although

this is likely a bug in Samba, this behavior is not reliably

reproducible. We exclude this potential bug from the vul-

nerability reports that we provide later. Third, our infras-

tructure is unable to analyze the system calls and other

code executed in the kernel space. In effect, the com-

puted symbolic constraints are underconstrained. Thus,

some corner-cases, like a specific combination of the

message type and parameter (e.g., a specific file name),

might be difficult to generate. This is a general problem

when the symbolic formula computed by symbolic exe-

cution is underconstrainted.

In our experiments, we used Samba’s default configu-

ration, in which encryption is disabled. The SMB proto-

col allows null-authentication sessions with empty pass-

word, similar to anonymous FTP. Thus, authentication

posed no problems for MACE.

MACE converged relatively quickly in both Vino and

Samba experiments (in three iterations or less). We at-

tribute this mainly to the granularity of abstraction. A

finer-grained model would require more rounds to infer.

The granularity of abstraction is determined by the out-

put abstraction function, (Section 3.1).

6.3 Discovered Vulnerabilities

We use the inferred models to guide the state-space ex-

ploration of implementations of the inferred protocol.

After each inference iteration, we count the number of

newly discovered states, generate shortest transfer se-

quences (Section 3.3) for those states, initialize the server

with a shortest transfer sequence to the desired (newly

discovered) state, and then run 2.5 hours of state-space

exploration in parallel for each newly discovered state.

The input messages discovered during those 2.5 hours

of state-space exploration per state are then filtered and

used for refining the model (Section 4.4). For the base-

line dynamic symbolic execution without model guid-

ance, we run |Q| parallel jobs with different random

seeds for each job for 15 hours, where |Q| is the num-

ber of states in the final converged model inferred for the

target protocol. Different random seeds are important,

as they assure that each baseline job explores different

trajectories within the program.

We rely upon the operating system runtime error de-

tection to detect vulnerabilities, but other detectors, like

Valgrind, could be used as well. Once MACE detects

a vulnerability, it generates an input sequence required

for reproducing the problem. When analyzing Linux ap-

plications, MACE reports a vulnerability when any of the

critical exceptions (SIGILL, SIGTRAP, SIGBUS, SIGFPE,

and SIGSEGV) is detected. For Windows programs,

http://valgrind.org/



a vulnerability is found when MACE traps a call to

ntdll.dll::KiUserExceptionDispatcher and the

value of the first function argument represents one of the

critical exception codes.

MACE found a total of seven vulnerabilities in Vino

2.26.1, RealVNC 4.1.2, and Samba 3.3.4, within 2.5

hours of state-space exploration per state. In compar-

ison, the baseline dynamic symbolic execution without

model-guidance, found only one of those vulnerabilities

(the least critical one), even when given the equivalent

of 15 hours per state. Four of the vulnerabilities MACE

found are new and also present in the latest version of the

software at the time of writing. The list of vulnerabilities

is shown in Table 2. The rest of this section provides a

brief description of each vulnerability.

Vino. MACE found three vulnerabilities in Vino; all

of them are new. The first one (CVE-2011-0904) is

an out-of-bounds read from arbitrary memory locations.

When a certain type of the RFB message is received,

the Vino server parses the message and later uses two

of the message value fields to compute an unsanitized

array index to read from. A remote attacker can craft

a malicious RFB message with a very large value for

one of the fields and exploit a target host running Vino.

The Gnome project labeled this vulnerability with the

“Blocker” severity (bug 641802), which is the highest

severity in their ranking system, meaning that it must

be fixed in the next release. MACE found this vulner-

ability after 122 minutes of exploration per state, in the

first iteration (when the inferred state machine has seven

states, Table 1). The second vulnerability (CVE-2011-

0905) is an out-of-bounds read due to a similar usage

of unsanitized array indices; the Gnome project labeled

this vulnerability (bug 641803) as “Critical”, the second

highest problem severity. This vulnerability is marked

as a duplicate of CVE-2011-0904, for it can be fixed by

patching the same point in the code. However, these two

vulnerabilities are reached through different paths in the

finite-state machine model and the out-of-bounds read

happens in different functions. These two vulnerabilities

are actually located in a library used by not only Vino,

but also a few other programs. According to Debian se-

curity tracker, kdenetwork 4:3.5.10-2 is also vulnerable.

The third vulnerability (CVE-2011-0906) is an infinite

loop, found in the configuration with authentication en-

abled. The problem appears when the Vino server re-

ceives an authentication input from the client larger than

the authentication checksum length that it expects. When

the authentication fails, the server closes the client con-

nection, but leaves the remaining data in the input buffer

http://security-tracker.debian.org/tracker/CVE-2011-0904

queue. It also enters an deferred-authentication state

where all subsequent data from the client is ignored. This

causes an infinite loop where the server keeps receiv-

ing callbacks to process inputs that it does not process

in deferred-authentication state. The server gets stuck in

the infinite loop and stops responding, so we classify this

vulnerability as a denial-of-service vulnerability. Unlike

all other discovered vulnerabilities, we discovered this

one when L∗ hanged, rather than by catching signals or

trapping the exception dispatcher. Currently, we have no

way of detecting this vulnerability with the baseline, so

we do not report the baseline results for CVE-2011-0906.

Samba. MACE found 3 vulnerabilities in Samba. The

first two vulnerabilities have been previously reported

and are fixed in the latest version of Samba. One of

them (CVE-2010-1642) is an out-of-bounds read caused

by the usage of an unsanitized Security Blob Length

field in SMB’s Session Setup AndX message. The other

(CVE-2010-2063) is caused by the usage of an unsani-

tized field in the “Extra byte parameters” part of an SMB

Logoff AndX message. The third one is a null pointer

dereference caused by an unsanitized Byte Count field

in the Session Setup AndX request message of the SMB

protocol. To the best of our knowledge, this vulnerability

has never been publicly reported but has been fixed in the

latest release of Samba. We did not know about any of

these vulnerabilities prior to our experiments.

RealVNC. MACE found a new critical out-of-bounds

write vulnerability in RealVNC. One type of the RFB

message processed by RealVNC contains a length field.

The RealVNC server parses the message and uses the

length field as an index to access the process memory

without performing any sanitization, causing an out-of-

bounds write.

Win XP SMB. The implementation of Win SMB is

partially embedded into the kernel, and currently our dy-

namic symbolic execution system does not handle the

kernel operating system mode. Thus, we were able to

explore only the user-space components that participate

in handling SMB requests. Further, we found that many

involved components seem to serve multiple purposes,

not only handling SMB requests, which makes their ex-

ploration more difficult. We found no vulnerabilities in

Win XP SMB.

6.4 Comparison with the Baseline

We ran several experiments to illustrate the improvement

of MACE over the baseline dynamic symbolic execution

approach. First, we measured the instruction coverage

of MACE on the analyzed programs and compared it



Program Vulnerability Type Disclosure ID Iter. Jobs Search Time

( |Q| ) MACE Baseline

per job total per job total

(min) (hrs) (min) (hrs)

Vino Wild read (blocker) CVE-2011-0904 1/2 7 122 15 >900 >105

Out-of-bounds read CVE-2011-0905 1/2 7 31 4 >900 >105

Infinite loop CVE-2011-0906† 1/2 7 1 1 N/A N/A

Samba Buffer overflow CVE-2010-2063 1/3 84 88 124 >900 >1260

Out-of-bounds read CVE-2010-1642 1/3 84 10 14 >900 >1260

Null-ptr dereference Fixed w/o CVE 1/3 84 8 12 430 602

RealVNC Out-of-bounds write CVE-2011-0907 1/1 7 17 2 >900 >105

Win XP SMB None None None 84 >150 >210 >900 >105

Table 2: Description of the Found Vulnerabilities. The upper half of the table (Vino and Samba) contains results for the reference

implementations from which the protocol model was inferred, while the bottom half (Real VNC and Win XP SMB) contains the

results for the other implementations that were explored using the inferred model (from Vino and Samba). The disclosure column

lists Common Vulnerabilities and Exposures (CVE) numbers assigned to vulnerabilities MACE found. The new vulnerabilities

are italicized. The † symbol denotes a vulnerability that could not have been detected by the baseline approach, because it lacks

a detector that would register non-termination. We found it with MACE, because it caused L∗ to hang. The “Iter.” column lists

the iteration in which the vulnerability was found and the total number of iterations. The “Jobs” column contains the total number

of parallel state-space exploration jobs. The number of jobs is equal to the number of states in the final converged inferred state

machine. The baseline experiment was done with the same number of jobs running in parallel as the MACE experiment. The

MACE column shows how much time passed before at least one parallel state-space exploration job reported the vulnerability and

the total runtime (number of jobs × time to the first report) of all the jobs up to that point. The “Baseline” column shows runtimes

for the baseline dynamic symbolic execution without model guidance. We set the timeout for the MACE experiment to 2.5 hours

per job. The baseline approach found only one vulnerability, even when allowed to run for 15 hours (per job). The > t entries mean

that the vulnerability was not found within time t.

Program Sequential Instruction Coverage Total crashes

(Protocol) Time (Unique crashes)

(min) Baseline MACE improvement Baseline MACE

Vino (RFB) 1200 129762 138232 6.53% 0 (0) 2 (2)

Samba (SMB) 16775 66693 105946 58.86% 20 (1) 21 (5)

RealVNC (RFB) 1200 39300 47557 21.01% 0 (0) 7 (2)

Win XP (SMB)† 16775 90431 112820 24.76% 0 (0) 0 (0)

Table 3: Instruction Coverage Results. The table shows the instruction coverage (number of unique executed instruction addresses)

of MACE after 2.5 hours of exploration per state in the final converged inferred state machine, and the baseline dynamic symbolic

execution given the amount of time equivalent to (time MACE required for inferring the final state machine + number of states in

the final state machine × 2.5 hours), shown in the second column. For example, from Table 1, we can see that Samba inference

took the total of 2028 + 1840 + 307 = 4175 minutes and produced an 84-state model. Thus, the baseline approach was given

84× 150+ 4175 = 16775 minutes to run. The last two columns show the total number of crashes each approach found, and the

number of unique crashes according to the location of the crash in parenthesis. Due to a limitation of our implementation of the

state-space exploration (user-mode only), the baseline result for Windows XP SMB (marked †) was so abysmal, that comparing to

the baseline would be unfair. Thus, we compute the Win XP SMB baseline coverage by running Samba’s gentest test suite.



against the baseline coverage. Second, we compared the

number of crashes detected by MACE and by the base-

line approach over the same amount of time. This num-

ber provides an indication of how diverse the execution

paths discovered by each approach are: more crashes im-

plies more diverse searched paths. Finally, we compared

the effectiveness of MACE and the baseline approach to

reach deep states in the final inferred model.

Instruction Coverage. In this experiment, we mea-

sured the numbers of unique instruction addresses (i.e.,

EIP values) of the program binary and its libraries cov-

ered by MACE and the baseline approach. These num-

bers show how effective the approaches are at uncov-

ering new code regions in the analyzed program. For

Vino, RealVNC, and Samba, we used dynamic symbolic

execution as the baseline approach and ran the experi-

ment using the setup outlined in Section 6.1. We ran

MACE allowing 2.5 hours of state-space exploration per

each inferred state. To provide a fair comparison, we

ran the baseline for the amount of time that is equal to

the sum of the MACE’s inference and state-space explo-

ration times. As shown in Table 3, our result illustrates

that MACE provides a significant improvement in the in-

struction coverage over dynamic symbolic execution.

As mentioned before, our tool currently works on user-

space programs only. Because Windows SMB is mostly

implemented as a part of the Windows kernel, the results

of the baseline approach were abysmal. To avoid a straw

man comparison, we chose to compare against Samba’s

gentest test suite, regularly used by Samba developers

to test the SMB protocol. Using the test suite, we gen-

erate test sequences and measure the obtained coverage.

As for other experiments, we allocated the same amount

of time to both the test suite and MACE. The experimen-

tal results clearly show MACE’s ability to augment test

suites manually written by developers.

Number of Detected Crashes. Using the same setup

as in the previous experiment, we measured the num-

ber of crashing input sequences generated by each ap-

proach. We report the number of crashes and the num-

ber of unique crash locations. From each category of

unique crash locations, we manually processed the first

four reported crashes. All the found vulnerabilities (Ta-

ble 2) were found by processing the very first crash in

each category. All the later crashes we processed were

just variants of the first reported crash. MACE found 30

crashing input sequences with 9 of them having unique

crash locations (the EIP of the crashed instruction). In

comparison, the baseline approach only found 20 crash-

ing input sequences, all of them having the same crash

location.
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Figure 5: SMB Exploration Depth. The inferred state

machine can be seen as a directed graph. Suppose we

compute a spanning tree (e.g., [13]) of that graph. The

root of the graph is at level zero. Its children are at level

one, and so on. The figure shows the percentage of states

visited at each level by MACE and the baseline approach.

The numbers above points show the number of visited

states at the given depth. The shaded area clearly shows

that MACE is superior to the baseline approach in reach-

ing deep states of the inferred protocol.

Exploration Depth. Using the same setup as for the

coverage experiment, we measured how effective each

approach is in reaching deep states. The inferred state

machine can be seen as a directed graph. Suppose we

compute a spanning tree (e.g., [13]) of that graph. The

root of the graph is at level zero. Its children are at

level one, and so on. We measured the percentage of

states reached at every level. Figure 5 clearly shows that

MACE is superior to the baseline approach in reaching

deep states in the inferred protocol.

7 Limitations

Completeness is a problem for any dynamic analysis

technique. Accordingly, MACE cannot guarantee that

all the protocol states will be discovered. Incomplete-

ness stems from the following: (1) each state-space ex-

plorer instance runs for a bounded amount of time and

some inputs may simply not be discovered before the

timeout, (2) among multiple shortest transfer sequences

to the same abstract state, MACE picks one, potentially

missing further exploration of alternative paths, (3) sim-

ilarly, among multiple concrete input messages with the

same abstract behavior, MACE picks one and considers

the rest redundant (Definition 2).

Our approach to model inference and refinement is

not entirely automatic: the end users need to provide an

abstraction function that abstracts concrete output mes-

sages into an abstract alphabet. Coming up with a good



output abstraction function can be a difficult task. If the

provided abstraction is too fine-grained, model inference

may be too expensive to compute or may not even con-

verge. On the other hand, the inferred model may fail to

distinguish two interesting states if the abstraction is too

coarse-grained. Nevertheless, our approach provides an

important improvement over our prior work [11], which

requires abstraction functions for both input and output

messages.

When using our approach to learn a model of a pro-

prietary protocol, a certain level of protocol reverse-

engineering is required prior to running MACE. First, we

need a basic level of understanding of the protocol inter-

face to be able to correctly replay input messages to the

analyzed program. For example, this may require over-

writing the cookie or session-id field of input messages

so that the sequence appears indistinguishable from real

inputs to the target program. Second, our approach re-

quires an appropriate output abstraction, which in turn

requires understanding of the output message formats.

Message format reverse-engineering is an active area of

research [14, 15, 6] out of the scope of this paper.

Encryption is a difficult problem for every (existing)

protocol inference technique. To circumvent the issue,

we configure the analyzed programs not to use encryp-

tion. However, for proprietary protocols, such a con-

figuration may not be available and techniques [5, 29]

that automatically reverse-engineer message encryption

are required.
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9 Conclusions and Future Work

We have proposed MACE, a new approach to software

state-space exploration. MACE iteratively infers and re-

fines an abstract model of the protocol, as implemented

by the program, and exploits the model to explore the

program’s state-space more effectively. By applying

MACE to four server applications, we show that MACE

(1) improves coverage up to 58.86%, (2) discovers sig-

nificantly more vulnerabilities (seven vs. one), and (3)

performs significantly deeper search than the baseline

approach.

We believe that further research is needed along sev-

eral directions. First, a deeper analysis of the correspon-

dence of the inferred finite state models to the structure

and state-space of the analyzed application could reveal

how models could be used even more effectively than

what we propose in this paper. Second, it is an open

question whether one could design effective automatic

abstractions of the concrete input messages. The filter-

ing function we propose in this paper is clearly effective,

but might drop important messages. Third, the finite-

state models might not be expressive enough for all types

of applications. For example, subsequential transducers

[28] might be the next, slightly more expressive, repre-

sentation that would enable us to model protocols more

precisely, without significantly increasing the inference

cost. Fourth, MACE currently does no white box analy-

sis, besides dynamic symbolic execution for discovering

new concrete input messages. MACE could also monitor

the value of program variables, consider them as the in-

put and the output of the analyzed program, and automat-

ically learn the high-level model of the program’s state-

space. This extension would allow us to apply MACE to

more general classes of programs.
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