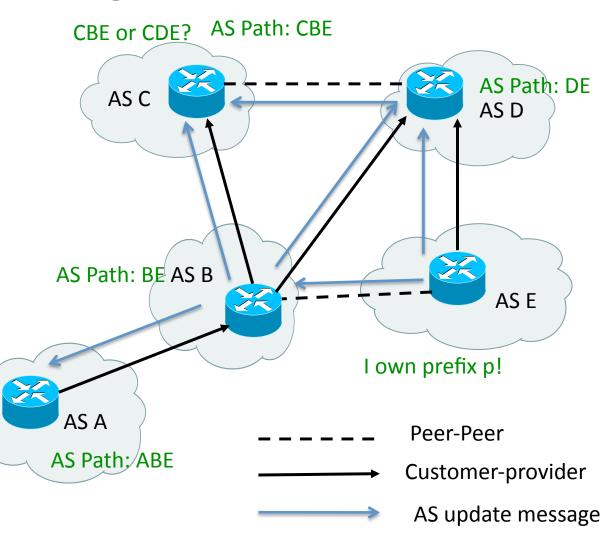


Locating Prefix Hijackers using LOCK

Tongqing Qiu⁺, Lusheng Ji^{*}, Dan Pei^{*}
Jia Wang^{*}, Jun (Jim) Xu⁺, Hitesh Ballani⁺⁺

- + College of Computing, Georgia Tech
- * AT&T Lab Research
- ++ Department of Computer Science, Cornell University

Outline


- Background & Motivation
- System Architecture
- Basic algorithm and improvements
- Evaluation
- Conclusion

Background

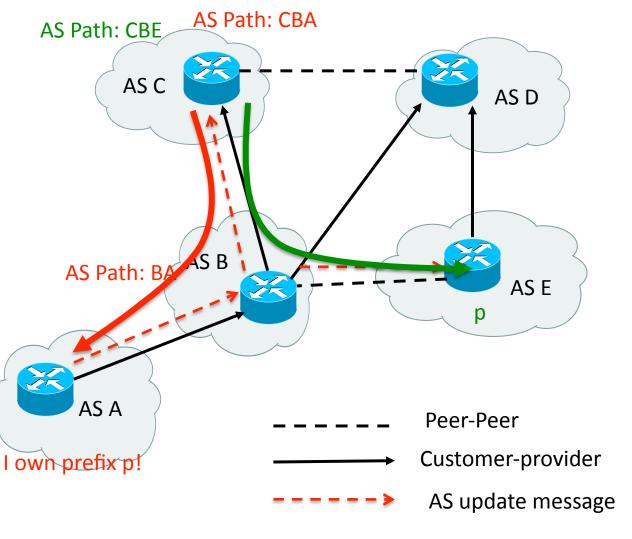
Autonomous System (AS)

 Border Gateway Protocol (BGP)

Profit-driven policy

Background (cont.)

 BGP lacks authentication


 Fabricated AS announcement

Prefix hijacking

blackholing

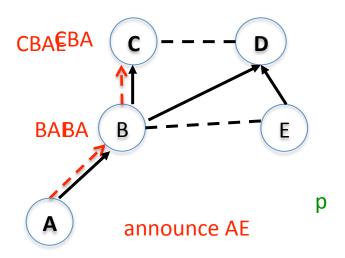
• imposture

interception

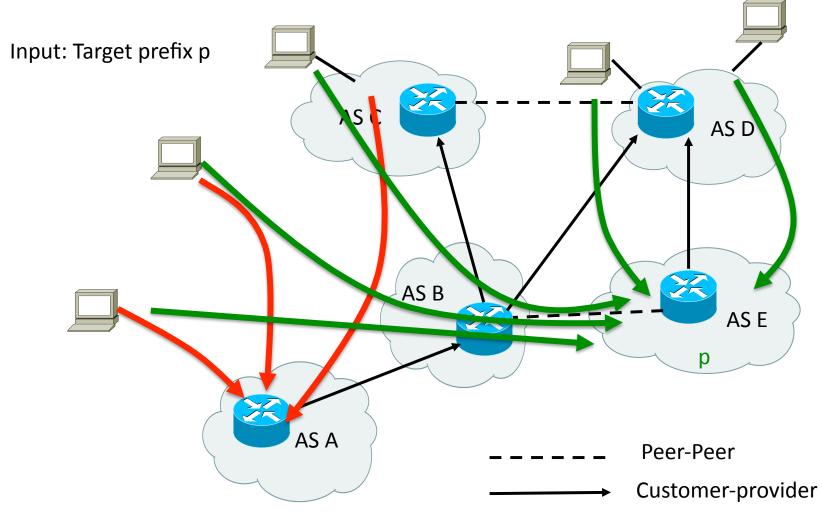
State of Art

Proactive

- Prevent the happenings of hijacks
 - e.g. [Kent et al. JSAC 00] [Aiello et al. CCS 03], [Subramanian et al. NSDI 04], [Karlin et al. ICNP 06], etc.
- Deployment issues:
 - Routing infrastructure modification
 - Difficulties of incremental deployment
 - PKI requirement


Reactive

- Detection
 - e.g. [Lad et al. Usenix Secuirty 06], [Ballani et al. Sigcomm 07], [Zheng et al. Sigcomm 07], [Hu et al. IEEE S&P 07], [Zhang et al. Sigcomm 08], etc.
- Recovery
 - e.g. [Zhang et al. CoNext 07]


A Complete and Automated Solution?

- Locating is important
 - Provide key information for recovery/mitigation
- Locating is not trivial
 - Current practice
 - Indentify newly appeared origin AS of prefix p

System Architecture of LOCK

Output: A is the hijacker!

Key Components of LOCK

- Monitor Selection (from candidates)
 - Maximize the likelihood of observing hijacking events on the target prefix
 - Maximize the diversity of paths from monitors to the target prefix
- Locating Scheme
 - Using AS path information
 - Infer the hijacker location (how?)

Two key observations

Countermeasure ability

 The hijacker cannot manipulate the portion of AS path from a polluted vantage point to the upstream neighbor AS

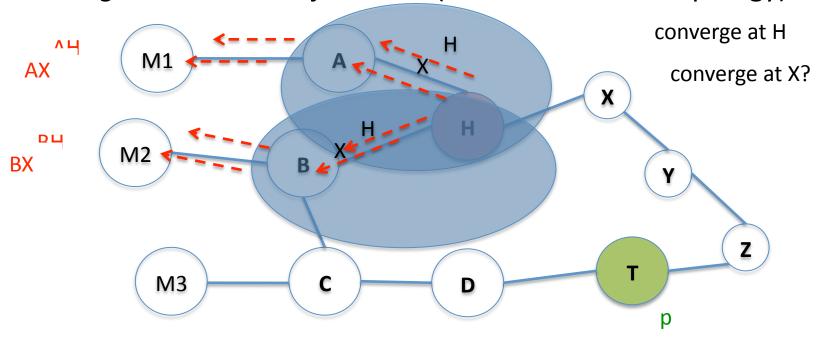
of the hijacker AS

M1

M2

M3

C


D

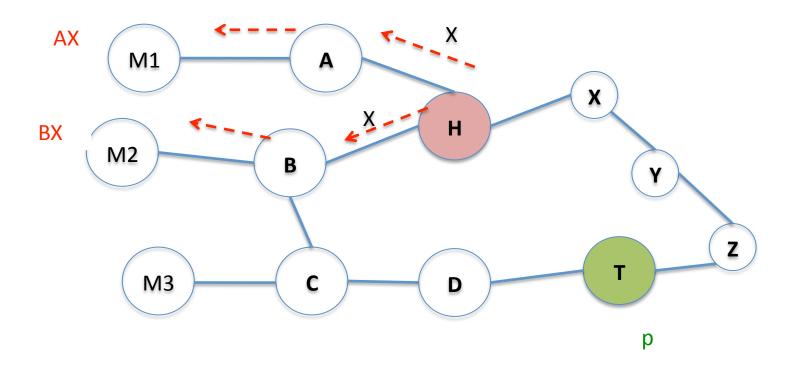
T

T owns prefix p

Two key observations

 Convergence: The trustworthy portion of polluted AS paths from multiple vantage points to a hijacked victim AS prefix converge around the hijacker AS (based on real AS topology).

Basic Locating Algorithm


Indentifying hijacker search space

- Neighborset of one AS: ASes one-hop away (include itself)
- Based on existing AS topology
- The union of neighborset of all ASes on all polluted paths (why?)
- The hijacker should be in the space (based on observation 1)

Ranking all ASes in the search space

- Based on observation 2
- The more frequently an AS appears, the higher its ranking is
- Tie breaker: The closer an AS to the monitors, the higher its ranking is

Basic Locating Algorithm Example

Monitors	Polluted AS PATH	Neighbor Set	Hijacker List
M1	AX	(A H) (H X Y)	H > (4 times)
M2	ВХ	(B H C) (H X Y)	X > Y > (2 times) A = B > C (once)

Improvements

- Search space of basic algorithm
 - Trim the suspect list
- Improvement I: AS relationship
 - Basic algorithm neighborset
 - Valley free
 - Trim the neighorset on "trustworthy" ASes
- Improvement II: excluding "innocent" ASes
- Two improvements may introduce false negative

Evaluation

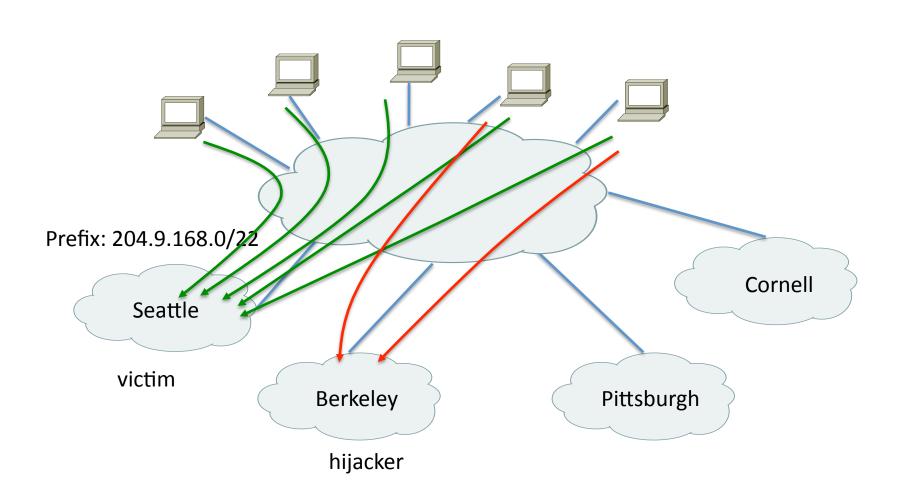
- Three sets of experiments:
 - Simulating synthetic prefix hijacking events
 - Reconstructed previous known hijacking events
 - Real prefix hijacking events

Simulating Synthetic Prefix Hijacking Events

- Hijacker h and source s from 73 Planetlab nodes
 - http://www.planet-lab.org/
- 451 Target prefix *t*
 - Multiple Origin ASes (MOAS) prefix
 - Single Origin Ases with large traffic
 - Popular website (based on Alexa ranking)
- Emulate all possible hijacking events
 - Based on the combination of (s, h, t)
 - Imposture, interception, and malicious (countermeasure) cases
- Monitor selection
 - From Planetlab nodes
 - Based on the target prefix

Effectiveness and Improvement

	All monitors					
Algorithms	Imposture		Interception		Malicious	
	Accuracy	FNR	Accuracy	FNR	Accuracy	FNR
В	88.7%	0.00%	86.3%	0.00%	85.4%	0.00%
B+I1	89.8%	0.03%	90.3%	0.17%	88.6%	0.14%
B+I2	91.3%	0.09%	93.1%	0.16%	90.4%	0.10%
B+I1+I2	94.2%	0.09%	94.3%	0.24%	93.1%	0.18%


- The accuracy of basic algorithm is 85%+
- Combine both improvements, the accuracy is up to 94.3%
- False negative ratio is relatively low.

Reconstruct Previously-known Hijacking Events

7 hijacking events Locate all hijackers

Victim AS	Hijacker AS	Date	#monitors
3691	6461	March 15, 2008	16
36561 (YouTube)	17557	February 24, 2008	9
11643 (eBay)	10139	November 30, 2007	7
4678	17606	January 15, 2007	8
7018	31604	January 13, 2007	13
1299	9930	September 7, 2006	5
701, 1239	23520	June 7, 2006	12

Real Hijacking Events

Real Hijacking Events (cont.)

Victim	Hijacker	Launch Time	Response Time	Required
Site	Site	(EST)	(minutes)	monitors
Cornell	Berkeley	May 2 12:01:31	13	12
	Seattle	May 2 16:12:47	7	10
	Pittsburgh	May 2 17:34:39	9	9
Pittsburgh	Cornell	May 2 19:32:09	13	14
	Berkeley	May 2 22:50:25	11	15
	Seattle	May 3 02:26:26	12	15
Seattle	Cornell	May 3 11:20:42	9	8
	Pittsburgh	May 3 13:03:10	12	12
	Berkeley	May 3 19:16:16	8	18
Berkeley	Seattle	May 3 22:35:07	13	14
	Pittsburgh	May 4 00:01:01	12	16
	Cornell	May 4 11:19:20	11	10

Conclusion

- LOCK to locate prefix hijacker ASes
 - First study of hijacker location problem
 - Locate the hijacker even when countermeasures are engaged
 - Extensively evaluation illustrates high location accuracy

Acknowledgement

 Authors Tongqing Qiu and Jun (Jim) Xu would like to acknowledge the generous support from the NSF CyberTrust program (specifically CNS 0716423)

- Thanks You!
- Questions