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Abstract

Web publishers frequently integrate third-party adver-
tisements into web pages that also contain sensitive pub-
lisher data and end-user personal data. This practice ex-
poses sensitive page content to confidentiality and in-
tegrity attacks launched by advertisements. In this pa-
per, we propose a novel framework for addressing security
threats posed by third-party advertisements. The heart of
our framework is an innovative isolation mechanism that
enables publishers to transparently interpose between ad-
vertisements and end users. The mechanism supports fine-
grained policy specification and enforcement, and does
not affect the user experience of interactive ads. Evalua-
tion of our framework suggests compatibility with several
mainstream ad networks, security from many threats from
advertisements and acceptable performance overheads.

1 Introduction

On September 13, 2009, readers of the New York Times
home web page were greeted by an animated image of a
fake virus scan. Amidst widespread confusion, NY Times
clarified the situation in an article [48], explaining the
source of the rogue anti-virus attack was one of its adver-
tising partners. Just two months prior, members of social
web site Facebook were presented with advertisements
(henceforth, “ads”) deceptively portraying private images
of their family and friends [38]. Facebook responded in an
article [42] blaming advertisers for violating policy terms
governing the use of personal images.

Publishers of online ads (like the NY Times and Face-
book) face two serious challenges. They must ensure ads
will neither violate the integrity of publisher web pages
(as occurred with NY Times), nor breach confidentiality
of user data present on publisher web pages (as occurred
with Facebook). Ads are often tightly integrated into pub-
lisher web pages, and therefore must coexist with high in-
tegrity content and sensitive information. Typically, ad
content is dynamically fetched from ad networks (e.g.,
Google AdSense) by the user’s browser, leaving little op-

portunity for publishers to inspect and approve ads before
the ads are rendered.

Online advertising is currently a lucrative market, ex-
pected to hit the US$50 billion mark in the U.S. dur-
ing 2011 [52]. For many publishers, online advertising
is an economic necessity. However, publishers have few
resources enabling them to enforce integrity and confiden-
tiality policies on ads. One common approach is for ad
networks to screen each ad for potential attacks. This pas-
sive approach simply shifts the burden of protection from
publisher to ad network. To enforce compliance, publish-
ers must use out-of-band mechanisms (e.g., legal agree-
ments), which leave the publisher vulnerable to any gaps
in the ad network’s screening strategy. Rogue ads may
slip through and cause damage, as in the above, high pro-
file examples.

Due to the dangers of rogue ads, publishers are in
great need of an active, technological approach to protect
themselves and their end users. Therefore, in this paper
we confront the problem of rogue ads from a publisher-
centric perspective. At a basic level, a publisher is a
web application that includes dynamically sourced con-
tent from an ad network in its output. Our objective is
to empower this web application to serve ads from main-
stream ad networks, while protecting its end users from
several threats posed by rogue ads.

1.1 Contributions

In this paper, we present ADJAIL, a framework that aids
web applications to support rendering of ads from main-
stream ad networks without compromising publisher se-
curity. Our framework achieves this protection by apply-
ing policy-based constraints on ad content. There are five
significant contributions of our approach:

1. Confidentiality and integrity policy specification and
enforcement. We define a simple and intuitive policy
specification language for publishers to specify several
confidentiality and integrity policies on advertisements
at a fine-grained level. We provide a novel and con-



ceptually simple policy enforcement mechanism that
offers principled security guarantees.

2. Compatibility with ad network targeting algorithms.
Ad networks use targeting algorithms to select which
ads to display, based on several factors such as page
context and user behavior. In many cases, these al-
gorithms are implemented as scripts that analyze pub-
lisher content to select and fetch appropriate ads to
be displayed. Our approach supports these targeting
scripts, with the added benefit of restricting the target-
ing script’s access to sensitive data.

3. Compatibility with ad network billing operations. Ad
networks employ complex billing strategies based on
several metrics, including ad impressions (number of
times an ad is shown) and mouse clicks. Furthermore,
ad networks have mechanisms for dealing with click
fraud [2]. To remain transparent to billing and click-
fraud detection mechanisms, our approach preserves
impression and click metrics.

4. Consistency in user experience. Our approach does not
affect the user experience in interacting with ads, for
any change in the user experience (in terms of content,
position and interactivity) may reduce the effectiveness
of advertising. Furthermore, ADJAIL highlights the se-
curity trade-offs that are required for ensuring consis-
tency in user experience for certain types of ads (such
as inline text ads).

5. Satisfaction of practical deployment requirements.
Publishers should not have to expend significant labor
in adopting a new framework, as this may make adop-
tion prohibitively expensive. Furthermore, publishers
should be able to deploy a solution that does not require
end users to install new client software (e.g., browsers,
plug-ins, etc.) or make changes to their existing client
software. Therefore, we offer a practical solution that
is easy to adopt, and works on mainstream browsers in
their default settings, without any modifications.

1.2 Overview

The crux of our approach is a novel policy enforcement
strategy that can be employed by the publisher to interpose
itself transparently between the ad network and end user.
The enforcement strategy starts by fetching and execut-
ing ads in a hidden “sandbox” environment in the user’s
browser, thus shielding the end user and web application
from many harmful effects.

In order to preserve the user experience, all ad user in-
terface elements are then extracted from the sandbox and
communicated back to the original page environment, as
permitted by the publisher’s policy. This step enables the
user to see and interact with the ad as if no interposition
happened. All user actions are communicated back to the

sandbox, thus completing a two-way message conduit for
synchronization. Our approach ensures transparency with
regard to the number of ad clicks and impressions by inter-
posing on the browser’s Document Object Model to sup-
press extraneous HTTP requests.

We have built a prototype implementation of AD-
JAIL that supports specification and enforcement of fine-
grained policies on ads sourced from leading ad networks.
The prototype is designed to be compatible with several
mainstream browsers including Google Chrome, Firefox,
Internet Explorer (IE), Safari and Opera. One minor lim-
itation of our implementation (but not of our architecture)
is that it is not compatible with IE 7.x or below. However,
the current ADJAIL prototype is compatible with IE 8.0
and later.

We evaluate ADJAIL on the dimensions of ad network
compatibility, security, and performance overheads. Our
compatibility evaluation tested ads from six mainstream
ad networks. We find that ADJAIL provides excellent
compatibility for most ads. We also demonstrate the
strong protection offered by ADJAIL from many signifi-
cant threats posed by online ads. In our experiments, the
currently unoptimized ADJAIL prototype encountered at
most a 1.69x slowdown in rendering ads.

The remainder of this paper is organized as follows:
Section 2 provides the threat model, scope and related
work. We provide the architecture and the main ideas be-
hind ADJAIL in Section 3. Section 4 discusses the details
in the implementation of ADJAIL. Our security, compati-
bility and performance evaluation appears in Section 5. In
Section 6 we conclude.

2 Threat Model and Related Work
2.1 Threat model

Consider a publisher who wishes to carry ads on a web-
mail (Web-based email) application. We will use this as
a running example throughout the paper to illustrate the
various aspects of our framework. A screenshot from an
actual webmail application we used in our evaluation ap-
pears in Figure 1. The top pane of the window presents the
message list and the bottom pane presents the email mes-
sage text. Four numbered advertisements also appear in
the figure: (1) a banner ad that appears on top of the web-
mail page, (2) a skyscraper ad that appears as a sidebar,
(3) an inline text ad that appears when the user’s mouse
hovers over an underlined word, and (4) a floating ad that
overlays the image of a clock on the page.

These ads highlight two interesting challenges we need
to overcome. First, the sidebar ad requires access to the
email message text, which it mines to ascertain page con-
text and select relevant ads for display (i.e., contextual tar-
geting). The inline text ad also requires access to the mes-
sage for contextual targeting and to integrate ads among
the text. However, supporting these ads by providing ac-
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Figure 1: Samples of various ad types. A webmail application with
inline text ad and (#4) an floating ad.

cess to the entire message carries the risk of exposing pri-
vate content (e.g., email addresses) to the ad script. Sec-
ond, the floating ad requires access to the real estate of the
page to place the image of the clock over the message text.
However, providing access to the page real estate enables
an ad to overlay content over the entire page, which may
interfere with trusted interface components.

These common examples illustrate how ads require
non-trivial access to publisher content and the screen, and
will not work if such access is denied. Also, in all of the
examples above, the ad content is loaded and rendered by
a third-party ad script (an ad script example appears in
Figure 4a). Ad scripts are given full page access by de-
fault, and thus pose threats to the confidentiality and in-
tegrity of page content. Our goal is to support the non-
trivial access required by these and many other typical
forms of ads, while addressing the security concerns of
executing third-party ad scripts.

2.2 Threat scope

Web applications that display third-party content on client
browsers are exposed to a wide variety of threats. It is
therefore important to clarify our threat model, specifi-
cally on the nature of protections that we offer and the
threats that are outside the scope of this work.

In-scope threats The broad threats that we address in this
work are those targeted by recent efforts in the Web stan-
dards community for content restrictions (e.g., Content
Security Policy [32, 43]). These policies are specified by
a website to restrict the capabilities of third-party scripts,
specifically with reference to access and modification of

(#1) banner and (#2) skyscraper ads. Also illustrated are (#3) an

first-party (site owned) content, as well as control over the
screen. Policies can be negotiated between a publisher
and its customers, or directly reflect the site security and
privacy practices.

Our framework provides a means for specification and
enforcement of such policies. For instance, in our web-
mail example, an integrity policy can be enforced such
that email message content cannot be tampered with, but
can still be read (for contextual targeting of ads). Publish-
ers may also choose to restrict where ads can appear on
the page.

Publishers can also use our framework to enforce poli-
cies about confidentiality of content. For instance, a pub-
lisher can enforce a policy that mail headers and email
“address books” (containing private email addresses) can-
not be read by ads. For the Facebook attack in §1, a policy
specifying confidentiality of user images, combined with
our enforcement mechanism, would have prevented the
attack.

Out-of-scope threats Many security threats posed by ads
(and other third party content) have been identified by the
security community. Recently, there has been intense re-
search in this area which can complement our approach
for protection against specific attacks. In particular, our
work does not address the threats listed below. In this sec-
tion we omit threats for which publishers can readily de-
ploy strong protection (e.g., cross-site request forgeries).

1. Browser security bugs. We do not address browser vul-
nerabilities such as drive-by-downloads [49, 36, 5], at-
tacks launched through plug-ins [24], vulnerabilities in
image rendering [23] and so on.



2. Opagque content. Our approach leverages web content
introspection capabilities of JavaScript, and is there-
fore most capable of enforcing fine-grained control
where such transparency is available. Although our ap-
proach provides coarse-grained confidentiality and in-
tegrity protection from opaque content (e.g., Flash), the
many possible attack vectors from these binary formats
require special treatment [13].

3. Frame busting & navigation attacks. These are diffi-
cult attacks for any dynamic policy enforcement mech-
anism to prevent, due to the limited API exposed by
browsers. A detailed discussion of protection measures
against frame busting has been explored [39] and could
be used to enhance our approach.

4. Behavior tracking attacks. These are attacks that track
a user across multiple sites and sessions through use of
cookies. These could be addressed by users choosing
restrictive cookie policies, though such policies may
interfere with the functionality of some web sites.

5. Attacks through side channels. Sites can track users
through side channels, such as the cache timing chan-
nel [11], the “visited links” feature of browsers [19]
and so on. It is difficult to defend these vectors without
browser customization, which is impractical for pub-
lishers to deploy.

2.3 Related Work

Privacy and behavioral targeting A few recent ap-
proaches have looked at the problem of addressing secu-
rity issues in online advertising. Privads [15] and Ad-
nostic [47] address this problem primarily from a user
privacy perspective. They both rely on specialized, in-
browser systems that support contextual placement of ads
while preventing behavioral profiling of users. In contrast,
our work mainly focuses on a different, publisher-centric
problem of protecting confidentiality and integrity of pub-
lisher and user-owned content. Our work is also aimed
at providing compatibility with existing ad networks and
browsers.

Restricting content languages There have been a num-
ber of works [9, 6, 28, 29, 30, 12] in the area of Java-
Script analysis that restrict content from ad networks to
provide security protections. These works focus on limit-
ing the JavaScript language features that untrusted scripts
are allowed to use. The limitation is enforced statically
by checking the untrusted script and ensuring it conforms
to the language restrictions. Only those language features
that are statically deterministic and amenable to analysis
are allowed. Since much of the policy enforcement is
done statically, these solutions typically have good run-
time performance. In the cases of FBJS [9] and AD-
safe [6], untrusted scripts are allowed to make calls to

an access-controlled DOM (document object model) in-
terface, which incurs some overhead but affords additional
control. The cost in employing a restricted JavaScript sub-
set is that ads authored by many advertisers may not con-
form to this subset, and therefore require re-development
of ad script code. In contrast, ADJAIL neither imposes the
burden of new languages nor places restrictions on Java-
Script language features used in ad scripts. The only effort
required from a publisher that incorporates ADJAIL is to
specify policies that reflect site security practices.

Code transformation approaches Many recent ap-
proaches [37, 53, 22, 14, 34, 10, 35] have been pursued to
transform untrusted JavaScript code to interpose runtime
policy enforcement checks. These works cover the many
diverse aspects by which third-party content may subvert
policy enforcement checks. Since these works are aimed
at general JavaScript security, they are not specialized
to the problem of securing ads for publishers, where the
main issue is ensuring transparent interposition. This is to
avoid any conflict with ad targeting and billing strategies
employed by ad networks. The recommended method of
transforming JavaScript dynamically by a publisher in-
volves using a proxy (e.g., for handling scripts sourced
from an external URI). However, routing all ad script
HTTP requests through a script-transformation proxy may
appear suspicious to click-fraud detection mechanisms [2]
employed by the ad network.

Publisher-browser collaboration An alternative ap-
proach is for a publisher to instruct a browser to enforce
the publisher’s policies on third-party content, leaving
the enforcement entirely to the browser. This publisher-
browser collaborative approach is a sound one in the
long term to enforce a wide range of security policies
as illustrated in BEEP [21], End-to-End Web Applica-
tion Security [8], Content Security Policies [43] and Con-
Script [33]. The main positives of this approach are that
it can enforce fine-grained policies with minimal over-
heads. The primary drawback is that today’s browsers
do not agree on a standard for publisher-browser collab-
oration, leaving a large void in near-term protection from
malicious third-party content.

3 Architecture

Let us revisit our running example of a publisher who
wishes to carry ads on a webmail application. Recall
that the publisher embeds an ad network’s JavaScript code
within the HTML of the webmail page to enable ads. In
the benign case, this JavaScript code scans the webmail
user’s email message body to find keywords for contex-
tual ad targeting, then dynamically loads a relevant ad. For
simplicity, we refer to the ad network’s JavaScript and an
advertiser’s JavaScript (the latter loaded dynamically by
the former) as the ad script. This section gives a high
level overview of how we prevent the ad script from per-



forming a variety of attacks against the publisher and end
user.

Our approach is to initially confine the ad script to a
hidden isolated environment. The hidden environment is
locally and logically isolated [27, 44] as opposed to re-
quiring additional physical and remote resources [31]. We
then detect effects of the ad script that would normally be
observable by the end user, had the script not been con-
fined by our approach. These effects are replicated, sub-
ject to policy-based constraints, outside the isolated envi-
ronment for the user to observe and interact with. User
actions are then forwarded to the isolated environment to
allow for a response by the ad script. Thus we facilitate
a controlled cycle of interaction between the user and the
advertisement, enabling dynamic ads while blocking sev-
eral malicious behaviors.

3.1 Ad confinement using shadow pages

As a basic policy, the publisher wants to ensure ad script
does not access the publisher’s private script data. If
this policy is not enforced, ad script can read the sen-
sitive document . cookie variable and leak its contents,
enabling the recipient of the cookie to hijack the authen-
ticated user’s webmail session. Furthermore, ad script
should not be allowed to read confidential user data from
the page (e.g., email message headers and address book
entries). Such data is normally accessible via the brow-
ser’s document object model (DOM) script interfaces.

To enforce the publisher’s policy, we leverage browser
enforcement of the same-origin policy (SOP) [50], an ac-
cess control mechanism available in all major JavaScript-
enabled browsers. Web browsers enforce the SOP to pre-
vent mutually distrusting web sites from accessing each
other’s JavaScript code and data. As a script instantiates
code and data items, the browser places each item un-
der the ownership of the script’s origin principal. Origin
principals are identified by the domain, protocol and port
number components of the script’s uniform resource iden-
tifier (URI). Whenever a script references code or data,
both the script and item being accessed must be owned by
the same origin, else access is denied.

To enforce the publisher’s ad script policy, we begin by
removing the ad script from the publisher’s webmail page.
Next, we embed a hidden <i frame> element in the page.
This <iframe> has a different origin URI, thus invoking
the browser’s SOP and thereby imposing a code and data
isolation barrier between the contents of the <iframe>
and enclosing page. Finally, we add the ad script to the
page contained in the hidden <iframe>. We refer to the
hidden <iframe> page as the shadow page, and the en-
closing webmail page as the real page. This transforma-
tion just described is depicted in Figure 2.

In the process of rendering the real page, the browser
renders the shadow page, executing the ad script within.
Our use of the SOP mechanism effectively relegates this

Real Page Real Page

Shadow Page
— || itae
(a) Before (b) After

Figure 2: Relocating the ad script to a hidden shadow page
invokes the browser’s same-origin policy for confinement.

ad script to an isolated execution environment. All access
by ad script to code or data in the real page will be blocked
due to enforcement of the SOP. Furthermore, the ad script
can not retrieve confidential address book data via DOM
interfaces, as access to those APIs are denied by SOP. We
can say the publisher’s basic policy is enforced, because
(1) all such ad scripts are relocated to the shadow page,
and (2) the browser correctly enforces the SOP.

3.2 Controlled user interaction with ads

Consider an ad script that loads a product image, or ban-
ner. Normally the banner appears on the real page, but
since the ad script runs in the shadow page, the banner
is rendered on the shadow page instead. Without further
steps, the webmail user viewing the real page will never
see this banner because the shadow page is hidden. We
now describe how the user is able to interact with the
shadow page ad by content mirroring (§3.2.1) and event
forwarding (§3.2.2), subject to policy-based constraints
(83.2.3).

3.2.1 Ad mirroring

A detailed view of the real and shadow pages that depicts
mirroring of ad content is shown in Figure 3. We add
Tunnel Script A to the shadow page that monitors page
changes made by the ad script (@), and conveys those
changes (@) to the real page via inter-origin message
conduits [1, 20]. We add complementary Tunnel Script B
to the real page that receives a list of shadow page changes
and replicates their effects on the real page. Thus when ad
script creates a banner image on the shadow page, Tunnel
Script A sends a description of the banner to Tunnel Script
B, which then creates the banner on the real page for the
end user to see.

Special care is taken to prevent sending redundant
HTTP requests to the ad server during the mirroring pro-
cess, as such requests can interfere with an ad network’s
record keeping and billing operations. These details are
discussed at depth in §4.3.2.
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Figure 3: Overview of ADJAIL integrated with a webmail ap-
plication. Ad script is given read-only access to email message
body for contextual targeting purposes. Ad script can write to
designated area to right of message body. Confidential data such
as address book and mail headers are inaccessible to ad script.

3.2.2 Event forwarding

Ads sometimes respond in complex ways to user gener-
ated events such as mouse movement and clicks. To fa-
cilitate this interaction, we capture events on mirrored ad
content and forward these events (Figure 3, @) to the
shadow page for processing. For example, if the ad script
registers an onmousemove event handler with the original
banner image, we register our own (trusted) event handler
on the mirrored banner image. Our handler listens for the
mouse-move event and forwards it to the shadow page’s
banner via an inter-origin message. If the ad script re-
sponds to the mouse-move event by altering the banner or
producing new ad content, these effects are replicated on
the real page by our mirroring strategy outlined above.

3.2.3 Ad policies

All messages sent between the real and shadow pages are
mediated by our policy enforcement mechanism. This
mechanism enforces policy rules which are specified by
the publisher as annotations in the real page HTML. For
the webmail example in Figure 3, the following access
control policies are specified (shown in bold):
1| <div id="MessageBody"

2 policy="read-access: subtree;">
3 Message body text here...

4| <div id="Advertisement"

5 policy="write-access: subtree;"></div>

</div>

The policy in line 2 allows the ad script read-only ac-
cess to the email message body. Read-only access is en-
forced by initially populating the shadow page with con-
tent from the real page (ref. Message Body regions in
Figure 3). If ad script makes changes to read-only content,
those changes are not mirrored back to the real page. Any
attempts to mirror those changes to the real page message

body (perhaps by a compromised Tunnel Script A) are de-
nied.

The policy in line 5 permits the ad script write access to
the sidebar on the right of the email message body. This
is the region where the ad banner is to appear. When ad
script creates content in the shadow page sidebar, this pol-
icy allows our mirroring logic to reproduce that content
on the real page sidebar.

An implicit policy restriction on all mirrored content
is that executable script code can not be written to the
real page. To enforce this restriction, we only mirror
items conforming to a configurable whitelist of static con-
tent types. Note this script injection threat is distinct
from cross-site scripting (XSS), which the site can defend
against using well-researched approaches (e.g., [46]).

The full policy language (detailed in §4.1) supports
content restrictions to block Flash, deny the use of im-
ages (for text-only ads), restrict the size of ads, and more.
These constraints can be tailored to the minimum compat-
ibility requirements of individual ad networks, which we
show in §5 can prevent attacks such as clickjacking [17].

Our policy enforcement mechanism is implemented on
the real page as part of Tunnel Script B. As stated earlier,
the ad script can not access the real page (including Tunnel
Script B) due to SOP enforcement. Therefore ad script can
not tamper with our policy enforcement mechanism.

4 Implementation

The implementation of ADJAIL is described in the context
of a single webmail page with an embedded ad, which is
integrated with our defense solution. We present the pol-
icy language used to restrict ads in §4.1. Then in §4.2 we
describe how the real and shadow pages are constructed.
§4.3 explains how we facilitate interaction between the
two.

4.1 Policies

By default, ad script is given no access to any part of the
real page unless granted by policies (i.e., default-deny).
An implicit policy we always enforce is that ad script can
not inject script code onto the real page, nor execute script
code with privileges of the real page. We now describe
in detail the individual permissions granted by policies,
how policies are specified, and how multiple policies are
combined to form a composite policy.

Permissions ADJAIL supports a basic set of permissions
that control how ads appear on the real page and how ads
can behave, summarized in Table 1. We define a policy as
an assignment of values to each of the permissions. Our
permissions have been designed iteratively by studying re-
quirements of ads from several ad networks, and our re-
sults presented in §5 show the supported permissions can
be composed to form useful advertisement policies.

The permissions read-access and write-access



Permission Values Description / Effects

read-access noneT*, subtree Controls read access to element’s attributes and children.

write-access nonef*, append, Controls write access to element’s attributes and children. Append is not
subtree inherited.

enable-images deny '™, allow Enables support in the whitelist for <img> elements, CSS

background-image and CSS list-style-image properties.
enable-iframe denyT* ,allow Enables <iframe> elements in whitelist.
enable-flash deny'™, allow Enables <ob ject > elements of type

application/x-shockwave-flash in whitelist.

max—height, O*, n%, n cm, N en,

max-width n ex, N in, n mm, N pc,

Sets maximum height / width of element to n units. Smaller dimensions are
more restrictive. When composing values specified in incompatible units,

n pt, N px, none' most ancestral value wins.
overflow deny'™, allow Content can overflow boundary of containing element if allowed.
link-target blank®, top, any! Force targets of <a> elements to _-blank or -t op. Not forced if set to
any.

Table 1: Permissions that can be set in policy statements. *Most restrictive value. "Default value.

control what parts of the page ad script may read from
or write to. Of particular interest is the append set-
ting for write-access. This level of access allows ad
script to add child content to an element, but neither read
nor modify existing children of the element. Any ap-
pended children are automatically given a policy attribute
set to write—-access: subtree;. Some ads, such as
the clock ad (#4) in Figure 1, require the append permis-
sion to add floating (i.e., absolutely positioned) content to
the <body> element. In supporting these ads, we don’t
want to grant subtree write access to the <body> ele-
ment, as that would enable a malicious ad to overwrite the
entire page. Granting append access in this case is safer
as it adheres to the principle of least privilege [40].

Part of our policy enforcement is a whitelist of HTML
elements, attributes and CSS properties that ad script is
allowed to write to the real page. Although this white-
list can be modified by the publisher at a low level, we
support the following higher-order controls for tuning the
whitelist. Ads are text-only by default; to enable images,
the enable-images permission can be set to allow,
thus expressing a publishers content restrictions policy on
the use of third-party images. Another content restric-
tions permission is the enable-flash permission, that
allows Flash ads to be displayed. Since our framework
doesn’t address security threats from opaque content such
as Flash (§2.1), a publisher must exercise severe caution
in enabling this permission. Also <iframe> elements
can be allowed via enable-iframe. However, allowing
<iframe> elements can facilitate attacks such as click-
jacking [17] and drive-by downloads [36].

The max-height, max-width and overflow permis-
sions control how the ad appears on the page. If an el-
ement’s size surpasses the max-width or max-height

dimension and the overflow permission is set to deny,
then excess content is hidden. Otherwise the excess con-
tent will overlap other parts of the page. The overflow per-
mission is useful because some ads consume a small area
when not in use, but may overlap non-ad content when
engaged by the user (e.g., expanding menus). Publish-
ers may wish to disallow expanding ads because they can
overlap trusted page content.

The link-target permission controls the HTML
target attribute of all <a> elements (and <form> el-
ements, if allowed by whitelist) in mirrored content. By
setting this permission, the publisher can specify that ac-
tivated links or submitted forms must be directed to a new
browser tab / window (if set to blank), or directed to
the tab / window hosting the real page (if set to top).
Whether links open in the same or new window is of-
ten agreed to between the publisher and ad network. The
link-target permission can be used to protect the pub-
lisher from ad script that mistakenly creates content that
does not adhere to the agreed upon link behavior.

Policy specification The publisher can annotate any
HTML element of the real page with a policy at-
tribute. The policy attribute contains a set of state-
ments, each terminated by a semicolon. Each state-
ment specifies the value of a particular permission in
the form, permission: value;. Acceptable values for
permission and value are listed in Table 1.

Permissions granted in an element’s policy attribute
are inherited by descendants in the HTML document hi-
erarchy. That is, the scope of a permission P is the
HTML subtree rooted at the element whose policy at-
tribute grants P.



Algorithm 1: ComputePolicy( target Element )

1 policy < new ObJject ();

2 WABeforeAppend < undefined;

3 foreach element from root to target Element do

4 if policy[ “write-access” ] = “append” then

5 L policy[ “write-access” | < WABeforeAppend
6

statements <—Parse (
element.getAttribute ( “policy” ) );

7 foreach stmt in statements do
8 policy < ComposePolicies ( policy,
stmt ) ;
9 if policy[ “write-access” ] # “append” then
10 L WABeforeAppend < policy[ “write-access” ];
11 foreach permission in all permissions do
12 if permission is not defined in policy then
13 policy[ permission ] < GetDefaultValue (
permaission ) ;

14 return policy;

Policy composition Multiple policy statements may as-
sign different values to a single permission. This can oc-
cur within a single policy attribute or through inheri-
tance. We resolve the ambiguity of multiple permission
values through a composition process. The composition
algorithm, given in Algorithm 1, takes a target element as
input and derives an assignment of values to each of the
permissions listed in Table 1.

We can describe the composition algorithm intuitively
as follows. The effective value for a permission is the
most restrictive value specified for that permission across
all composed policy statements. That is, if a permission
appears in multiple statements (either within an element’s
policy attribute or in separate inherited policies), we
take the intersection of all specified values for the per-
mission. After all statements have been composed, any
permissions left unspecified are set to their most restric-
tive values.

To enhance usability we introduced three minor ex-
ceptions to the above. First, the max-height and
max-width permissions default to their least restrictive
value (i.e., none). We chose this default because a defini-
tive maximum height and width will not be satisfactory
for every type of ad. It is better for each publisher to
explicitly declare these values if such restrictions are de-
sired. The policy semantics is still default-deny, because
write permissions must first be granted before restric-
tions on the size of written content can have any im-
pact. For the same reasons, our second exception defaults
link-target permission to its least restrictive value.
The third exception is we prevent inheritance of append
write permissions. This is important as append specifi-
cally does not grant access to existing children of an el-

<script type="text/javascript">
google_ad_client = "pub-...";
google_ad_width = 728;
google_ad_height = 90;
google_ad_format = "728x90_as";
google_ad_type = "text";

</script>

<script type="text/javascript"
src="http://pagead2.googlesyndi J

cation.com/pagead/show_ads.js"
></script>

(a)

— OO0 0NN WN =

—_—

(b) 1 <script type="text/javascript"
2 src="AdJail.js"></script>

Figure 4: (a) Google AdSense ad script, removed from real
page. (b) Tunnel Script B, added to real page.

ement; thus any existing children should not inherit the
append permission.

4.2 Real and Shadow pages

The architecture of our implementation requires changes
to the original web page (real page) and creation of a cor-
responding shadow page as described in §3.1. The shadow
page is hosted on a web server having an origin different
from the real page, thus the browser’s same-origin pol-
icy ensures the shadow page by default has no access to
the cookies, content or other data belonging to the real
page. Deploying our implementation requires a publisher
to configure their DNS and web server to support the
shadow page origin domain. Care must be exercised in
the selection of the shadow page domain (one for each ad-
vertiser) in order to ensure that there is no reuse or overlap
of domains.

To facilitate voluntary communication between the two
pages, we leverage the window.postMessage () brow-
ser APL. postMessage () is an inter-origin frame com-
munication mechanism that enables two collaborating
frames to share data in a controlled way, even when SOP
is in effect [1].

Construction of the real page The real page is a ver-
sion of the publisher’s original page modified in three
ways. The first modification is to remove the ad script
(Figure 4a). Second, we add the tunnel script (Figure 4b)
to the end of the page. The third modification to the orig-
inal page is annotation of HTML elements with policies,
which we discussed at length in §4.1. Only two annota-
tions, illustrated in §3.2.3, are required for the webmail
example.

The real page tunnel script has an initialization
routine that first scans the real page to find all el-
ements with policies granting the following permis-
sions: write—access:
append;, and write—access: subtree;. All match-
ing elements are converted into models (i.e., JavaScript

read-access: subtree;,



1/ { nodeType: "ELEMENT_NODE",

2 tagName: "div", syncId: 0,

3 top: y, left: x, width: w, height: h,
4 attributes: {

5 id: "MessageBody",

6 policy: "read-access: subtree;"

7 ’

8 children: [

9 {

10 nodeType: "TEXT_NODE",

11 nodeValue: "Message body text here..."
12 }

13 1,

14| computedstyle: { ... }

15|}

Figure 5: Model of MessageBody element (as defined in
§3.2.3) sent from real page to shadow page

data structures) that will be sent to the shadow page in
a later stage. Script nodes are omitted from models be-
cause we can not guarantee their semantics are preserved
on the shadow page. An example model is shown in Fig-
ure 5, which models the readable Message Body <div>
element in the webmail page (corresponding HTML given
in §3.2.3).

Of the elements found in the initial scan, those with
read permission are modeled by encoding (non-script) el-
ement attributes and readable child nodes into the model.
The remaining elements (i.e., those having write access
but no read access) are modeled as empty containers. That
is, any attributes and child nodes are omitted from the
model.

All elements with a policy annotation and their descen-
dant elements are assigned a unique sync1d attribute dur-
ing initialization. The sync ID is used to match elements
on the real page with their corresponding elements on the
shadow page as content is kept synchronized between the
two pages. As the final step of initialization, the tunnel
script creates and embeds the hidden <i frame> element
for the shadow page.

Construction of the shadow page The shadow page be-
gins as a template web page containing only the tunnel
script. As the template page is rendered, the shadow
page tunnel script receives content models (described
above) from the real page’s tunnel script. The model
data is sent as a character string in JSON [7] syntax via
postMessage (). Once received by the shadow page,
models are converted into HTML constructs using the
browser’s DOM interfaces. This results in a web page
environment containing all the non-sensitive content and
constructs of the real page, in which we will allow the ad
script to execute.

To support ads (such as inline text ads) that appear or
behave differently depending on where content is posi-
tioned, the shadow page is virtually sized to the dimen-

sions of the real page, and content models are rendered
in the same absolute position and size of their real page
counterpart. Position and size information is depicted in
Figure 5 as top, left, width and height properties.
Throughout dynamic updates these attributes are kept syn-
chronized by an approach given in §4.3.4.

Next, we install wrappers around several DOM API
methods to interpose between the ad script and the
DOM. Although ad script can circumvent our wrappers
in Mozilla browsers by using the JavaScript delete op-
erator [35], we do not rely on wrappers to enforce policies
or security properties. Wrappers are used to monitor page
updates and provide transparency with regard to the num-
ber of impressions generated by ads, which we discuss at
length in §4.3.

Default ad zone Lastly, the ad script is embedded in the
shadow page inside a container <div> element, which we
automatically map to a corresponding <div> on the real
page. We refer to these linked elements as the default ad
zone. Automatic mapping is required because many ad
scripts, such as Google AdSense, will not independently
find and inject ads into the content imported from the real
page. Rather they simply write ad content into the element
containing the ad script. To support these ad scripts, the
publisher indicates the default ad zone element on the real
page by setting its HTML class attribute to include the
class AdJailDefaultzZone and ensuring the element’s
policy grants subtree write access. If the real page has
no valid and unique default zone, content written to the
shadow page default zone will not appear on the real page.

4.3 Synchronization

After initial rendering of the real and shadow pages in the
browser, the two pages are kept synchronized by exchang-
ing the messages listed in Table 2. We conserve the total
number of generated ad impressions, using an approach
given in §4.3.1. Content written by ad script to the shadow
page is mirrored to the real page by a process described
in §4.3.2. User interface events are forwarded from the
real page to the shadow page as detailed in §4.3.3. Lastly,
84.3.4 describes how content position and style is kept
synchronized on both pages as needed by some ad scripts.

4.3.1 DOM interposition

A primary goal of our approach is to conserve the num-
ber of ad impressions detected by an ad server, which we
achieve using DOM interposition. Ad networks bill ad-
vertisers, and in turn pay publishers, based in part on the
number of ad impressions. Impression counts are corre-
lated to the number of requests for ad resources submitted
to the web server [18]. When ad content is rendered on
the real page, any external resources not available in the
browser’s cache will be requested, causing an impression.
This may occur for several possible reasons out of our
control, such as: the user disabled the cache, the ad net-



(a) Real page to shadow page:

DispatchEvent ( event )
Dispatch event to shadow page.

SetScrollPos (X, y)
Scroll hidden shadow page to coordinates ( x, y ).

Setstyle ( syncld, properties )
Set style of shadow page element identified by syncld as
specified in properties.

(b) Shadow page to real page:

Initialize ( step)
Initialize communication channel (two steps)

InsertNode ( syncld, index, model )
Insert node described by model as child index of element
identified by syncld.

ModifyAttribute ( syncld, name, value )
Set attribute name to value on element identified by syncid.

ModifyStyle ( syncld, name, value, priority )
Set CSS property name to value and priority on element
identified by syncld.

ModifyText ( syncld, index, data )
Set text content to data on index child of element identified by
syncld.

RemoveNode ( syncld, index )
Remove node index child node of element identified by syncld.

ReplaceChildren ( syncld, models )
Replace child nodes of element identified by syncld with
children described in models.

WatchEvent ( syncld, type, phase )
Register a listener for event type and phase (bubble / capture)
on element identified by syncld.

Table 2:  Synchronization messages sent between real and
shadow pages via DOM postMessage () APL

work instructed the browser (via Cache-Control HTTP
headers) not to cache a resource, or per-origin cache par-
titioning [19] is in effect.

Impressions will be generated when the ad is rendered
on the real page. Therefore, when ad content is initially
rendered on the shadow page, we must prevent the brow-
ser from submitting HTTP requests for external resources,
as that would cause superfluous impressions. Our imple-
mentation supports conserving impression counts for the
following elements in our whitelist: <img>, <iframe>
and <object> (Flash). Additionally we conserve im-
pression counts for background image CSS properties
in our whitelist:
list-styleand list-style—-image.

background, background- image,

To prevent ad impressions on the shadow page, we in-
terpose on the common interfaces ad scripts use to cre-

10

ate content. First, we hook DOM object prototype in-
terfaces [25] to prevent ad scripts from setting URI at-
tributes. For instance, we interpose on the src property
of HTMLImageElement objects, and getAttribute ()
and setAttribute() DOM methods. We also
hook other interfaces that access URI attributes, such
as document.write (), and
element.innerHTML, to increase completeness and
transparency of the interposition.

When ad script writes a URI attribute using one of these
APIs, we substitute the real URI value with a placeholder
value. For write (), writeln (), and innerHTML, this
substitution requires a character search and replace in
HTML source code. Our current implementation of this
operation makes use of regular expression based textual
transformation, which works well in practice, but may not
be very precise under all circumstances. As the purpose
of this substitution is to conserve ad impressions, a loss
in precision here may affect compatibility with ads, but
not security. If more precision is required, works on in-
browser source-to-source HTML transformation [14, 34]
can be leveraged, at the cost of additional overhead.

One exception we make to the above scheme is for
<script> elements. Our interposition does not block the
setting of src attributes for scripts, because our goal is to
enable ad scripts to execute in the shadow page. Thus
scripts are the only source of ad impressions from the
shadow page. Since our policy enforcement mechanism
prevents ad scripts in the real page, each script is created
only once, thereby conserving the number of ad impres-
sions.

document .writeln (),

4.3.2 Content mirroring

We mirror ad content from the shadow page to the real
page using a 5-step process: (1) monitoring the shadow
page for modifications by the ad script, (2) modeling the
detected modifications, (3) sending the model to the real
page, (4) enforcing policies on the model, and (5) modi-
fying the real page to reflect the model.

1. Monitoring the shadow page for modifications
We monitor the shadow page for dynamic modifications
using DOM interposition logic (introduced in §4.3.1).
In addition to APIs that affect element attributes, we
also hook APIs that modify the document, such as
element.appendChild (). Whenever ad script attaches
anew DOM node using appendChild (), our monitoring
code is invoked before the actual modification takes place.
Alternatively, DOM mutation events [51] can be leveraged
to perform the same monitoring function with lower com-
plexity than DOM interposition. However, Internet Ex-
plorer does not yet support mutation events, which would
result in decreased compatibility.

2. Modeling the detected modifications When modifi-
cations to the shadow page are detected, we encode those
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Figure 6: Rendering an ad image only on the real page so that
just one impression is generated.

changes using the same model format described in §4.2
and depicted in Figure 5. However, when we find content
that was substituted by our interposition (ref. §4.3.1), we
model the ad script’s intended content instead of the sub-
stituted content. Models are passed to the real page, where
the modifications will be reflected to the extent allowed by
policies.

3. Sending models to the real page The process of send-
ing a model of an image element is depicted in Figure 6.
In the shadow page, we serialize the model data structure
to a JSON string. We send the serialized model from the
shadow page to the real page using the InsertNode ()
message from Table 2b. (Other types of modifications use
the additional postMessage () notifications listed in Ta-
ble 2b.) On the receiving end (i.e., the real page), we de-
serialize the string to recover the model data structure.

4. Enforcing policies on the models Our policy enforce-
ment code in the real page receives the model from the
shadow page. The model is then checked for any content
that violates the real page policy annotations. We trim
all policy-violating content from the model. For instance,
if the model describes an image to be added to the page
where the enable-images permission is denied, then we
remove the image from the model. If the model describes
an ad that is 1000 pixels wide and the policy only allows
the ad to be 600 px, we allow the ad but restrict its maxi-
mum width to 600 px.

5. Modifying the real page to reflect the mod-
eled changes Finally we merge the changes
represented by the model into the real page. We
create or modify constructs using DOM APIs, such
as document .createElement () and
.setAttribute (). To ensure scripts are not injected

element
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into the real page during this process, we leverage
the techniques we developed in BLUEPRINT [46] to
enforce a no-script policy over all merged changes.
This entails protecting several script injection vectors,
including <script> elements, event handler attributes,
javascript: URI schemes, CSS expressions, and
more.

Mirroring ad content on the real page has the side-effect
of modifying the real page script execution environment.
For instance, elements such as <input name="query"
...> can pollute the namespace by creating properties
such as document.elements.query. A straightfor-
ward solution to this problem is disallowing name and id
attributes on mirrored ad content; however, this may re-
duce compatibility with some ads.

4.3.3 Event forwarding

To prevent code injection attacks during content mirror-
ing, our whitelist intentionally omits event handlers such
as onclick and onmouseover that have been attached to
ad content. In order to preserve event handler functional-
ity in spite of this restriction, we perform event forward-
ing.

Event forwarding leverages our DOM interposition
framework. We interpose on script operations used to
register event handlers such as handler attributes and
object properties (e.g., onclick, onload, etc.), us-
ing the same mechanism used for URI attributes and
properties described in §4.3.1. Additionally, browser-
specific APIs such as element.addEventListener ()
and element.attachEvent () are detected and inter-
posed on when present.

When ad script uses any of these APIs to register an
event handler on an element, and that element is also mir-
rored on the real page, we register our own handler for
the same event on the mirrored element. Event handlers
are registered on the real page when specified in con-
tent models (InsertNode () and ReplaceChildren ()
messages), or by sending the WatchEvent () message of
Table 2. Whenever the event occurs on the real page, our
handler is invoked and sends details of the event to the
shadow page using the DispatchEvent () message (in-
dicated by path @ on Figure 3). On the shadow page we
establish the appropriate JavaScript scope, then dispatch
the event to the target element. This in turn invokes the
ad script’s original event handler. Effects caused by the ad
script’s handler are detected and mirrored back to the real
page using the mechanism described in §4.3.2.

Ad clicks Unlike other user interface events, we do not
forward click events on <a> (link) elements. Instead we
click (i.e., activate) links on the real page, subject to en-
forcement of the link-target permission. This has
the effect of bypassing any click event handlers the ad
script may have registered on the activated link. There-
fore there can be a compatibility trade-off in enforcing the



link-target permission if the ad script depends on such
event handlers.

4.3.4 Position and style synchronization

Some ads mimic the appearance of a pop-up window by
temporarily overlaying parts of the web page. Although
the pop-up window can appear at variable locations on the
page, typically it is positioned such that it is visible (given
the portion of the page that is scrolled into view) and rela-
tive to some other content (such as a contextual keyword).
The ad script contains logic to compute the pop-up loca-
tion based on the above criteria. However, if content ap-
pears at a different location on the real page than it does on
the shadow page, the pop-up will be positioned incorrectly
when mirrored. For this reason we support synchroniz-
ing the visual aspect of both real and shadow pages, even
though the shadow page remains hidden.

First, we keep the window sizes of each page synchro-
nized by setting the shadow page size to 100% of the real
page size. Second, we sync the scroll position of both
pages by registering an event handler for the real page’s
onscroll event. Whenever the event fires, we send a
SetScrollPos () message to the shadow page. Our code
running in the shadow page receives this message and ad-
justs the shadow page vertical and horizontal scroll offsets
to match the real page.

Next we have to ensure content on the shadow page oc-
cupies the same location and extent as the corresponding
content on the real page. For example, consider the in-
line text ad (Figure 1, #3), which highlights keywords and
makes a pop-up appear near a keyword when the user’s
mouse hovers over it. The precise location of the key-
word depends on many things, such as the absolute co-
ordinates of the element containing the text, height and
width of the container element, font size of the text, di-
mensions / layout of other content in the container, and
more. We synchronize these details by sending the abso-
lute position, size and computed style of each mirrored el-
ement to the shadow page via the setsStyle () message.
On the shadow page we apply these properties to content
elements, while keeping record that these are not “authen-
tic” properties that should be synchronized back to the real
page during any future content mirroring operations.

This strategy works very well in practice but is not per-
fect. For instance, there may be text in the real page that
flows around an image. If the policy in effect for the text
content allows read access, and the image is not readable,
then the image will not appear on the shadow page and
thus the text will not flow in the same way. To resolve
issues due to the layout becoming out of sync, the pub-
lisher can either make the image readable or customize
the shadow page to more accurately reflect the real page.
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5 Evaluation

We evaluated ADJAIL to assess performance in three ma-
jor areas. In §5.1 we investigate the compatibility of our
architecture with six popular ad networks, each of which
serve a variety of ads. The security of our approach is
tested in §5.2. We then measure ad display latencies in
§5.3. Although many ad networks exist which were not
tested, we believe the relatively small sample we evalu-
ated offer good insights into the compatibility and perfor-
mance of ADJAIL.

5.1 Compatibility

To evaluate how well ADJAIL works with existing ad
scripts, we tested it on six popular ad networks: Yahoo!
Network, Google AdSense, Microsoft Media Network,
Federated Media Publishing, AdBrite and Clicksor. The
first four used banner ads, while the latter two employed
more complicated inline text ads. Yahoo!, Google and Mi-
crosoft were three of the top ten ad networks in terms of
U.S. market reach in April 2009. With a total audience
size of 192.8 million, Yahoo! reached 86.6% of the mar-
ket, Google reached 85.3%, and Microsoft reached 72.4%
(31.

Federated Media, AdBrite and Clicksor rank lower in
terms of U.S. market reach (e.g., AdBrite ranked #21
with a reach of 47.2%), but were chosen as they repre-
sent the small publisher market and demonstrate unique
functionality. They are not as pervasive, therefore they
are more likely to exhibit compatibility problems and less
tested features. In our experiments we focused on the fol-
lowing observations: whether the ad functioned correctly,
the minimum permissions required to support the ad, and
whether click and impression counts were affected by our
approach.

Our prototype ADJAIL implementation is a sufficient
proof-of-concept to demonstrate the feasibility of our ap-
proach. The prototype is designed and tested to work on
recent releases of the Chrome, Firefox, Internet Explorer,
Opera and Safari web browsers. It does not yet have the
level of refinement that would be present in a production
system, which exposes some compatibility limitations we
describe below.

Correct functionality To evaluate correct functionality
we embedded ad scripts from each ad network in a series
of ADJAIL test pages, then compared the user experience
to the same ad scripts when used without sandboxing. The
four banner ad scripts (Yahoo!, Google, Microsoft and
Federated) all made use of the default ad zone feature. In
this experiment we observed two main types of ad banner:
animated image and Flash.

All of the banner ads rendered on the real page with-
out any noticeable differences from rendering the ad with-
out ADJAIL. Interacting with Flash ads via the mouse
and clicking on banners worked exactly the same as the



non-sandboxed ads. One minor issue we are aware of
is that the contextual targeting approach used by Google
AdSense does not work with our current implementation.
This is because AdSense performs contextual targeting
on the server, using an offline cached copy of the pub-
lisher’s page. This limitation can be overcome by pro-
viding pre-computed shadow pages to ad networks who
perform server-side contextual targeting, like AdSense.

For each of the inline text ad scripts (AdBrite and Click-
sor), we annotated a news article with a full read and
write access policy. The ad scripts identified keywords in
the article and transformed them into interactive ads that
“pop up” when the user hovers the mouse cursor over a
keyword. This allowed us to evaluate the intricate syn-
chronization capabilities of our architecture, such as ad
script modifying existing page content and event forward-
ing. The pop-ups consisted of a decorative window border
around the actual advertisement. AdBrite worked well in
this experiment; its ads were simply <i frame>s wrapped
by the decorative border. Clicksor also worked without
any noticeable differences.

Minimum permissions For each tested ad network, we
enabled the strictest set of permissions that would per-
mit ads to function without impairment. These permis-
sions are summarized in Table 3. To arrive at the set of
permissions, we started with the base read and write ac-
cess needed by the ad. We then enabled support in the
content whitelist based on the needs of the ad. Finally,
for fixed-size banner ads we set the maximum width and
height policies.

Google AdSense was configured to serve text ads, so
we were hoping to confine it with a strict text-only pol-
icy. Unfortunately the text ads were contained in an
<iframe>, thus we had to set the enable—iframe per-
mission.

AdBrite and Clicksor needed append write permission
on the <body> element to create their pop-ups. White-
list customization was also required for the pop-ups, as
they contained custom HTML elements to prevent inher-
itance of publishers’ CSS formatting rules [4]. AdBrite
was easier to support as we only had to whitelist their cus-
tom <ispan> element. Clicksor used a randomly gen-
erated element tag name consisting of the word “span”
followed by digits (e.g., <span40110>). To accommo-
date Clicksor we modified the whitelist to accept element
tag names that matched the JavaScript regular expression
/" span[0-91{5,7}$/. Also we note that Clicksor was
the only ad network to require <form> and <input> ele-
ments in its whitelist.

Click and impression counts To measure the number of
clicks and impressions caused by ads, we configured our
browser to route all traffic through a web proxy running
the Squid proxy software. We rendered each ad script with
and without sandboxing, and clicked on the displayed ads
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in each case. For this experiment, the web page hosting
the ad script was completely blank except for a single
paragraph of text, which was used for rendering inline text
ads and contextual ad targeting.

A given ad script may show a different ad each time
it is rendered. To ensure consistency in our evaluation,
multiple renderings were sometimes performed for an ad
network to ensure we clicked on the same advertisement
with and without sandboxing. In between renderings, we
cleared the browser’s cache to ensure proxy access pat-
terns were not affected by prior tests.

After performing the experiment, we analyzed the
proxy’s access logs. We discarded all log entries that re-
ferred back to our server hosting the test pages and AD-
JAIL source code. Comparing the remaining log entries,
we did not find any differences in the HTTP requests gen-
erated by sandboxed versus non-sandboxed ads. Thus we
conclude that in our experiment, ads using our sandbox
environment did not impose any additional impressions
or generate any additional clicks, thereby preserving traf-
fic patterns crucial to the web advertising revenue model.

5.2 Security

To evaluate the security provided by ADJAIL we in-
stalled the RoundCube webmail v0.3.1 software on our
web server. We integrated two ad network scripts on the
main webmail interface: one ad script was included di-
rectly on the page, and the other was embedded using
ADJAIL. A single trial consisted of replacing each of
the two ad scripts with a malicious script designed to per-
form one specific attack or policy violation. We then ob-
served if the malicious script functioned correctly in the
non-sandboxed location, and whether the attack was pre-
vented in the sandboxed location. Several trials were con-
ducted to assess different attack vectors, and to determine
the least restrictive policy required to defend each vector.

Our experiments were designed to support our claims in
81 of strong defense against several potent attack vectors
to which ad publishers are routinely exposed. However,
we did not evaluate the threats discussed in §2 that are be-
yond the scope of our current work: drive-by downloads,
Flash exploits, privacy attacks, covert channels, and frame
busting.

Results of the security evaluation are included on the
right side in Table 3. With appropriate policies in ef-
fect, ADJAIL blocked all of the in-scope threats. We note
that for each ad, write access was allowed for the subtree
rooted at the <div> element designated for ad content.
However, every ad policy denied write access (the default
setting) for the rest of the document. A degree of leniency
is required in our policies for compatibility with existing
ads, which opens the door to some of the secondary at-
tacks. However, every ad network we tested was protected
from our primary threats: confidential data leaks and con-
tent integrity violations.



Ad Network Element Computed Policy (Annotated policy in bold) Attack resistance
read write  enable enable enable max max over- E C I C U A O
access access images iframe flash  width height flow XBVIJIPA

AdBrite <body> none append allow allow deny none none deny v v V

Article <div> subtree subtree deny deny deny none none deny vV V'

Clicksor <body> none append allow deny deny none none deny Vv vV vV V

Article <div> subtree subtree deny deny deny none none deny Vv V' v

Federated Ad <div> none subtree allow allow allow 90px 728px deny v v V v v

Media Rest of page none none deny deny deny none none deny v vV vV vV V V YV

Google Ad <div> none subtree deny allow deny 600px 160px deny v v V v v

Rest of page none none deny deny deny mnone none deny Vv vV vV vV V VYV

Microsoft Ad <div> none subtree deny allow allow 300px 250px deny v v V v v

Media Rest of page none none deny deny deny none none deny Vv vV V vV V V V

Yahoo! Ad <div> none subtree deny deny allow 90px 780px deny Vv v vV V v v

Rest of page none none deny deny deny mnone none deny Vv vV vV V V V V

Table 3: Policy annotations required to support several popular ad networks, and attacks prevented in policy enforcement regions.
Attacks prevented are: EX: Execute arbitrary code in context of real page (non-XSS), CB: Data confidentiality breach, IV: Content
integrity violation, CJ: Clickjacking, UIL: UI spoofing, AP: Arbitrary ad position, OA: Oversized ad. Default 1ink-target policy

used for all.

Below we briefly describe our objectives and method-
ology for testing each attack.

Execute arbitrary code in context of real page In this
attack we attempted to break out of the sandbox, by caus-
ing the browser to execute ad script code in context of the
real page. This attack is critical because, if successful,
malicious code can disable all policy enforcement logic in
the real page and subsequently mount any of the other at-
tacks. Specifically excluded from this vector is code injec-
tion by reflected, DOMO, and stored XSS attacks, which
the web application can defend by other means.

We attempted to inject script code in the real page via
DOM traversal, but this was blocked by the browser’s
SOP policy. Next, we evaluated 7 different real-world at-
tacks sourced from the XSS Cheat Sheet [16]. Each at-
tack demonstrated a unique code injection vector, such as
embedded script element, event handler, javascript:
URI, CSS expression, and more. These code injection at-
tempts were blocked by enforcing a no-script policy on
content models when constructing the mirrored ad in the
real page, using the technique we developed in prior work
[46].

To evaluate our defense against Flash-based script in-
jection attacks, we created a Flash application that uses
the ExternalInterface API to extract confidential
data from the DOM. Flash regulates access to this API
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via the allowScriptAccess attribute of <object> el-
ements, and value attribute of <param> elements when
the name attribute is set to allowScriptAccess. With-
out ADJAIL, the ad network’s script can create Flash
objects on the real page with allowScriptAccess
set to always. This setting permits Flash Action-
Script code to fully access the real page’s JavaScript
environment, including sensitive page content via the
DOM. Our defense blocks this attack vector by forc-
ing the allowScriptAccess attribute to never on
all <object> elements and relevant <param> ele-
ments.  This action effectively disables the Flash
ExternalInterface APL

All script injection attacks were prevented even with the
most permissive policy that can be written using our pol-
icy language. Thus the script injection vector is defended
for every possible policy configuration.

Confidential information leak For this attack we re-
trieved two items of confidential data from the real page:
the user’s session cookie and list of email contacts. Due
to SOP restrictions, the sandboxed attack could not ac-
cess the information by DOM traversal. (We note DOM
traversal is also an ineffective strategy for all remaining
evaluated attacks.) The only way the attack could access
confidential data was when the data was given a policy
granting full read access.
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Figure 7: Rendering latencies: (a) time spent loading the ad, and (b) time from start of page load until ad appears.

Content integrity violation This attack tampers with
trusted content on the real page: the user’s email mes-
sage headers. Specifically the attack makes all messages
appear to be sent by prominent government officials. The
sandboxed attack was unsuccessful except when the mes-
sage headers were given a policy with full write access.

Clickjacking The clickjacking attack attempts to entice
the user to unknowingly click on an <iframe> element.
The attack script is based on detailed technical analy-
sis of the vector [17, 54]. With a policy that disallows
<iframe> elements, the sandboxed attack was unsuc-
cessful because the policy prevents any <iframe> on the
(hidden) shadow page from being brought up to the real
page where the user can click it. Since any <iframe>
embedded by the ad is unclickable to the end user, typi-
cal tricks to mask the clickjacking attack (e.g., hiding the
<iframe> using transparency) are not a factor.

User interface spoofing We made an ad appear identi-
cal to trusted webmail user interface components in an at-
tempt to lure users into interacting with the ad (i.e., an in-
terface spoofing attack [26]). This attack was defeated by
denying images, <iframe>s and Flash, and further con-
straining the ad with policies that disallow the ad from
overlapping other parts of the trusted interface. Since the
ad can still make use of textual elements, we note there
exists a very small likelihood for an attacker to succeed
through very nuanced UI spoofing attack using very small
(single pixel) elements or text, such that images can be
rendered in HTML one pixel at a time. Mitigating this
threat may require advanced analysis of ad content or re-
stricting the color palette available to ads.

Arbitrary ad position We made an ad appear on the
real page outside of its write-accessible container element.
This type of violation can be performed by setting an ad
content display position that is outside the bounds of its
container. With a policy that denies overflow, violations
due to out-of-bounds display positioning are blocked. Po-
sition policies can also be violated by a node splitting at-
tack, which may only succeed when there is no mecha-
nism to provide hypertext markup isolation [41, 45]. Our
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content mirroring approach provides the necessary isola-
tion by default to prevent node splitting attacks.

Oversized ad We made an ad larger than the publisher’s
expected ad size. The size violation was blocked by con-
figuring a policy to limit the maximum height and width,
and disallowing overflow.

5.3 Rendering overhead

To measure ad rendering latencies incurred by our policy
enforcement mechanism, we placed each ad script on a
typical blog page instrumented with benchmarking code.
There were a total of 12 instances of the blog page: for
each of the six ad networks evaluated in §5.1, one version
of the blog page used the original ad, and a second ver-
sion used ADJAIL to enforce the policies in Table 3. As
the blog page is rendered, the ad script executes and scans
for contextual data, requests a relevant ad from the ad net-
work based on this data, and finally renders the ad. This
experiment reflects the typical delays a end-user would
experience when browsing publisher pages that integrate
ADJAIL.

The test pages were rendered in Firefox v3.6.3 on
an AMD Phenom X4 940 (3.0 GHz) workstation with
7.5 GB RAM. To resemble a typical browsing environ-
ment, the browser cache was enabled during the experi-
ment. Each test page includes a link to our ADJAIL imple-
mentation source code (102 kB of JavaScript), which was
cached by the web browser. The code is not optimized
for space and contains much debug code. The memory
overhead required by ADJAIL was reasonably consistent
across ad networks, averaging 5.52% or roughly 3.06 MB.

Results of this experiment are shown in Figure 7. First
we measured the time taken to render only the ad (Fig-
ure 7a). For AdBrite and Clicksor (inline text ads), this
measurement consists of the time between the user trig-
gering an ad pop-up and appearance of the pop-up. Al-
though we do not separately report the latency incurred
by forwarding events to the shadow page (ref. §4.3.3),
this overhead is included in Figure 7. For this experi-
ment, we stopped the benchmark after the ad’s <i frame>



or <object> onload event was triggered, signaling the
ad was complete. Without sandboxing, ads rendered in
374 ms on average. With ADJAIL, ad rendering averaged
532 ms, an additional latency of 158 ms.

To better understand the impact of ad rendering latency,
we measured the time between when the page started
loading until the ad completed rendering (Figure 7b). This
is an important benchmark for ads, as many ad networks
use a content distribution network (CDN) to improve per-
formance in this regard [47]. For AdBrite, and Clicksor,
we measured the time until inline text links finished ren-
dering, although no ads are visible until the user triggers
a pop-up. Without sandboxing, ads appear in 489 ms on
average after the page begins to load. With ADJAIL, an
additional 163 ms delay was incurred on average.

Optimizing performance is an important area for fu-
ture work. A straightforward way to improve perfor-
mance will be to optimize our prototype implementation.
More significant gains may be achieved by adapting our
approach to support pre-computing policies and shadow
pages. It may be feasible to integrate caching of poli-
cies and shadow pages into web application templates and
frameworks, to allow better performance without raising
the publisher effort required to deploy ADJAIL.

6 Conclusion

In this paper, we presented ADJAIL, a solution for the
problem of confinement of third-party advertisements to
prevents attacks on confidentiality and integrity. A key
benefit of ADJAIL is compatibility with the existing web
usage models, requiring no changes to ad networks or
browsers employed by end users. Our approach offers
publishers a promising near term solution until web stan-
dards support for confinement of advertisements evolves
to offer solutions agreeable to all parties.
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