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Abstract

The Domain Name System (DNS) is an essential protocol
used by both legitimate Internet applications and cyber at-
tacks. For example, botnets rely on DNS to support agile com-
mand and control infrastructures. An effective way to disrupt
these attacks is to place malicious domains on a “blocklist”
(or “blacklist”) or to add a filtering rule in a firewall or net-
work intrusion detection system. To evade such security coun-
termeasures, attackers have used DNS agility, e.g., by using
new domains daily to evade static blacklists and firewalls. In
this paper we propose Notos, a dynamic reputation system for
DNS. The premise of this system is that malicious, agile use
of DNS has unique characteristics and can be distinguished
from legitimate, professionally provisioned DNS services. No-
tos uses passive DNS query data and analyzes the network
and zone features of domains. It builds models of known legit-
imate domains and malicious domains, and uses these models
to compute a reputation score for a new domain indicative of
whether the domain is malicious or legitimate. We have eval-
uated Notos in a large ISP’s network with DNS traffic from
1.4 million users. Our results show that Notos can identify
malicious domains with high accuracy (true positive rate of
96.8%) and low false positive rate (0.38%), and can identify
these domains weeks or even months before they appear in
public blacklists.

1 Introduction

The Domain Name System (DNS) [12, 13] maps domain
names to IP addresses, and provides a core service to applica-
tions on the Internet. DNS is also used in network security to
distribute IP reputation information, e.g., in the form of DNS-
based Block Lists (DNSBLs) used to filter spam [18, 5] or
block malicious web pages [26, 14].

Internet-scale attacks often use DNS as well because they
are essentially Internet-scale malicious applications. For ex-
ample, spyware uses anonymously registered domains to ex-
filtrate private information to drop sites. Disposable domains
are used by adware to host malicious or false advertising
content. Botnets make agile use of short-lived domains to

evasively move their command-and-control (C&C) infrastruc-
ture. Fast-flux networks rapidly change DNS records to evade
blacklists and resist take downs [25]. In an attempt to evade
domain name blacklisting, attackers now make very aggres-
sive use of DNS agility. The most common example of an ag-
ile malicious resource is a fast-flux network, but DNS agility
takes many other forms including disposable domains (e.g.,
tens of thousands of randomly generated domain names used
for spam or botnet C&C), domains with dozens of A records or
NS records (in excess of levels recommended by RFCs, in or-
der to resist takedowns), or domains used for only a few hours
of a botnet’s lifetime. Perhaps the best example is the Con-
ficker.C worm [15]. After Conficker.C infects a machine, it
will try to contact its C&C server, chosen at random from a list
of 50,000 possible domain names created every day. Clearly,
the goal of Conficker.C was to frustrate blacklist maintenance
and takedown efforts. Other malware that abuse DNS include
Sinowal (a.k.a. Torpig) [9], Kraken [20], and Srizbi [22]. The
aggressive use of newly registered domain names is seen in
other contexts, such as spam campaigns and malicious flux
networks [25, 19]. This strategy delays takedowns, degrades
the effectiveness of blacklists, and pollutes the Internet’s name
space with unwanted, discarded domains.

In this paper, we study the problem of dynamically assign-
ing reputation scores to new, unknown domains. Our main
goal is to automatically assign a low reputation score to a
domain that is involved in malicious activities, such as mal-
ware spreading, phishing, and spam campaigns. Conversely,
we want to assign a high reputation score to domains that are
used for legitimate purposes. The reputation scores enable dy-
namic domain name blacklists to counter cyber attacks much
more effectively. For example, with static blacklisting, by the
time one has sufficient evidence to put a domain on a black-
list, it typically has been involved in malicious activities for
a significant period of time. With dynamic blacklisting our
goal is to decide, even for a new domain, whether it is likely
used for malicious purposes. To this end, we propose Notos,
a system that dynamically assigns reputation scores to domain
names. Our work is based on the observation that agile mali-
cious uses of DNS have unique characteristics, and can be dis-
tinguished from legitimate, professionally provisioned DNS
services. In short, network resources used for malicious and



fraudulent activities inevitably have distinct network charac-
teristics because of their need to evade security countermea-
sures. By identifying and measuring these features, Notos can
assign appropriate reputation scores.

Notos uses historical DNS information collected passively
from multiple recursive DNS resolvers distributed across the
Internet to build a model of how network resources are al-
located and operated for legitimate, professionally run Inter-
net services. Notos also uses information about malicious do-
main names and IP addresses obtained from sources such as
spam-traps, honeynets, and malware analysis services to build
a model of how network resources are typically allocated by
Internet miscreants. With these models, Notos can assign rep-
utation scores to new, previously unseen domain names, there-
fore enabling dynamic blacklisting of unknown malicious do-
main names and IP addresses.

Previous work on dynamic reputation systems mainly fo-
cused on IP reputation [24, 31, 1, 21]. To the best of our
knowledge, our system is the first to create a comprehensive
dynamic reputation system around domain names. To summa-
rize, our main contributions are as follows:

• We designed Notos, a dynamic, comprehensive reputa-
tion system for DNS that outputs reputation scores for
domains. We constructed network and zone features that
capture the characteristics of resource provisioning, us-
ages, and management of domains. These features enable
Notos to learn models of how legitimate and malicious
domains are operated, and compute accurate reputation
scores for new domains.

• We implemented a proof-of-concept version of our sys-
tem, and deployed it in a large ISP’s DNS network in
Atlanta, GA and San Jose, CA, USA, where we ob-
served DNS traffic from 1.4 million users. We also used
passive DNS data from Security Information Exchange
(SIE) project [3]. This extensive real-world evaluation
shows Notos can correctly classify new domains with
a low false positive rate (0.38%) and high true positive
rate (96.8%). Notos can detect and assign a low reputa-
tion score to malware- and spam-related domain names
several days or even weeks before they appear on public
blacklists.

Section 2 provides some background on DNS and related
works. Readers familiar with this may skip to Section 3, where
we describe our passive DNS collection strategy and other
whitelist and blacklist inputs. We also describe three fea-
ture extraction modules that measure key network, zone and
evidence-based features. Finally, we describe how these fea-
tures are clustered and incorporated into the final reputation
engine. To evaluate the output of Notos, we gathered an ex-
tensive amount of network trace data. Section 4 describes the
data collection process, and Section 5 details the sensitivity of
each module and final output.

2 Background and Related Work

DNS is the protocol that resolves a domain name, like
www.example.com, to its corresponding IP address, for ex-
ample 192.0.2.10. To resolve a domain, a host typically
needs to consult a local recursive DNS server (RDNS). A re-
cursive server iteratively discovers which Authoritative Name
Server (ANS) is responsible for each zone. The typical result
of this iterative process is the mapping between the requested
domain name and its current IP addresses.

By aggregating all unique, successfully resolved A-type
DNS answers at the recursive level, one can build a passive
DNS database. This passive DNS (pDNS) database is ef-
fectively the DNS fingerprint of the monitored network and
typically contains unique A-type resource records (RRs)
that were part of monitored DNS answers. A typical RR
for the domain name example.com has the following for-
mat: {example.com. 78366 IN A 192.0.2.10},
which lists the domain name, TTL, class, type, and rdata. For
simplicity, we will refer to an RR in this paper as just a tuple
of the domain name and IP address.

Passive DNS data collection was first proposed by Florian
Weimer [27]. His system was among the first that appeared
in the DNS community with its primary purpose being the
conversion of historic DNS traffic into an easily accessible
format. Zdrnja et al. [29] with their work in “Passive Mon-
itoring of DNS Anomalies” discuss how pDNS data can be
used for gathering security information from domain names.
Although they acknowledge the possibility of creating a DNS
reputation system based on passive DNS measurement, they
do not quantify a reputation function. Our work uses the idea
of building passive DNS information only as a seed for com-
puting statistical DNS properties for each successful DNS res-
olution. The analysis of these statistical properties is the basic
building block for our dynamic domain name reputation func-
tion. Plonka et al. [17] introduced Treetop, a scalable way to
manage a growing collection of passive DNS data and at the
same time correlate zone and network properties. Their clus-
ter zones are based on different classes of networks (class A,
class B and class C). Treetop differentiates DNS traffic based
on whether it complies with various DNS RFCs and based on
the resolution result. Plonka’s proposed method, despite being
novel and highly efficient, offers limited DNS security infor-
mation and cannot assign reputation scores to records.

Several papers, e.g., Sinha et al. [24] have studied the effec-
tiveness of IP blacklists. Zhang, et al. [31] showed that the hit
rate of highly predictable blacklists (HBLs) decreases signifi-
cantly over a period of time. Our work addresses the dynamic
DNS blacklisting problem that makes it significantly differ-
ent from the highly predictable blacklists. Importantly, Notos
does not aim to create IP blacklists. By using properties of the
DNS protocol, Notos can rank a domain name as potentially
malicious or not. Garera et al. [8] discussed “phishing” detec-
tion predominately using properties of the URL and not sta-



tistical observations about the domains or the IP address. The
statistical features used by Holz et al. [10] to detect fast flux
networks are similar to the ones we used in our work, however,
Notos utilizes a more complete collection of network statisti-
cal features and is not limited to fast flux networks detection.

Researchers have attempted to use unique characteristics
of malicious networks to detect sources of malicious activity.
Anderson et al. [1] proposed Spamscatter as the first system to
identify and characterize spamming infrastructure by utilizing
layer 7 analysis (i.e., web sites and images in spam). Hao et
al. [21] proposed SNARE, a spatio-temporal reputation engine
for detecting spam messages with very high accuracy and low
false positive rates. The SNARE reputation engine is the first
work that utilized statistical network-based features to harvest
information for spam detection. Notos is complementary to
SNARE and Spamscatter, and extends both to not only de-
tect spam, but also identify other malicious activity such as
phishing and malware hosting. Qian et al. [28] present their
work on spam detection using network-based clustering. In
this work, they show that network-based clusters can increase
the accuracy of spam-oriented blacklists. Our work is more
general, since we try to identify various kinds of malicious
domain names. Nevertheless, both works leverage network-
based clustering for identifying malicious activities.

Felegyhazi et al. [7] proposed a DNS reputation blacklist-
ing methodology based on WHOIS observations. Our system
does not use WHOIS information making our approaches com-
plementary by design. Sato et al. [23] proposed a way to ex-
tend current blacklists by observing the co-occurrence of IP
address information. Notos is a more generic approach than
the proposed system by Sato and is not limited to botnet re-
lated domain name detection. Finally, Notos builds the rep-
utation function mainly based upon passive information from
DNS traffic observed in real networks — not traffic observed
from honeypots.

No previous work has tried to assign a dynamic domain
name reputation score for any domain that traverses the edge
of a network. Notos harvests information from multiple
sources—the domain name, its effective zone, the IP address,
the network the IP address belongs to, the Autonomous Sys-
tem (AS) and honeypot analysis. Furthermore, Notos uses
short-lived passive DNS information. Thus, it is difficult for a
malicious domain to dilute its passive DNS footprint.

3 Notos: A Dynamic Reputation System

The goal of the Notos reputation system is to dynamically
assign reputation scores to domain names. Given a domain
name d, we want to assign a low reputation score if d is in-
volved in malicious activities (e.g., if it has been involved with
botnet C&C servers, spam campaigns, malware propagation,
etc.). On the other hand, we want to assign a high reputation
score if d is associated with legitimate Internet services.

Notos’ main source of information is a passive DNS
(pDNS) database, which contains historical information about
domain names and their resolved IPs. Our pDNS database is
constantly updated using real-world DNS traffic from multiple
geographically diverse locations as shown in Figure 1. We col-
lect DNS traffic from two ISP recursive DNS servers (RDNS)
located in Atlanta and San Jose. The ISP nodes witness 30,000
DNS queries/second during peak hours. We also collect DNS
traffic through the Security Information Exchange (SIE) [3],
which aggregates DNS traffic received by a large number of
RDNS servers from authoritative name servers across North
America and Europe. In total, the SIE project processes ap-
proximately 200 Mbit/s of DNS messages, several times the
total volume of DNS traffic in a single US ISP.

Another source of information we use is a list of known
malicious domains. For example, we run known malware
samples in a controlled environment and we classify as sus-
picious all the domains contacted by malware samples that do
not match a pre-compiled white list. In addition, we extract
suspicious domain names from spam emails collected using a
large spam-trap. Again, we discard the domains that match
our whitelist and consider the rest as potentially malicious.
Furthermore, we collect a large list of popular, legitimate do-
mains from alexa.com (we discuss our data collection and
analysis in more details in Section 4). The set of known mali-
cious and legitimate domains represents our knowledge base,
and is used to train our reputation engine, as we discuss in
Section 4.

Intuitively, a domain name d can be considered suspicious
when there is evidence that d or its IP addresses are (or were in
previous months) associated with known malicious activities.
The more evidence of “bad associations” we can find about
d, the lower the reputation score we will assign to it. On the
other hand, if there is evidence that d is (or was in the past) as-
sociated with legitimate, professionally run Internet services,
we will assign it a higher reputation score.

3.1 System Overview

Before describing the internals of our reputation sys-
tem, we introduce some basic terminology. A domain
name d consists of a set of substrings or labels sepa-
rated by a period; the rightmost label is called the top-
level domain, or TLD. The second-level domain (2LD)
represents the two rightmost labels separated by a pe-
riod; the third-level domain (3LD) analogously contains the
three rightmost labels, and so on. As an example, given
the domain name d=“a.b.example.com”, TLD(d)=“com”,
2LD(d)=“example.com”, and 3LD(d)=“b.example.com”.

Let s be a domain name (e.g., s=“example.com”). We de-
fine Zone(s) as the set of domains that include s and all do-
main names that end with a period followed by s (e.g., do-
mains ending in “.example.com”).

Let D = {d1, d2, ..., dm} be a set of domain names. We
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call A(D) the set of IP addresses ever pointed to by any do-
main name d ∈ D.

Given an IP address a, we define BGP (a) to be the set
of all IPs within the BGP prefix of a, and AS(a) as the set
of IPs located in the autonomous system in which a resides.
In addition, we can extend these functions to take as input
a set of IPs: given IP set A = a1, a2, ..., aN , BGP (A) =⋃

k=1..N BGP (ak); AS(a) is similarly extended.
To assign a reputation score to a domain name d we proceed

as follows. First, we consider the most current set Ac(d) =
{ai}i=1..m of IP addresses to which d points. Then, we query
our pDNS database to retrieve the following information:

• Related Historic IPs (RHIPs), which consist of the union
of A(d), A(Zone(3LD(d))), and A(Zone(2LD(d))).
In order to simplify the notation we will refer to
A(Zone(3LD(d))) and A(Zone(2LD(d))) as A3LD(d)
and A2LD(d), respectively.

• Related Historic Domains (RHDNs), which comprise the
entire set of domain names that ever resolved to an IP
address a ∈ AS(A(d)). In other words, RHDNs contain
all the domains di for which A(di) ∩AS(A(d)) 6= ∅.

After extracting the above information from our pDNS
database, we measure a number of statistical features. Specif-
ically, for each domain d we extract three groups of features,
as shown in Figure 2:

• Network-based features: The first group of statistical
features is extracted from the set of RHIPs. We measure
quantities such as the total number of IPs historically as-
sociated with d, the diversity of their geographical loca-
tion, the number of distinct autonomous systems (ASs)
in which they reside, etc.

• Zone-based features: The second group of features we
extract are those from the RHDNs set. We measure the

average length of domain names in RHDNs, the number
of distinct TLDs, the occurrence frequency of different
characters, etc.

• Evidence-based features: The last set of features in-
cludes the measurement of quantities such as the number
of distinct malware samples that contacted the domain d,
the number of malware samples that connected to any of
the IPs pointed by d, etc.

Once extracted, these statistical features are fed to the
reputation engine. Notos’ reputation engine operates in two
modes: an off-line “training” mode and an on-line “classifica-
tion” mode. During the off-line mode, Notos trains the repu-
tation engine using the information gathered in our knowledge
base, namely the set of known malicious and legitimate do-
main names and their related IP addresses. Afterwards, during
the on-line mode, for each new domain d, Notos queries the
trained reputation engine to compute a reputation score for d
(see Figure 3). We now explain the details about the statistical
features we measure, and how the reputation engine uses them
during the off-line and on-line modes to compute a domain
names’ reputation score.

3.2 Statistical Features

In this section we identify key statistical features and the
intuition behind their selection.

3.2.1 Network-based Features

Given a domain d we extract a number of statistical features
from the set RHIPs of d, as mentioned in Section 3.1. Our
network-based features describe how the operators who own d
and the IPs that domain d points to, allocate their network re-
sources. Internet miscreants often abuse DNS to operate their
malicious networks with a high level of agility. Namely, the
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domain names and IPs that are used for malicious purposes
are often short-lived and are characterized by a high churn
rate. This agility avoids simple blacklisting or removals by
law enforcement. In order to measure the level of agility of
a domain name d, we extract eighteen statistical features that
describe d’s network profile. Our network features fall into the
following three groups:

• BGP features. This subset consists of a total of nine fea-
tures. We measure the number of distinct BGP prefixes
related to BGP (A(d)), the number of countries in which
these BGP prefixes reside, and the number of organiza-
tions that own these BGP prefixes; the number of distinct
IP addresses in the sets A3LD(d) and A2LD(d); the num-
ber of distinct BGP prefixes related to BGP (A3LD(d))
and BGP (A2LD(d)), and the number of countries in
which these two sets of prefixes reside.

• AS features. This subset consists of three features,
namely the number of distinct autonomous systems re-
lated to AS(A(d)), AS(A3LD(d)), and AS(A2LD(d)).

• Registration features. This subset consists of six features.
We measure the number of distinct registrars associated
with the IPs in the A(d) set; the diversity in the regis-
tration dates related to the IPs in A(d); the number of
distinct registrars associated with the IPs in the A3LD(d)
and A2LD(d) sets; and the diversity in the registration
dates for the IPs in A3LD(d) and A2LD(d).

While most legitimate, professionally run Internet services
have a very stable network profile, which is reflected into low
values of the network features described above, the profiles of
malicious networks (e.g., fast-flux networks) usually change
relatively frequently, thus causing their network features to be
assigned higher values. We expect a domain name d from a
legitimate zone to exhibit a small values in its AS features,

mainly because the IPs in the RHIPs should belong to the
same organization or a small number of different organiza-
tions. On the other hand, if a domain name d participates in
malicious activities (i.e., botnet activities, flux networks), then
it could reside in a large number of different networks. The list
of IPs in the RHIPs that correspond to the malicious domain
name will produce AS features with higher values. In the same
sense, we measure that homogeneity of the registration infor-
mation for benign domains. Legitimate domains are typically
linked to address space owned by organizations that acquire
and announce network blocks in some order. This means that
the registration-feature values for a legitimate domain name
d that owned by the same organizations will produce a list of
IPs in the RHIPs that will have small registration feature val-
ues. If this set of IPs exhibits high registration feature values,
it means that they very likely reside in different registrars and
were registered on different dates. Such registration-feature
properties are typically linked with fraudulent domains.

3.2.2 Zone-based Features

The network-based features measure a number of characteris-
tics of IP addresses historically related to a given domain name
d. On the other hand, the zone-based features measure the
characteristics of domain names historically associated with
d. The intuition behind the zone-based features is that while
legitimate Internet services may be associated with many dif-
ferent domain names, these domain names usually have strong
similarities. For example, google.com, googlesyndi-
cation.com, googlewave.com, etc., are all related to
Internet services provided by Google, and contain the string
“google” in their name. On the other hand, malicious domain
names related to the same spam campaign, for example, often
look randomly generated and share few common characteris-
tics. Therefore, our zone-based features aim to measure the



level of diversity across the domain names in the RHDNs set.
Given a domain name d, we extract seventeen statistical fea-
tures that describe the properties of the set RHDNs of domain
names related to d. We divide these seventeen features into
two groups:

• String features. This group consists of twelve features.
We measure the number of distinct domain names in
RHDNs, and the average and standard deviation of their
length; the mean, median, and standard deviation of the
occurrence frequency of each single character in the do-
main name strings in RHDNs; the mean, median and
standard deviation of the distribution of 2-grams (i.e.,
pairs of characters); the mean, median and standard devi-
ation of the distribution of 3-grams.

• TLD features. This group consists of five features. For
each domain di in the RHDNs set, we extract its top-level
domain TLD(di) and we count the number of distinct
TLD strings that we obtain; we measure the ratio between
the number of domains di whose TLD(di)=“.com” and
the total number of TLD different from “.com”; also, we
measure the mean, median, and standard deviation of the
occurrence frequency of the TLD strings.

It is worth noting that whenever we measure the mean, me-
dian and standard deviation of a certain property, we do so in
order to summarize the shape of its distribution. For exam-
ple, by measuring the mean, median, and standard deviation
of the occurrence frequency of each character in a set of do-
main name strings, we summarize how the distribution of the
character frequency looks like.

3.2.3 Evidence-based Features

We use the evidence-based features to determine to what ex-
tent a given domain d is associated with other known mali-
cious domain names or IP addresses. As mentioned above,
Notos collects a knowledge base of known suspicious, ma-
licious, and legitimate domain names and IPs from public
sources. For example, we collect malware-related domain
names by executing large numbers of malware samples in a
controlled environment. Also, we check IP addresses against
a number of public IP blacklists. We elaborate on how we
build Notos’ knowledge base in Section 4. Given a domain
name d, we measure six statistical features using the informa-
tion in the knowledge base. We divide these features into two
groups:

• Honeypot features. We measure three features, namely
the number of distinct malware samples that, when ex-
ecuted, try to contact d or any IP address in A(d); the
number of malware samples that contact any IP address
in BGP (A(d)); and the number of samples that contact
any IP address in AS(A(d)).

• Blacklist features. We measure three features, namely the
number of IP addresses in A(d) that are listed in public
IP blacklists; the number of IPs in BGP (A(d)) that are
listed in IP blacklists; and the number of IPs in AS(A(d))
that are listed in IP blacklists.

Notos uses the blacklist features from the evidence vector
so it can identify the re-use of known malicious network re-
sources like IPs, BGP prefixes or even ASs. Domain names
are significantly cheaper than IPv4 addresses; so malicious
users tend to reuse address space with new domain names. We
should note that the evidence-based features represent only
part of the information we used to compute the reputation
scores. The fact that a domain name was queried by malware
does not automatically mean that the domain will receive a
low reputation score.

3.3 Reputation Engine

Notos’ reputation engine is responsible for deciding
whether a domain name d has characteristics that are simi-
lar to either legitimate or malicious domain names. In order
to achieve this goal, we first need to train the engine to rec-
ognize whether d belongs (or is “close”) to a known class of
domains. This training can be repeated periodically, in an off-
line fashion, using historical information collected in Notos’
knowledge base (see Section 4). Once the engine has been
trained, it can be used in on-line mode to assign a reputation
score to each new domain name d.

In this section, we first explain how the reputation engine
is trained, and then we explain how a trained engine is used to
assign reputation scores.

3.3.1 Off-Line Training Mode

During off-line training (Figure 3), the reputation engine
builds three different modules. We briefly introduce each
module and then elaborate on the details.

• Network Profiles Model: a model of how well known
networks behave. For example, we model the network
characteristics of popular content delivery networks (e.g.,
Akamai, Amazon CloudFront), and large popular web-
sites (e.g., google.com, yahoo.com). During the on-line
mode, we compare each new domain name d to these
models of well-known network profiles, and use this in-
formation to compute the final reputation score, as ex-
plained below.

• Domain Name Clusters: we group domain names into
clusters sharing similar characteristics. We create these
clusters of domains to identify groups of domains that
contain mostly malicious domains, and groups that con-
tain mostly legitimate domains. In the on-line mode,



given a new domain d, if d (more precisely, d’s projec-
tion into a statistical feature space) falls within (or close
to) a cluster of domains containing mostly malicious do-
mains, for example, this gives us a hint that d should be
assigned a low reputation score.

• Reputation Function: for each domain name di, i = 1..n,
in Notos’ knowledge base, we test it against the trained
network profiles model and domain name clusters. Let
NM(di) and DC(di) be the output of the Network Pro-
files (NP) module and the Domain Clusters (DC) mod-
ule, respectively. The reputation function takes in input
NM(di), DC(di), and information about whether di and
its resolved IPs A(di) are known to be legitimate, suspi-
cious, or malicious (i.e., if they appeared in a domain
name or IP blacklist), and builds a model that can assign
a reputation score between zero and one to d. A repu-
tation score close to zero signifies that d is a malicious
domain name while a score close to one signifies that d
is benign.

We now describe each module in detail.

3.3.2 Modeling Network Profiles

During the off-line training mode, the reputation engine builds
a model of well-known network behaviors. An overview of the
network profile modeling module can be seen in Figure 4(a).
In practice we select five sets of domain names that share simi-
lar characteristics, and learn their network profiles. For exam-
ple, we identify a set of domain names related to very popular
websites (e.g., google.com, yahoo.com, amazon.com) and for
each of the related domain names we extract their network fea-
tures, as explained in Section 3.2.1. We then use the extracted
feature vectors to train a statistical classifier that will be able
to recognize whether a new domain name d has network char-
acteristics similar to the popular websites we modeled.

In our current implementation of Notos we model the fol-
lowing classes of domain names:

• Popular Domains. This class consists of a large
set of domain names under the following DNS
zones: google.com, yahoo.com, amazon.com, ebay.com,
msn.com, live.com, myspace.com, and facebook.com.

• Common Domains. This class of domains includes do-
main names under the top one hundred zones, accord-
ing to alexa.com. We exclude from this group all the
domain names already included in the Popular Domains
class (which we model separately).

• Akamai Domains. Akamai is a large content deliv-
ery network (CDN), and the domain names related to
this CDN have very peculiar network characteristics. To
model the network profile of Akamai’s domain names,
we collect a set of domains under the following zones:

akafms.net, akamai.net, akamaiedge.net, akamai.com,
akadns.net, and akamai.com.

• CDN Domains. In this class we include domain
names related to CDNs other than Akamai. For ex-
ample, we collect domain names under the follow-
ing zones: panthercdn.com, llnwd.net, cloudfront.net,
nyud.net, nyucd.net and redcondor.net. We chose not
to aggregate these CDN domains and Akamai’s domains
in one class, since we observed that Akamai’s domains
have a very unique network profile, as we discuss in Sec-
tion 4. Therefore, learning two separate models for the
classes of Akamai Domains and CDN Domains allows
use to achieve better classification accuracy during the
on-line mode, compared to learning only one model for
both classes (see Section 3.3.5).

• Dynamic DNS Domains. This class includes a large set
of domain names registered under two of the largest dy-
namic DNS providers, namely No-IP (no-ip.com) and
DynDNS (dyndns.com).

For each class of domains, we train a statistical classifier
to distinguish between one of the classes and all the others.
Therefore, we train five different classifiers. For example,
we train a classifier that can distinguish between the class of
Popular Domains and all other classes of domains. That is,
given a new domain name d, this classifier is able to recog-
nize whether d’s network profile looks like the profile of a
well-known popular domain or not. Following the same logic
we, can recognize network profiles for the other classes of do-
mains.

3.3.3 Building Domain Name Clusters

In this phase, the reputation engine takes the domain names
collected in our pDNS database during a training period, and
builds clusters of domains that share similar network and zone
based features. The overview of this module can be seen
in Figure 4(b). We perform clustering in two steps. In the
first step we only use the network-based features to create
coarse-grained clusters. Then, in the second step, we split
each coarse-grained cluster into finer clusters using only the
zone-based features, as shown in Figure 5.

Network-based Clustering The objective of network-based
clustering is to group domains that share similar levels of
agility. This creates separate clusters of domains with “sta-
ble” network characteristics and “non-stable” networks (like
CDNs and malicious flux networks).

Zone-based Clustering After clustering the domain names
according to their network-based features, we further split the
network-based clusters of domain names into finer groups.
In this step, we group domain names that are in the same



Figure 5. Network & zone based clustering pro-
cess in Notos, in the case of a Akamai [A] and a
malicious [B] domain name.
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Figure 6. The output from the network profiling
module, the domain clustering module and the ev-
idence vector will assist the reputation function to
assign the reputation score to the domain d.

network-based cluster and also share similar zone-based
features. To better understand how the zone-based clustering
works, consider the following examples of zone-based clus-
ters:

Cluster 1:

..., 72.247.176.81 e55.g.akamaiedge.net, 72.247.176.94 e68.g.akamaiedge.net, 72.247.176.146
e120.g.akamaiedge.net, 72.247.176.65 e39.na.akamaiedge.net, 72.247.176.242
e216.g.akamaiedge.net, 72.247.176.33 e7.g.akamaiedge.net, 72.247.176.156

e130.g.akamaiedge.net, 72.247.176.208 e182.g.akamaiedge.net, 72.247.176.198
e172.g.akamaiedge.net, 72.247.176.217 e191.g.akamaiedge.net, 72.247.176.200
e174.g.akamaiedge.net, 72.247.176.99 e73.g.akamaiedge.net, 72.247.176.103
e77.g.akamaiedge.net, 72.247.176.59 e33.c.akamaiedge.net, 72.247.176.68

e42.gb.akamaiedge.net, 72.247.176.237 e211.g.akamaiedge.net, 72.247.176.71
e45.g.akamaiedge.net, 72.247.176.239 e213.na.akamaiedge.net, 72.247.176.120

e94.g.akamaiedge.net, ...

Cluster 2:

..., 90.156.145.198 spzr.in, 90.156.145.198 vwui.in, 90.156.145.198 x9e.ru, 90.156.145.50
v2802.vps.masterhost.ru, 90.156.145.167 www.inshaker.ru, 90.156.145.198 x7l.ru,

90.156.145.198 c3q.at, 90.156.145.198 ltkq.in, 90.156.145.198 x7d.ru,
90.156.145.198 zdlz.in, 90.156.145.159 www.designcollector.ru, 90.156.145.198

x7o.ru, 90.156.145.198 q5c.ru, 90.156.145.159 designtwitters.com, 90.156.145.198
u5d.ru, 90.156.145.198 x9d.ru, 90.156.145.198 xb8.ru, 90.156.145.198 xg8.ru,

90.156.145.198 x8m.ru, 90.156.145.198 shopfilmworld.cn, 90.156.145.198
bigappletopworld.cn, 90.156.145.198 uppd.in, ...

Each element of the cluster is a domain name - IP ad-
dress pair. These two groups of domains belonged to the
same network cluster, but were separated into two different
clusters by the zone-based clustering phase. Cluster 1 con-
tains domain names belonging to Akamai’s CDN, while the
domains in Cluster 2 are all related to malicious websites that
distribute malicious software. The two clusters of domains
share similar network characteristics, but have significantly
different zone-based features. For example, consider domain
names d1=“e55.g.akamaiedge.net” from the first cluster, and
d2=“spzr.in” from the second cluster. The reason why d1 and
d2 were clustered in the same network-based cluster is because
the set of RHIPs (see Section 3.1) for d1 and d2 have similar
characteristics. In particular, the network agility properties of
d2 make it look like if it was part of a large CDN. However,

when we consider the set of RHDNs for d1 and d2, we can
notice that the zone-based features of d1 are much more “sta-
ble” than the zone-based features of d2. In other words, while
the RHDNs of d1 share strong domain name similarities (e.g.,
they all share the substring “akamai”) and have low variance of
the string features (see Section 3.2.2), the strong zone agility
properties of d2 affect the zone-based features measured on
d2’s RHDNs and make d2 look very different from d1.

One of the main advantages of Notos is the reliable as-
signment of low reputation scores to domain names partici-
pating in “agile” malicious campaigns. Less agile malicious
campaigns, e.g., Fake AVs campaigns may use domain names
structured to resemble CDN related domains. Such strate-
gies would not be beneficial for the FakeAV campaign, since
domains like virus-scan1.com, virus-scan2.com,
etc., can be trivially blocked by using simple regular expres-
sions [16]. In other words, the attackers need to introduce
more “agility” at both the network and domain name level in
order to avoid simple domain name blacklisting. Notos would
only require a few labeled domain names belonging to the ma-
licious campaign for training purposes, and the reputation en-
gine would then generalize to assign a low reputation score to
the remaining (previously unknown) domain names that be-
long to the same malicious campaign.

3.3.4 Building the Reputation Function

Once we build a model of well-known network profiles (see
Section 3.3.2) and the domain clusters (see Section 3.3.3), we
can build the reputation function. The reputation function will
assign a reputation score in the interval [0, 1] to domain names,
with 0 meaning low reputation (i.e., likely malicious) and 1
meaning high reputation (i.e., likely legitimate). We imple-
ment our reputation function as a statistical classifier. In order
to train the reputation function, we consider all the domain



names di, i = 1, .., n in Notos’ knowledge base, and we feed
each domain di to the network profiles module and to the do-
main clusters module to compute two output vectors NM(di)
and DC(di), respectively. We explain the details of how
NM(di) and DC(di) are computed later in Section 3.3.5. For
now it sufficient to consider NM(di) and DC(di) as two fea-
ture vectors. For each di we also compute an evidence fea-
tures vector EV (di), as described in Section 3.2.3. Let v(di)
be a feature vector that combines the NM(di), DC(di), and
EV (di) feature vectors. We train the reputation function us-
ing the labeled dataset L = {(v(di), yi)}i=1..n, where yi = 0
if di is a known malicious domain name, otherwise yi = 1.

3.3.5 On-Line Mode

After training is complete; the reputation engine can be used
in on-line mode (Figure 3) to assign a reputation score to new
domain names. For example, given an input domain name
d, the reputation engine computes a score S ∈ [0, 1]. Val-
ues of S close to zero mean that d appears to be related to
malicious activities and therefore has a low reputation. On
the other hand, values of S close to one signify that d ap-
pears to be associated with benign Internet services, and there-
fore has a high reputation. The reputation score is computed
as follows. First, d is fed into the network profiles module,
which consists of five statistical classifiers, as discussed in
Section 3.3.2. The output of the network profiles module is
a vector NM(d) = {c1, c2, ..., c5}, where c1 is the output of
the first classifier, and can be viewed as the probability that
d belongs to the class of Popular Domains, c2 is the proba-
bility that d belongs to the class of Common Domains, etc.
At the same time, d is fed into the domain clusters module,
which computes a vector DC(d) = {l1, l2, ..., l5}. The ele-
ments li of this vector are computed as follows. Given d, we
first extract its network-based features and identify the closest
network-based cluster to d, among the network-based clusters
computed by the domain clusters module during the off-line
mode (see Section 3.3.3). Then, we extract the zone-based
statistical features and identify the zone-based cluster closest
to d. Let this closest domain cluster be Cd. At this point, we
consider all the zone-based feature vectors vj ∈ Cd, and we
select the subset of vectors Vd ⊆ Cd for which the two fol-
lowing conditions are verified: i) dist(zd, vj) < R, where zd

is the zone-based feature vector for d, and R is a predefined
radius; ii) vj ∈ KNN(zd), where KNN(zd) is the set of k
nearest-neighbors of zd.

The feature vectors in Vd are related to domain names ex-
tracted from Notos’ knowledge base. Therefore, we can assign
a label to each vector vi ∈ Vd, according to the nature of the
domain name d from which vi was computed. The domains in
Notos’ knowledge base belong to different classes. In particu-
lar, we distinguish between eight different classes of domains,
namely Popular Domains, Common Domains, Akamai, CDN,
and Dynamic DNS, which have the same meaning as explained

in Section 3.3.2, and Spam Domains, Flux Domains, and Mal-
ware Domains.

In order to compute the output vector DC(d), we compute
the following five statistical features: the majority class label
L (e.g., L may be equal to Malware Domain), i.e., the label
that appears the most among the vectors vi ∈ Vd; the stan-
dard deviation of label frequencies, i.e., given the occurrence
frequency of each label among the vectors vi ∈ Vd we com-
pute their standard deviation; given the subset V

(L)
d ⊆ Vd of

vectors in Vd that are associated with label L, we compute
the mean, median and standard deviation of the distribution
of distances between zd and the vectors vj ∈ V

(L)
d .

3.3.6 Assigning Reputation Scores

Given a domain d, once we compute the vectors NM(d) and
DC(di) as explained above, we also compute the evidence
vector EV (d) as explained in Section 3.2.3. At this point, we
concatenate these three feature vectors into a sixteen dimen-
sional feature vector v(d), and we feed v(d) in input to our
trained reputation function (see Section 3.3.4). The reputa-
tion function computes a score S = 1− f(d), where f(d) can
be interpreted as the probability that d is a malicious domain
name. S varies in the [0, 1] interval, and the lower the value of
S, the lower d’s reputation.

4 Data Collection and Analysis

This section summarizes observations from passive DNS
measurements, and how professional, legitimate DNS services
are distinguished from malicious services. These observations
provided the ground truth for our dynamic domain name rep-
utation system. We also provide an intuitive example to illus-
trate these properties, using a few major Internet zones like
Akamai and Google.

4.1 Data Collection

The basic building block for our dynamic reputation rating
system is the historical or “passive” information from success-
ful A-type DNS resolutions. We use the DNS traffic from
two ISP-based sensors, one located on the US east coast (At-
lanta) and one located on the US west coast (San Jose). Addi-
tionally we use the aggregated DNS traffic from the different
networks covered by the SIE [3]. In total, our database col-
lected 27,377,461 unique resolutions from all these sources
over a period of 68 days, from 19th of July 2009 to 24th

September 2009.
Simple measurements performed on this large data set

demonstrate a few important properties leveraged by our se-
lected features. After just a few days the rate of new, unique
pDNS entries leveled off. The graph in Figure 7(b) shows
only about 100,000 to 150,000 new domains/day (with a brief
outage issue on the 53rd day), despite very large numbers of
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Figure 7. Various RRs growth trends observed in the pDNS DB over a period of 68 days

RRs arriving each day (shown in Figure 7(a)). This suggests
that most RRs are duplicates, and approximately after the first
few days, 94.7% – on average – from the unique RRs ob-
served in daily base at the sensor level are already recorded by
the passive DNS database. Therefore, even a relatively small
pDNS database may be used to deploy Notos. In Section 5, we
measure the sensitivity of our system to traffic collected from
smaller networks.

The remaining plots in Figure 7 show the daily growth of
our passive DNS database, from the point of view of five dif-
ferent zone classes. Figure 7(c) and (d) show the growth rate
associated with CDN networks (Akamai, and all other CDNs).
The number of unique IPs stays nearly constant with the num-
ber of unique domains (meaning that each new RR is a new
IP and a new child domain of the CDN). In a few weeks, most
of the IPs became known—suggesting that one can fully map
CDNs in a modest training set. This is because CDNs, al-
though large, always have a fixed number of IP addresses used
for hosting their high-availability services. Intuitively, we be-
lieve this would not be the case with malicious CDNs (e.g.,
flux networks), which use randomly spreading infections to
continually recruit new IPs.

The ratio of new IPs to domains diverges in Figure 7(e),
a plot of the rate of newly discovered RRs for popular web-
sites (e.g., Google, Facebook). Facebook notably uses unique
child domains for their Web-based chat client, and other top
Internet sites use similar strategies (encoding information in

the domain, instead of the URI), which explains the growth
in domains shown in Figure 7(e). These popular sites use a
very small number of IPs, however, and after a few weeks of
training our pDNS database identified all of them. Since these
popular domains make up a large portion of traffic in any trace,
our intuition is that simple whitelisting would significantly re-
duce the workload of a classifier.

Figure 7(f) shows the rate of pDNS growth for zones in
Dynamic DNS providers. These services, sometimes used by
botmasters, demonstrate a nearly matched ratio of new IPs to
new domains. The data excludes non-routable answers (e.g.,
dynamic DNS domains pointing to 127.0.0.1), since this con-
tains no unique network information. Intuitively, one can think
of dynamic DNS as a nearly complete bijection of domains to
IPs. Figure 7(g) shows the growth of RRs for alexa.com
top 100 domains. Unlike dynamic DNS domains, these points
to a small set of unique addresses, and most can be identified
in a few weeks’ worth of training.

A comparison of all the zone classes appears in Figure 7(h),
which shows the cumulative distribution of the unique RRs de-
tailed in Figure 7(c) through (g). The different rates of change
illustrate how each zone class has a distinct pattern of RR use:
some have a small IP space and highly variable domain names;
some pair nearly every new domain with a new IP. Learning
approximately 90% of all the unique RRs in each zone class,
however, only requires (at most) tens of thousands of distinct
RRs. The intuition from this plot is that, despite the very large



data set we used in our study, Notos could potentially work
with data observed from much smaller networks.

4.2 Building The Ground Truth

To establish ground truth, we use two different labeling
processes. First, we assigned labels to RRs at the time of their
discovery. This provided an initial static label for many do-
mains. Blacklists, of course, are never complete and always
dynamic. So our second labeling process took place during
evaluation, and monitored several well-known domain black-
lists and whitelists.

The data we used for labeling came from several sources.
Our primary source of blacklisting came from services
such as malwaredomainlist.com and malwaredo-
mains.com. In order to label IP addresses in our pDNS
database we also used the Sender Policy Block (SBL) list from
Spamhaus [18]. Such IPs are either known to send spam or
distribute malware. We also collected domain name and IP
blacklisting information from the Zeus tracker [30]. All this
blacklisting information was gathered before the first day of
August 2009 (during all the 15 days in which we collected
passive DNS data). Since blacklists traditionally lag behind
the active threat, we continued to collect all new data until the
end of our experiments.

Our limited whitelisting was derived from the top 500-
alexa.com domain names, as of the 1st of August 2009. We
reasoned that, although some malicious domains become pop-
ular, they do not stay popular (because of remediation), and
never break into the top tier of domain rankings. Likewise, we
used a list of the 18 most common 2LDs from various CDNs,
which composed the main corpus of our CDN labeled RRs.
Finally a list of 464 dynamic DNS second level domains al-
lowed us to identify and label domain name and IPs coming
from zones under dynamic DNS providers. We label our eval-
uation (or testing) data-set by aggregating updated blacklist
information for new malicious domain names and IPs from
the same lists.

To compute the honeypot features (presented in Sec-
tion 3.2.3) we need a malware analysis infrastructure that can
process as many “new” malware samples as possible. Our
honeypot infrastructure is similar to “Ether” [4] and is capa-
ble of processing malware samples in a queue. Every malware
sample was analyzed in a controlled environment for a time
period of five minutes. This process was repeated during the
last 15 days of July 2009. After 15 days of executions we
obtained a set of successful DNS resolutions (domain names
and IPs) that each malware looked up. We chose to execute
malware and collect DNS evidence through the same period
of time in which we aggregate the passive DNS database. Our
virtual machines are equipped with five popular commercial
anti-virus engines. If one of the engines identifies an exe-
cutable as malicious, we capture all domain names and the
corresponding IP mappings that the malware used during ex-

ecution. After excluding all domain names that belong to the
top 500 most popular alexa.com zones, we assemble the
main corpus of our “honeypot data”. We automated the crawl-
ing and collection of black list information and honeypot exe-
cution.

The reader should note that we chose to label our data in
as transparent way as possible. We used public blacklisting
information to label our training dataset before we build our
models and train the reputation function. Then we assigned
the reputation scores and validated the results again using the
same publicly available blacklist sources. It is safe to as-
sume that private IP and DNS blacklist will contain significant
more complete information with lower FP rates than the public
blacklists. By using such type of private blacklist the accuracy
of Notos’ reputation function should improve significantly.

5 Results

In this section, we present the experimental results of our
evaluation. We show that Notos can identify malicious domain
names sooner than public blacklists, with a low false posi-
tive rate (FP%) of 0.38% and high true positive rate (TP%)
of 96.8%. As a first step, we computed vectors based on
the statistical features (described in Section 3.2) from 250,000
unique RRs. This volume corresponds to the average volume
of new – previously unseen – RRs observed at two recursive
DNS servers in a major ISP in one day, as noted in Section 4,
Figure 7(b). These vectors were computed based on historic
passive DNS information from the last two weeks of DNS traf-
fic observed on the same two ISP recursive resolvers in Atlanta
and San Jose.

5.1 Accuracy of Network Profile Modeling

The accuracy of the Meta-Classification system (Fig-
ure 4(a)) in the network profile module is critical for the over-
all performance of Notos. This is because, in the on-line mode,
Notos will receive unlabeled vectors which must be classified
and correlated with what is already present in our knowledge
base. For example, if the classifier receives a new RR and as-
signs to it the label Akamai with very high confidence, that
implies the RR which produced this vector will be part of a
network similar to Akamai. However, this does not necessar-
ily mean that it is part of the actual Akamai CDN. We will see
in the next section how we can draw conclusions based on the
proximity between labeled and unlabeled RRs within the same
zone-based clusters. Furthermore, we discuss the accuracy
of the Meta-Classifier when modeling each different network
profile class (profile classes are described in Section 3.3.2).

Our Meta-Classifier consists of five different classifiers,
one for each different class of domains we model. We chose to
use a Meta-Classification system instead of a traditional sin-
gle classification approach because Meta-Classification sys-
tems typically perform better than a single statistical classi-



 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  0.05  0.1  0.15  0.2

T
ru

e 
P

os
iti

ve
 R

at
e

False Positive Rate

False Positive Rate vs True Positive Rate

Akamai
CDNs

Popular
Common
Dynamic

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
re

ci
si

on

Threshold

TP over All Pos. vs Threshold

Figure 8. ROC curves for all network profile
classes shows the Meta-Classifier’s accuracy.
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Figure 9. The ROC curve from the reputation func-
tion indicating the high accuracy of Notos.

fier [11, 2]. Throughout our experiments this proved to be
also true. The ROC curve in Figure 8, shows that the Meta-
Classifier can accurately classify RRs for all different network
profile classes.

The training dataset for the Meta-Classifier is composed
of sets of 2,000 vectors from each of the five network profile
classes. The evaluation dataset is composed of 10,000 vectors,
2,000 from each of the five network profile classes. The classi-
fication results for the domains in the Akamai, CDN, dynamic
DNS and Popular classes showed that the supervised learn-
ing process in Notos is accurate, with the exception of a small
number of false positives related to the Common class (3.8%).
After manually analyzing these false positives, we concluded
that some level of confusion between the vectors produced by
Dynamic DNS domain names and the vectors produced by
domain names in the Common class still remains. However,
this minor misclassification between network profiles does not
significantly affect the reputation function. This is because
the zone profiles of the Common and Dynamic DNS domain
names are significantly different. This difference in the zone
profiles will drive the network-based and zone-based cluster-
ing steps to group the RRs from Dynamic DNS class and Com-
mon class in different zone-based clusters.

Despite the fact that the network profile modeling process
provides accurate results, it doesn’t mean this step can inde-
pendently designate a domain as benign or malicious. The
clustering steps will assist Notos to group vectors not only
based their network profiles but also based on their zone prop-
erties. In the following section we show how the network and
zone profile clustering modules can better associate similar
vectors, due to properties of their domain name structure.

5.2 Network and Zone-Based Clustering Results

In the domain name clustering process (Section 3.3.3, Fig-
ure 4(b)) we used X-Means clustering in series, once for the
network-based clustering and again for the zone-based clus-
tering. In both steps we set the minimum and maximum num-
ber of clusters to one and the total number of vectors in our
dataset, respectively. We run these two steps using different
numbers of zone and network vectors. Figure 11 shows that
after the first 100,000 vectors are used, the number of network
and zone clusters remains fairly stable. This means that by
computing at least 100,000 network and zone vectors—using
a 15-day old passive DNS database—we can obtain a stable
population of zone and network based clusters for the moni-
tored network. We should note that reaching this network and
cluster equilibrium does not imply that we do not expect to
see any new type of domain names in the ISP’s DNS recur-
sive. This just denotes that based on the RRs present in our
passive DNS database, and the daily traffic at the ISP’s recur-
sive, 100,000 vectors are enough to reflect the major network
profile trends in the monitored networks. Figure 11 indicates
that a sample set of 100,000 vectors may represent the major
trends in a DNS sensor. It is hard to safely estimate the exact
minimum number of unique RRs that is sufficient to identify
all major DNS trends. An answer to this should be based upon
the type, size and utilization of the monitored network. With-
out data from smaller corporate networks it is difficult for us
to make a safe assessment about the minimum number of RR
necessary for reliably training Notos.

The evaluation dataset we used consisted of 250,000 unique
domain names and IPs. The cluster overview is shown in Fig-
ure 10 and in the following paragraphs we discuss some in-



Figure 10. With the 2-step clustering step, Notos
is able to cluster large trends of DNS behavior.
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Figure 11. By using different number of network
and zone vectors we observe that after the first
100,000, there is no significant variation in the ab-
solute number of produced clusters during the 1st

and 2nd level clustering steps.

teresting observations that can be made from these network-
based and zone-based cluster assignments. As an example,
network clusters 0 and 1 are predominantly composed of zones
participating in fraudulent activities like spam campaigns (yel-
low) and malware dropping or C&C zones (red). On the other
hand, network clusters 2 to 5 contain Akamai, dynamic DNS,
and popular zones like Google, all labeled as benign (green).
We included the unlabeled vectors (blue) based on which we
evaluated the accuracy of our reputation function. We have a
sample of unlabeled vectors in almost all network and zone
clusters. We will see how already labeled vectors will assist
us to characterize the unlabeled vectors in close proximity.

Before we describe two sample cases of dynamic charac-
terization within zone-based clusters, we need to discuss our
radius R and k value selection (see Section 3.3.5). In Sec-
tion 3.3.5, we discuss how we build domain name clusters.
At that point we introduced the dynamic characterization pro-
cess that gives Notos the ability to utilize already label vectors
in order to characterize a newly obtained unlabeled vector by
leveraging our prior knowledge. After looking into the distri-
bution of Euclidean distances between unlabeled and labeled
vectors within the same zone clusters, we concluded that in the
majority of these cases the distances were between 0 and 1000.
We tested different values of the radius R and the value of k
for the K-nearest neighbors (KNN) algorithm. We observed
that the experiments with radius values between 50 and 200
provided the most accurate reputation rating results, which we
describe in the following sections. We also observed that if
k > 25 the accuracy of the reputation function is not affected
for all radius values between 50 and 200. Based on the results

of these pilot experiments, we decided to set k equal to 50 and
the radius distance equal to 100.

Figures 12 and 13 show the effect of this radius selection
on two different types of clustering problems. In Figure 12,
unknown RRs for akamaitech.net are clustered with a
labeled vector akamai.net. As noted in Section 4, CDNs
such as Akamai tended to have new domain names with each
RR, but to also reuse their IPs. By training with only a small
set of labeled akamai.net RRs, our classifier put the new,
unknown RRs for akamaitech.net into the existing Aka-
mai class. IP-specific features therefore brought the new RRs
close to the existing labeled class. Figure 12 compresses all
of the dimensions into a two-dimensional plot (for easier vi-
sual representation), but it is clear the unknown RRs were all
within a distance of 100 to the labeled set.

This result validates the design used in Section 4, where
just a few weeks’ worth of labeled data was necessary for
training. Thus, one does not have to exhaustively discover all
whitelisted domains. Notos is resilient to changes in the zone
classes we selected. Services like CDNs and major web sites
can add new IPs or adjust domain formats, and these will be
automatically associated with a known labeled class.

The ability of Notos to associate new RRs based on lim-
ited labeled inputs is demonstrated again in Figure 13. In
this case, labeled Zeus domains (approximately 2,900 RRs
from three different Zeus-related BLs) were used to clas-
sify new RRs. Figure 13 plots the distance between the la-
beled Zeus-related RRs and new (previously unknown) RRs
that are also related Zeus botnets. As we can see from
Section 4, most of the new (unlabeled) Zeus RRs lay very



-400

-200

 0

 200

 400

-400 -200  0  200  400  600  800  1000

C
M

D
 S

ca
le

 (
1)

CMD Scale (2)

Clustering akamai.net and akamaitech.net Vectors

akamai.net akamaitech.net

Figure 12. An example of characterizing the aka-
maitech.net unknown vectors as benign based on
the already labeled vectors (akamai.net) present
in the same cluster.

-1000

-800

-600

-400

-200

 0

 200

-4000 -3000 -2000 -1000  0  1000  2000  3000  4000

C
M

D
 2

D
 S

ca
le

 (
1)

CMD 2D Scale (2)

Clustering The Zeus Botnet

Labeled Zeus Unlabeled Zeus

Figure 13. An example of how the Zeus botnet
clusters during our experiments. All vectors are
in the same network cluster and in two different
zone clusters.

close, and often even overlap, to known Zeus RRs. This
is a good result, because Zeus botnets are notoriously hard
to track, given the botnet’s extreme agility. Tracking sys-
tems such as zeustracker.abuse.ch and malware-
domainlist.com have limited visibility into the botnet,
and often produce disjoint blacklists. Notos addresses this
problem, by leveraging a limited amount of training data to
correctly classify new RRs. During our evaluation set, Notos
correctly detected 685 new (previously unknown) Zeus RRs.

5.3 Accuracy of the Reputation Function

The first thing that we address in this section is our deci-
sion to use a Decision Tree using Logit-Boost strategy (LAD)
as the reputation function. Our decision is motivated by the
time complexity, the detection results and the precision (true
positives over all positives) of the classifier. We compared
the LAD classifier to several other statistical classifiers using
a typical model selection procedure [6]. LAD was found to
provide the most accurate results in the shortest training time
for building the reputation function. As we can see from the
ROC curve in Figure 9, the LAD classifier exhibits a low false
positive rate (FP%) of 0.38% and true positive rate (TP%) of
96.8%. It is was noting that these results were obtained using
10-fold cross-validation, and the detection threshold was set
to 0.5. The dataset using for the evaluation contained 10,719
RRs related to 9,530 known bad domains. The list of known
good domains consisted of the top 500 most popular domains
according to Alexa.

We also benchmarked the reputation function on other two
datasets containing a larger number of known good domain

names. We experimented with bot the top 10,000 and top
100,000 Alexa domain names. The detection results for these
experiments are as follows. When using the top 10,000 Alexa
domains, we obtained a true positive rate of 93.6% and a false
positive rate of 0.4% (again using 10-fold cross-validation and
a detection threshold equal to 0.5). As we can see, these results
are not very different from the ones we obtained using only
the top 500 Alexa domains. However, when we extended our
list of known good domains to include the top 100,000 Alexa
domain names, we observed a significant decrease of the true
positive rate and an increase in the false positives. Specifically,
we obtained a TP% of 80.6% and a FP% of 0.6%. We believe
this degradation in accuracy may be due to the fact that the
top 100,000 Alexa domains include not only professionally
run domains and network infrastructures, but also include less
good domain names, such as file-sharing, porn-related web-
sites, etc., most of which are not run in a professional way and
have disputable reputation1.

We also wanted to evaluate how well Notos performs, com-
pared to static blacklists. To this end, we performed a number
of experiments as follows. Given an instance of Notos trained
with data collected up to July 31, 2009, we fed Notos with
250,000 distinct RRs found in DNS traffic we collected on
August 1, 2009. We then computed the reputation score for
each of these RRs. First, we set the detection threshold to 0.5,
and with this threshold we identified 54,790 RRs that had a
low reputation (lower than the threshold). These RRs where

1A quick analysis of the top 100,000 Alexa domains reported that about
5% of the domains appeared in the SURBL (www.surbl.org) blacklist, at
certain point in time. A more rigorous evaluation of these results is left to
future work.
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Figure 14. Dates in which various blacklists con-
firmed that the RRs were malicious after Notos
assigned low reputation to them on the 1st of
August.

related to a total of 10,294 distinct domain names (notice that
a domain name may map to more than one IP, and this ex-
plains the higher number of RRs). Of these 10,294 domains,
7,984 (77.6%) appeared in at least one of the public black-
lists we used for comparison (see Section 4) within 60 day
after August 1, and were therefore confirmed to be malicious.
Figure 14(a) reports the number and date in which RRs classi-
fied as having low reputation by Notos appeared in the public
blacklists. The remaining three plots (Figure 14(b), (c) and
(d)), report the same results organized according to the type of
malicious domains. In particular, it is worth noting that Notos
is able to detect never-before-seen domain names related to the
Zeus botnet several days or even weeks before they appeared
in any of the public blacklists.

For the remaining 22.4% of the 10,294 domains we consid-
ered, we were not able to draw a definitive conclusion. How-
ever, we believe many of those domains are involved in some
kind of more or less malicious activities. We also noticed
that 7,980 or the 7,984 confirmed bad domain names were
assigned a reputation score lower or equal to 0.15, and that
none of the other non-confirmed suspicious domains received
a score lower than this threshold. In practice, this means that
an operator who would like to use Notos as a stand-alone dy-
namic blacklisting system while limiting the false positives to
a negligible (or even zero) amount may fine-tune the detection
threshold and set it around 0.15.

5.4 Discussion

This section discusses the limits of Notos, and the poten-
tial for evasion in real networks. On of the main limitations
is the fact that Notos is unable to assign reputation scores for

domain names with very little historic (passive DNS) informa-
tion. Sufficient time and a relatively large passive DNS collec-
tion are required to create an accurate passive DNS database.
Therefore, if an attacker always buys new domain names and
new address space, and never reuses either resource for any
other malicious purposes, Notos will not be able to accurately
assign a reputation score to the new domains. In the IPv4
space, this is very unlikely to happen due to the impending ex-
haustion of the available address space. Once IPv6 becomes
the predominant protocol, however, this may represent a prob-
lem for the statistical features we extract based on IP granular-
ity. However, we believe the features based on BGP prefixes
and AS numbers would still be able to capture the agility typ-
ical of malicious DNS hosting behavior.

As long as newly generated domain names share some net-
work properties (e.g., IPs or BGP prefixes) with already la-
beled RRs, Notos will be able to assign an accurate reputa-
tion score. In particular, since network resources are finite and
more expensive to renew or change, even if the domain prop-
erties change, Notos can still identify whether a domain name
may be associated with malicious behavior. In addition, if a
given domain name for which we want to know the reputation
is not present in the passive DNS DB, we can actively probe it,
thus forcing a related passive DNS entry. However, this is pos-
sible only when the domain successfully maps to a non-empty
set of IPs.

Our experimental results using the top 10,000 Alexa do-
main names as known good domains, report a false positive
fate of 0.4%. While low in percentage, the absolute number of
false positives may become significant in those cases in which
very large numbers of new domain names are fed to Notos on
a daily bases (e.g., in case of deployment in a large ISP net-
work). However, we envision our Notos reputation system to
be use not as a stand-alone system, but rather in cooperation
with other defense mechanisms. For example, Notos may be
used in collaboration with spam-filtering system. If an email
contains a link to a website whose domain name has a low rep-
utation score according to Notos, the spam filter can increase
the total spam-score of the email. However, if the rest of the
email appears to be benign, the spam filter may still decide to
accept the email.

During our manual analysis of (a subset of) the false pos-
itives encountered in our evaluations we were able to draw
some interesting observation. We found that a number of le-
gitimate sites (e.g., goldsgym.com) are being hosted in net-
works that host large volumes of malicious domain names in
them. In this cases Notos will tend to penalize the reputation
of this legitimate domains because they reside in a bad neigh-
borhood. In time, the reputation score assigned to these do-
mains score may change, if the administrators of the network
in which the benign domain name are hosted take actions to
“clean up” their networks and stop hosting bad domain names
within their address space.



Domain Name IP Date

google-bot004.cn 213.182.197.229 08-15
analf.net 222.186.31.169 08-15
pro-buh.ru 89.108.67.83 08-15
ammdamm.cn 92.241.162.55 08-15
briannazfunz.com 95.205.116.55 08-15
mybank-of.com 59.125.229.73 08-15
oc00co.com 212.117.165.128 08-15
avangadershem.com 195.88.190.29 08-19
securebizccenter.cn 122.70.145.140 08-19
adobe-updating-service.cn 59.125.231.252 09-02
0md.ru 219.152.120.118 09-19
avrev.info 98.126.15.186 09-27
g00glee.cn 218.93.202.100 09-02

Table 1. Sample cases form Zeus domains de-
tected by Notos and the corresponding days
that appeared in the public BLs. All evidence
information in this table were harvested from
zeustracker.abuse.ch.

Domain Name IP Type Src Date

lzwn.in 94.23.198.97 MAL [1] 08-26
3b9.ru 213.251.176.169 MAL [2] 08-30
antivirprotect.com 64.40.103.249 RAV [3] 09-05
1speed.info 212.117.163.165 CWS [2] 09-05
spy-destroyer.com 67.211.161.44 CWS [4] 09-05
free-spybot.com 63.243.188.110 RAV [2] 09-05
a3l.at 89.171.115.10 MAL [2] 09-09
gidromash.cn 211.95.79.170 BOT [2] 09-13
iantivirus-pro.com 188.40.52.180 KBF [5] 09-19
ericwanhouse.cn 220.196.59.19 EXP [6] 09-22
1165651291.com 212.117.165.126 RAV [2] 10-06

Table 2. Anecdotal cases of malicious domain
names detected by Notos and the correspond-
ing days that appeared in the public BLs .[1]:
hosts-file.net, [2]: malwareurl.com, [3] siteadvisor.com, [4]
virustotal.com, [5] ddanchev.blogspot.com, [6] malwaredo-
mainlist.com

6 Conclusion

In this paper, we presented Notos, a dynamic reputation
system for DNS. To the best of our knowledge, Notos is the
first system that can assign a dynamic reputation score to any
domain name in a DNS query that traverses the edge of a
monitored network. Notos harvests information from multiple
sources such as the DNS zone domain names belongs to, the
related IP addresses, BGP prefixes, AS information and hon-
eypot analysis to maintain up-to-date DNS information about
legitimate and malicious domain names. Based on this infor-
mation, Notos uses automated classification and clustering al-
gorithms to model network and zone behaviors of legitimate
and malicious domains, and then applies these models to com-
pute a reputation score for a (new) domain name.

Our evaluation using real-world data, which includes traf-
fic from large ISP networks, demonstrates that Notos is highly
accurate in identifying new malicious domains in the moni-
tored DNS query traffic, with a true positive rate of 96.8% and
false positive rate of 0.38%. In addition, Notos is capable of
identifying these malicious domain weeks or even months be-
fore they appear in public blacklists, thus enabling proactive
security countermeasures against cyber attacks.
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