
Cryptographic Hash FunctionsCryptographic Hash Functions
and their many applicationsand their many applications

Shai Halevi Shai Halevi –– IBM ResearchIBM Research

USENIX Security USENIX Security –– August 2009August 2009

Thanks to Charanjit Jutla and Hugo Krawczyk

What are hash functions?What are hash functions?

 Just a method of compressing stringsJust a method of compressing strings

–– E.g., H : {0,1}* E.g., H : {0,1}* {0,1}{0,1}160160

–– Input is called Input is called ““messagemessage””, output is , output is ““digestdigest””

 Why would you want to do this?Why would you want to do this?

–– Short, fixedShort, fixed--size better than long, variablesize better than long, variable--size size

 True also for nonTrue also for non--crypto hash functionscrypto hash functions

–– Digest can be added for redundancyDigest can be added for redundancy

–– Digest hides possible structure in messageDigest hides possible structure in message

Typically using Typically using MerkleMerkle--DamgDamgåårdrd iteration:iteration:

1.1. Start from a Start from a ““compression functioncompression function””

–– h: {0,1}h: {0,1}b+nb+n{0,1}{0,1}nn

2.2. Iterate itIterate it

How are they built?How are they built?

 =160 bits

|M|=b=512 bits

160 bits

 …

M1 M2 ML-1 ML

IV=d0
d1

d2 dL-1 dL d=H(M)

But not
always…

What are they good for?What are they good for?

““Request for Candidate Algorithm NominationsRequest for Candidate Algorithm Nominations””, ,
---- NIST, November 2007NIST, November 2007

“Modern, collision resistant hash functions were designed to create
small, fixed size message digests so that a digest could act as a

proxy for a possibly very large variable length message in a digital

signature algorithm, such as RSA or DSA. These hash functions

have since been widely used for many other “ancillary” applications,

including hash-based message authentication codes, pseudo

random number generators, and key derivation functions.”

Some examplesSome examples

 Signatures: Signatures: sign(Msign(M) = RSA) = RSA--11(H(M))(H(M))

 MessageMessage--authentication: authentication: tag=tag=H(key,MH(key,M))

 Commitment: Commitment: commit(Mcommit(M) = H(M,) = H(M,……))

 Key derivation: Key derivation: AESAES--key = H(DHkey = H(DH--value)value)

 Removing interaction Removing interaction [Fiat-Shamir, 1987]

–– Take interactive identification protocolTake interactive identification protocol

–– Replace one side by a hash functionReplace one side by a hash function
Challenge = Challenge = H(smthngH(smthng, context), context)

–– Get nonGet non--interactive signature schemeinteractive signature scheme

smthng

challenge

response

A B

smthng, response

Part I: Random functions Part I: Random functions
vs. hash functionsvs. hash functions

Random functionsRandom functions

 What we really want is H that behaves What we really want is H that behaves
““just like a random functionjust like a random function””::

Digest d=H(M) chosen uniformly for each MDigest d=H(M) chosen uniformly for each M

–– Digest d=H(M) has no correlation with MDigest d=H(M) has no correlation with M

–– For distinct MFor distinct M11,M,M22,,……, digests , digests ddii==H(MH(Mii) are) are
completely uncorrelated to each othercompletely uncorrelated to each other

–– Cannot find collisions, or even nearCannot find collisions, or even near--collisionscollisions

–– Cannot find M to Cannot find M to ““hithit”” a specific da specific d

–– Cannot find fixedCannot find fixed--points (d = points (d = H(dH(d))))

–– etc.etc.

The The ““RandomRandom--Oracle paradigmOracle paradigm””

1.1. Pretend hash function is really this goodPretend hash function is really this good

2.2. Design a secure cryptosystem using itDesign a secure cryptosystem using it

 Prove security relative to a Prove security relative to a ““random oraclerandom oracle””

[Bellare-Rogaway, 1993]

The The ““RandomRandom--Oracle paradigmOracle paradigm””
[Bellare-Rogaway, 1993]

1.1. Pretend hash function is really this goodPretend hash function is really this good

2.2. Design a secure cryptosystem using itDesign a secure cryptosystem using it

 Prove security relative to a Prove security relative to a ““random oraclerandom oracle””

3.3. Replace oracle with a hash functionReplace oracle with a hash function

 Hope that it remains secureHope that it remains secure

The The ““RandomRandom--Oracle paradigmOracle paradigm””

1.1. Pretend hash function is really this goodPretend hash function is really this good

2.2. Design a secure cryptosystem using itDesign a secure cryptosystem using it

 Prove security relative to a Prove security relative to a ““random oraclerandom oracle””

3.3. Replace oracle with a hash functionReplace oracle with a hash function

 Hope that it remains secureHope that it remains secure

 Very successful paradigm, many schemesVery successful paradigm, many schemes

–– E.g., OAEP encryption, FDH,PSS signaturesE.g., OAEP encryption, FDH,PSS signatures

 Also all the examples from beforeAlso all the examples from before……

–– Schemes seem to Schemes seem to ““withstand test of timewithstand test of time””

[Bellare-Rogaway, 1993]

Random oracles: rationaleRandom oracles: rationale

 is some crypto scheme (e.g., signatures), is some crypto scheme (e.g., signatures),
that uses a hash function Hthat uses a hash function H

 proven secure when H is random functionproven secure when H is random function

 Any attack on realAny attack on real--world world must usemust use
some some ““nonrandom propertynonrandom property”” of Hof H

 We should have chosen a better HWe should have chosen a better H
–– without that without that ““nonrandom propertynonrandom property””

 Caveat: how do we know what Caveat: how do we know what ““nonrandom nonrandom
propertiesproperties”” are important?are important?

This rationale isnThis rationale isn’’t soundt sound

 Exist signature schemes that are:Exist signature schemes that are:

1. Provably secure 1. Provably secure wrtwrt a random functiona random function

2. Easily broken for EVERY hash function2. Easily broken for EVERY hash function

 Idea: hash functions are computableIdea: hash functions are computable

–– This is a This is a ““nonrandom propertynonrandom property”” by itselfby itself

 Exhibit a scheme which is secure only Exhibit a scheme which is secure only
for for ““nonnon--computable Hcomputable H’’ss””

–– Scheme is (very) Scheme is (very) ““contrivedcontrived””

[Canetti-Goldreich-H 1997]

Contrived exampleContrived example

 Start from any secure signature schemeStart from any secure signature scheme

–– Denote signature algorithm by SIG1Denote signature algorithm by SIG1HH(key,msg)(key,msg)

 Change SIG1 to SIG2 as follows:Change SIG1 to SIG2 as follows:

SIG2SIG2HH(key,msg): (key,msg): interprateinterprate msgmsg as code as code ΠΠ

–– If If ΠΠ(i(i)=)=H(iH(i) for i=1,2,3,) for i=1,2,3,……,|,|msgmsg|, then output key|, then output key

–– Else output the same as SIG1Else output the same as SIG1HH(key,msg)(key,msg)

 If H is random, always the If H is random, always the ““ElseElse”” casecase

 If H is a hash function, attempting to signIf H is a hash function, attempting to sign
the code of H outputs the secret keythe code of H outputs the secret key

Some
Technicalities

Cautionary noteCautionary note

 ROM proofs may not mean what you thinkROM proofs may not mean what you think……

–– Still they give valuable assurance, rule out Still they give valuable assurance, rule out
““almost all realistic attacksalmost all realistic attacks””

 What What ““nonrandom propertiesnonrandom properties”” are important are important
for OAEP / FDH / PSS / for OAEP / FDH / PSS / ……??

 How would these scheme be affected by a How would these scheme be affected by a
weakness in the hash function in use?weakness in the hash function in use?

 ROM may lead to careless implementationROM may lead to careless implementation

MerkleMerkle--DamgDamgåårdrd vs. random functions vs. random functions

 Recall: we often construct our hash functions Recall: we often construct our hash functions
from compression functionsfrom compression functions
–– Even if compression is random, hash is not Even if compression is random, hash is not

 E.g., E.g., H(H(keykey|M|M) subject to extension attack) subject to extension attack
–– H(keyH(key | M|M| M|M’’) = h() = h(H(key|MH(key|M), M), M’’))

–– Minor changes to MD fix thisMinor changes to MD fix this
 But they come with a price (e.g. prefixBut they come with a price (e.g. prefix--free encoding) free encoding)

 Compression also built from lowCompression also built from low--level blockslevel blocks
–– E.g., DaviesE.g., Davies--Meyer construction, Meyer construction, h(c,Mh(c,M)=)=EEMM(c)(c)cc

–– Provide yet more structure, can lead to attacks Provide yet more structure, can lead to attacks
on provable ROM schemes [Hon provable ROM schemes [H--KrawczykKrawczyk 2007]2007]

 …

Part II: Using hash functions Part II: Using hash functions
in applicationsin applications

Using Using ““imperfectimperfect”” hash functionshash functions

 Applications should rely only on Applications should rely only on ““specific specific
security propertiessecurity properties”” of hash functionsof hash functions

–– Try to make these properties as Try to make these properties as ““standardstandard”” and and
as weak as possibleas weak as possible

 Increases the odds of longIncreases the odds of long--term securityterm security

–– When weaknesses are found in hash function, When weaknesses are found in hash function,
application more likely to surviveapplication more likely to survive

–– E.g., MD5 is badly broken, but HMACE.g., MD5 is badly broken, but HMAC--MD5 is MD5 is
barely scratchedbarely scratched

Security requirementsSecurity requirements

 Deterministic hashingDeterministic hashing

–– AttackerAttacker chooses M, d=H(M)chooses M, d=H(M)

 Hashing with a random saltHashing with a random salt

–– AttackerAttacker chooses M, then good guychooses M, then good guy
chooses public salt, d=chooses public salt, d=H(H(saltsalt,M,M))

 Hashing random messagesHashing random messages

–– M random, d=H(M)M random, d=H(M)

 Hashing with a secret keyHashing with a secret key

–– AttackerAttacker chooses M, d=chooses M, d=H(H(keykey,M,M))

Stronger

Weaker

Deterministic hashingDeterministic hashing

 Collision ResistanceCollision Resistance

–– Attacker cannot find M,MAttacker cannot find M,M’’ such that H(M)=H(Msuch that H(M)=H(M’’))

 Also many other propertiesAlso many other properties

–– Hard to find fixedHard to find fixed--points, nearpoints, near--collisions, collisions,
M M s.ts.t. H(M) has low Hamming weight, etc.. H(M) has low Hamming weight, etc.

Hashing with public saltHashing with public salt

 TargetTarget--CollisionCollision--Resistance (TCR)Resistance (TCR)

–– Attacker chooses M, then given random Attacker chooses M, then given random saltsalt, ,
cannot find Mcannot find M’’ such that such that H(salt,MH(salt,M)=)=H(H(saltsalt,M,M’’))

 enhanced TRC (enhanced TRC (eTCReTCR))

–– Attacker chooses M, then given random Attacker chooses M, then given random saltsalt, ,
cannot find cannot find MM’’,,saltsalt’’ s.ts.t. . H(H(saltsalt,M,M)=)=H(H(saltsalt’’,M,M’’))

Hashing random messagesHashing random messages

 Second Second PreimagePreimage ResistanceResistance
–– Given random M, attacker cannot find MGiven random M, attacker cannot find M’’

such that H(M)=H(Msuch that H(M)=H(M’’))

 OneOne--waynesswayness
–– Given d=H(M) for random M, attacker cannot Given d=H(M) for random M, attacker cannot

find Mfind M’’ such that H(Msuch that H(M’’)=d)=d

 Extraction*Extraction*
–– For random For random saltsalt, high, high--entropy M, the digest entropy M, the digest

d=d=H(H(saltsalt,M,M) is close to being uniform) is close to being uniform

* Combinatorial, not cryptographic

Hashing with a secret keyHashing with a secret key

 PseudoPseudo--Random FunctionsRandom Functions
–– The mapping The mapping MMH(H(keykey,M,M) for secret) for secret keykey

looks random to an attackerlooks random to an attacker

 Universal hashing*Universal hashing*

–– For all MFor all MMM’’, , PrPrkeykey[[H(H(keykey,M,M)=)=H(H(keykey,M,M’’)]<)]<εε

* Combinatorial, not cryptographic

Application 1:Application 1:
Digital signaturesDigital signatures

 HashHash--thenthen--sign paradigmsign paradigm
–– First shorten the message, d = H(M)First shorten the message, d = H(M)

–– Then sign the digest, s = Then sign the digest, s = SIGN(dSIGN(d))

 Relies on collision resistanceRelies on collision resistance
–– If H(M)=H(MIf H(M)=H(M’’) then s is a signature on both) then s is a signature on both

 Attacks on MD5, SHAAttacks on MD5, SHA--1 threaten current 1 threaten current
signaturessignatures
–– MD5 attacks can be used to get bad CA certMD5 attacks can be used to get bad CA cert

[[StevensStevens et al. 2009]et al. 2009]

Collision resistance is hardCollision resistance is hard

 Attacker works offAttacker works off--line (find M,Mline (find M,M’’))

–– Can use stateCan use state--ofof--thethe--art cryptanalysis, as much art cryptanalysis, as much
computation power as it can gather, without computation power as it can gather, without
being detected !!being detected !!

 Helped by birthday attack (e.g., 2Helped by birthday attack (e.g., 28080 vsvs 22160160))

 Well worth the effortWell worth the effort

–– One collision One collision forgery for any signerforgery for any signer

 Use randomized hashingUse randomized hashing

–– To sign M, first choose fresh random To sign M, first choose fresh random saltsalt

–– Set Set d= d= H(H(saltsalt, M), M), , s= SIGN(s= SIGN(saltsalt || d)|| d)

 Attack scenario (collision game):Attack scenario (collision game):

–– Attacker chooses M, MAttacker chooses M, M’’

–– Signer chooses random saltSigner chooses random salt

–– Attacker must find M' Attacker must find M' s.ts.t. . H(salt,MH(salt,M) =) = H(salt,MH(salt,M')')

 Attack is inherently onAttack is inherently on--lineline

–– Only rely on target collision resistanceOnly rely on target collision resistance

Signatures without CRHFSignatures without CRHF
[[NaorNaor--Yung 1989, Yung 1989, BellareBellare--RogawayRogaway 1997]1997]

TCR hashing for signaturesTCR hashing for signatures

 Not every randomization worksNot every randomization works

–– H(M|H(M|saltsalt) may be subject to collision attacks) may be subject to collision attacks
 when H is when H is MerkleMerkle--DamgDamgåårdrd

–– Yet this is what PSS does (and itYet this is what PSS does (and it’’s provable in the ROM)s provable in the ROM)

 Many constructions Many constructions ““in principlein principle””

–– From any oneFrom any one--way functionway function

 Some engineering challengesSome engineering challenges

–– Most constructions use long/variableMost constructions use long/variable--size randomness, size randomness,
dondon’’t preserve t preserve MerkleMerkle--DamgDamgåårdrd

 Also, signing salt means changing the underlying Also, signing salt means changing the underlying
signature schemessignature schemes

 Use Use ““stronger randomized hashingstronger randomized hashing””, , eTCReTCR

–– To sign M, first choose fresh random To sign M, first choose fresh random saltsalt

–– Set Set d = d = H(H(saltsalt, M), M), , s = SIGN(d)s = SIGN(d)

 Attack scenario (collision game):Attack scenario (collision game):

–– Attacker chooses MAttacker chooses M

–– Signer chooses random Signer chooses random saltsalt

–– Attacker needs Attacker needs MM‘‘,,saltsalt’’ s.ts.t. . H(H(saltsalt,M,M)=)=H(H(saltsalt',M',M')')

 Attack is still inherently onAttack is still inherently on--lineline

[H[H--KrawczykKrawczyk 2006]2006]

Signatures with enhanced TCRSignatures with enhanced TCR

Randomized hashing with RMXRandomized hashing with RMX

 Use simple messageUse simple message--randomizationrandomization
–– RMX: M=(MRMX: M=(M11,M,M22,,……,M,MLL), r), r

(r, M(r, M11⊕⊕rr,M,M22⊕⊕rr,,……,M,MLL⊕⊕rr))

 Hash(Hash(RMX(r,MRMX(r,M)) is)) is eTCReTCR when:when:
–– Hash is Hash is MerkleMerkle--DamgDamgåårdrd,, and and

–– Compression function is ~ 2Compression function is ~ 2ndnd--preimagepreimage--resistant resistant

 Signature: [r, SIGN(Hash(Signature: [r, SIGN(Hash(RMX(r,MRMX(r,M)))])))]
–– rr fresh per signature, one block (e.g. 512 bits)fresh per signature, one block (e.g. 512 bits)

–– No change in Hash, no signing of No change in Hash, no signing of rr

[H[H--KrawczykKrawczyk 2006]2006]

 …

⊕…⊕

…

Preserving hashPreserving hash--thenthen--signsign

Application 2:Application 2:
Message authenticationMessage authentication

 Sender, Receiver, share a secret keySender, Receiver, share a secret key

 Compute an Compute an authentication tagauthentication tag

–– tagtag = = MAC(MAC(keykey, , MM))

 Sender sends (Sender sends (MM, , tagtag))

 Receiver verifies that Receiver verifies that tagtag matches matches MM

 Attacker cannot forge tags without keyAttacker cannot forge tags without key

Authentication with HMACAuthentication with HMAC

 Simple keySimple key--prependprepend/append have problems /append have problems
when used with a when used with a MerkleMerkle--DamgDamgåårdrd hashhash

–– tag=tag=H(H(keykey | M) subject to extension attacks| M) subject to extension attacks

–– tag=H(M | tag=H(M | keykey) relies on collision resistance) relies on collision resistance

 HMAC: Compute tag = HMAC: Compute tag = H(keyH(key | | H(keyH(key | M))| M))

–– About as fast as keyAbout as fast as key--prependprepend for a MD hashfor a MD hash

 Relies only on PRF quality of hashRelies only on PRF quality of hash
–– MMH(key|MH(key|M) looks random when key is secret) looks random when key is secret

[BellareBellare--CanettiCanetti--KrawczykKrawczyk 19961996]

Authentication with HMACAuthentication with HMAC

 Simple keySimple key--prependprepend/append have problems /append have problems
when used with a when used with a MerkleMerkle--DamgDamgåårdrd hashhash

–– tag=tag=H(H(keykey | M) subject to extension attacks| M) subject to extension attacks

–– tag=H(M | tag=H(M | keykey) relies on collision resistance) relies on collision resistance

 HMAC: Compute tag = HMAC: Compute tag = H(keyH(key | | H(keyH(key | M))| M))

–– About as fast as keyAbout as fast as key--prependprepend for a MD hashfor a MD hash

 Relies only on PRF property of hashRelies only on PRF property of hash
–– MMH(key|MH(key|M) looks random when key is secret) looks random when key is secret

[BellareBellare--CanettiCanetti--KrawczykKrawczyk 19961996]

As a result, barely
affected by collision

attacks on MD5/SHA1

CarterCarter--WegmanWegman authenticationauthentication

 Compress message with hash, t=H(Compress message with hash, t=H(keykey11,M),M)

 Hide t using a PRF, tag = tHide t using a PRF, tag = tPRF(PRF(keykey22,nonce),nonce)

–– PRF can be AES, HMAC, RC4, etc. PRF can be AES, HMAC, RC4, etc.

–– Only applied to a short nonce, typically not a Only applied to a short nonce, typically not a
performance bottleneckperformance bottleneck

 Secure if the PRF is good, H is Secure if the PRF is good, H is ““universaluniversal””

–– For MFor MMM’’,,∆∆, , PrPrkeykey[[H(H(keykey,M),M)H(H(keykey,M,M’’)=)=∆∆]<]<εε))

–– Not cryptographic, can be very fastNot cryptographic, can be very fast

[WegmanWegman--Carter 1981,Carter 1981,……]

Fast Universal HashingFast Universal Hashing

 ““UniversalityUniversality”” is combinatorial, provableis combinatorial, provable

 no need for no need for ““security marginssecurity margins”” in designin design

 Many works on fast implementationsMany works on fast implementations

From innerFrom inner--product, Hproduct, Hk1,k2k1,k2(M(M11,M,M22)=()=(KK11+M+M11))··((KK22+M+M22))

 [H[H--KrawczykKrawczyk’’97, Black et al.97, Black et al.’’99, 99, ……]]

From polynomial evaluation HFrom polynomial evaluation Hkk(M(M11,,……,M,MLL)=)=ΣΣii MMii kkii

 [Krawczyk[Krawczyk’’94, Shoup94, Shoup’’96, Bernstein96, Bernstein’’05, McGrew05, McGrew--
ViegaViega’’06,06,……]]

 As fast as 2As fast as 2--3 cycle3 cycle--perper--byte (for long Mbyte (for long M’’s)s)

–– Software implementation, contemporary CPUsSoftware implementation, contemporary CPUs

Part III:Part III:
Designing a hash functionDesigning a hash function

Fugue: IBMFugue: IBM’’s candidate for the s candidate for the
NIST hash competitionNIST hash competition

Design a compression function?Design a compression function?

PROsPROs: modular design, reduce to the : modular design, reduce to the ““simpler simpler
problemproblem”” of compressing fixedof compressing fixed--length stringslength strings

–– Many things are known about transforming Many things are known about transforming
compression into hash compression into hash

CONsCONs: : compressioncompressionhashhash has its problemshas its problems

–– ItIt’’s not free (e.g. message encoding)s not free (e.g. message encoding)

–– Some attacks based on the MD structureSome attacks based on the MD structure

 Extension attacks (rely on Extension attacks (rely on H(x|yH(x|y)=)=h(H(x),yh(H(x),y))))

 ““Birthday attacksBirthday attacks”” (herding, (herding, multicollisionsmulticollisions, , ……))

 …

 Find many offFind many off--line collisions line collisions

–– ““Tree structureTree structure”” with ~2with ~2n/3n/3 ddi,ji,j’’ss

–– Takes ~ 2Takes ~ 22n/32n/3 timetime

 Publish final dPublish final d

 Then for any prefix PThen for any prefix P

–– Find Find ““linking blocklinking block”” L L s.ts.t. H(P|L) in the tree. H(P|L) in the tree

–– Takes ~ 2Takes ~ 22n/32n/3 timetime

–– Read off the tree the suffix S to get to dRead off the tree the suffix S to get to d

 Show an extension of P Show an extension of P s.ts.t. H(P|L|S) = d. H(P|L|S) = d

Example attack: herdingExample attack: herding
[Kelsey-Kohno 2006]

d2,1

d

M1,1

M1,2

M1,3

M1,4

M2,1

M2,2

d1,1

d1,2

d1,3

d1,4

d2,2

The culprit: small intermediate stateThe culprit: small intermediate state

 With a compression function, we:With a compression function, we:

–– Work hard on current message blockWork hard on current message block

–– Throw away this work, keep only nThrow away this work, keep only n--bit statebit state

 Alternative: keep a large stateAlternative: keep a large state

–– Work hard on current message block/wordWork hard on current message block/word

–– Update some part of the big stateUpdate some part of the big state

 More flexible approachMore flexible approach

–– Also more opportunities to mess things upAlso more opportunities to mess things up

The hash function The hash function GrindahlGrindahl

 State is 13 words = 52 bytes State is 13 words = 52 bytes

 Process one 4Process one 4--byte word at a timebyte word at a time

–– One AESOne AES--like mixing step per word of inputlike mixing step per word of input

 After some final processing, output 8 wordsAfter some final processing, output 8 words

 Collision attack by Collision attack by PeyrinPeyrin (2007)(2007)

–– Complexity ~ 2Complexity ~ 2112112 (still better than brute(still better than brute--force)force)

 Recently improved to ~ 2Recently improved to ~ 2100 100 [[KhovratovichKhovratovich 2009]2009]

–– ““Start from a collision and go backwardsStart from a collision and go backwards””

[KnudsenKnudsen--RechbergerRechberger--Thomsen 2007Thomsen 2007]

The hash function The hash function ““FugueFugue””

 ProofProof--driven designdriven design
–– Designed to enable analysisDesigned to enable analysis

 Proofs that Proofs that PeyrinPeyrin--style attacks do not workstyle attacks do not work

 State of 30 4State of 30 4--byte words = 120 bytesbyte words = 120 bytes

 Two Two ““supersuper--mixingmixing”” rounds per word of inputrounds per word of input
–– Each applied to only 16 bytes of the stateEach applied to only 16 bytes of the state

–– With some extra linear diffusionWith some extra linear diffusion

 SuperSuper--mixing is AESmixing is AES--likelike
–– But uses stronger MDS codesBut uses stronger MDS codes

[H-Hall-Jutla 2008]

Initial State (30 words)

Process

New State

M1

Mi

Final Processing

Output 8 words = 256 bits

Iterate

State

FugueFugue--256256

Initial State (30 words)

Process

New State

∆M1

∆Mi

Final Processing

∆ = 0

Iterate

State

Collision attacksCollision attacks

∆ State = 0? ∆ State = 0
Internal collision

∆ State 0
External collision

Collision
means that
∆Mi’s are
not all zero

Think of M1, …,ML

and M’1,…,M’L

Initial State (30 words)

Process

New State

Final Stage

Iterate

State

Process

M1

SMIX

M1

Repeat 2-4 once more

Processing one input wordProcessing one input word

1. Input one word

2. Shift 3 columns to right

3. XOR into columns 1-3

4. “super-mix” operation
on columns 1-4

This is where
the crypto
happens

SMIX in FugueSMIX in Fugue

 Similar to one AES roundSimilar to one AES round

–– Works on a 4x4 matrix of bytesWorks on a 4x4 matrix of bytes

–– Starts with SStarts with S--box substitutionbox substitution
 Byte b, S[256] = {...};Byte b, S[256] = {...};
......

 b = b = S[bS[b];];

–– Does linear mixingDoes linear mixing

 Stronger mixing than AESStronger mixing than AES

–– Diagonal bytes as in AESDiagonal bytes as in AES

–– Other bytes are mixed into both column and rowOther bytes are mixed into both column and row

SMIX in FugueSMIX in Fugue

 In algebraic notation:In algebraic notation:

 M generates a good linear codeM generates a good linear code

–– If all the bIf all the bii’’ bytes but 4 are zerobytes but 4 are zero
then then ≥≥ 13 of the 13 of the S[bS[bii] bytes must be nonzero] bytes must be nonzero

–– And other such propertiesAnd other such properties

b16

= M16x16
×

b2

b1'

'

'

S[b2]
S[b1]

S[b16]

Analyzing internal collisions*Analyzing internal collisions*

SMIX

∆

After last input word: ∆State=0

before input word: ∆10

≤4 nonzero byte diffsbefore SMIX: ∆1-40

still ∆1-40

now ∆28-10 3 columns

* a bit oversimplified

Analyzing internal collisions*Analyzing internal collisions*

SMIX

∆

after input word: ∆State=0

before input word: ∆10

before SMIX: ∆1-40

still ∆1-40

now ∆28-10 3 columns

SMIX

∆28-40

∆28-40

 3 columns∆25-10

≤4 nonzero byte diffs

* a bit oversimplified

Analyzing internal collisions*Analyzing internal collisions*

SMIX

∆

after input word: ∆State=0

before input word: ∆10

before SMIX: ∆1-40

still ∆1-40

now ∆28-10 3 columns

SMIX

∆28-40

∆28-40

 3 columns∆25-10

∆∆∆∆’before input: ∆1=?, ∆25-300

* a bit oversimplified

The analysis
from previous
slides was
upto here

Many nonzero byte
differences before the

SMIX operations

Analyzing internal collisionsAnalyzing internal collisions

 What does this mean? Consider this attack:What does this mean? Consider this attack:

–– Attacker feeds in random MAttacker feeds in random M11,M,M22,,…… and Mand M’’11,M,M’’22,,……

–– Until Until StateStateLL StateState’’LL = some = some ““good good ∆∆””

–– Then it searches for suffixed (MThen it searches for suffixed (ML+1L+1,,……,M,ML+4L+4),),
(M(M’’L+1L+1,,……,M,M’’L+4L+4) that will induce internal collision) that will induce internal collision

TheoremTheorem**: For any fixed : For any fixed ∆∆,,
Pr[Pr[∃∃ suffixes that induce collision] < 2suffixes that induce collision] < 2--150150

* Relies on a very mild independence assumptions* Relies on a very mild independence assumptions

Analyzing internal collisionsAnalyzing internal collisions

 Why do we care about this analysis?Why do we care about this analysis?

 PeyrinPeyrin’’ss attacks are of this typeattacks are of this type

 All differential attacks can be seen as All differential attacks can be seen as
(optimizations of) this attack(optimizations of) this attack

–– Entities that are not controlled by attack are Entities that are not controlled by attack are
always presumed randomalways presumed random

 A known A known ““collision collision tracetrace”” is as close as we is as close as we
can get to understanding collision resistancecan get to understanding collision resistance

Fugue: concluding remarksFugue: concluding remarks

 Similar analysis also for external collisionsSimilar analysis also for external collisions

–– ““Unusually thoroughUnusually thorough”” level of analysislevel of analysis

 Performance comparable to SHAPerformance comparable to SHA--256256

–– But more amenable to parallelismBut more amenable to parallelism

 One of 14 submissions that were selected One of 14 submissions that were selected
by NIST to advance to 2by NIST to advance to 2ndnd round of the round of the
SHA3 competitionSHA3 competition

MoralsMorals

 Hash functions are very usefulHash functions are very useful

 We want them to behave We want them to behave ““just like random just like random
functionsfunctions””

–– But they donBut they don’’t reallyt really

 Applications should be designed to rely on Applications should be designed to rely on
““as weak as practicalas weak as practical”” properties of hashingproperties of hashing

–– E.g., TCR/E.g., TCR/eTCReTCR rather than collisionrather than collision--resistanceresistance

 A taste of how a hash function is builtA taste of how a hash function is built

Thank you!Thank you!

