“Cryptographic Hashi Functions

and their many applications

Shai Halevi — IBM BResearch

?— —M(-Security =SAUQUST 2009

Thanks to Charanijit Jutla and Hugo Krawczyk

eSS ILnCHornsS

= e ———————— ==

i ——
e — ———

= Just a method effcompressing strings
—E.g., H:{0,1}* > {0,1}160
— Input is called “message”, output is “digest”

= \WWhy would you want to do this?

— Short, fixed-size better thanleng, variable-size
"Sirueralserfier non-crypto hashfunctions

= Digeshcanerddedyerredindancy
— Digest hides possible structure in message

But not
always...

= 1yp|<;a||y usmg I\/Ierk1e-3amgaﬂ iteraition:

IsStarsirem:a “compression function”
— h {051}b+n9{051}n I\I\—/I1=b=512 bits

—

¢ =160 bits d=h(c,M)=160 bits

2. lterate it

“Modern, collision resistant hash functions were designed to create
small, fixed size message digests so that a digest could act as a

proxy for a possibly very large variable length message in a digital

signature algorithm, such as RSA or DSA. These hash functions
have since been widely used for many other “ancillary” applications,

including hash-based message authentication codes, pseudo
random number generators, and key derivation functions.

HRegUest or Candidate Algorithm Neminations?,
-- NIST, November 2007

S0rre

e mm— -
—

— o —

|
- - Signatures: SIGN(V) = RSA (VI

lessage-authentication: tag=H(key,M)
= Commitment: commit(M) = H(M,...)

= Key derivation: AES-key = H(DiH=value)
= Removing interaction [Fiat-Shamir, 1987]
rake interactive identificatiog_protocol -N—

,,ﬁgp]amﬁfﬁﬂé pyrafEstNtnction

response
Challenge = H(smthng, context)

— Get non-interactive signature scheme _sminng, response

Rar-EBandom fUnctions
vS. hash functions

malricorn Tuncrors

SR RatWe really want 1s [that benaves:
S siHike-arrandom function::

Digest d=H(M) chosen uniformly for each IVl

— Digest d=H(M) has no correlation with; IV

— For distinct M,M,,..., digests d=H(I\) are
Completely uncorrelated toreachrother

:Ge ﬂﬁﬂm‘hlt” ﬁpec;lflc d
— Cannot find fixed-points (d = H(d))
— etc.

— s - - — —
— —

0 Pretend hashifunction is really this good
2. Design'a secure cryptosystem using it

i

= Prove security relative to a “random oracle”

|p——— — - ————

| > Pretend hash function is really this 006
-~ 2. Designra secure cryptosystem using it
= Prove security relative to a “random oracle”

3. Replace oracle with a hash functien
= Hope that it remains secure

P_tend hash functlon IS reaIIy thls good

=5 DeS|gn alsecure cryptosystem using it
= Prove security relative to a “random oracle”

3. Replace oracle with a hash fupction
= Hope that it remains secure

s=/ery successtul parad|gm,_many SCHEMES

ﬁﬁ-@-—@ﬁ%ﬁc?yptlon FDI PSS signatures

= Also all the examples from: before..
— Schemes seem to “withstand test of time”

riel

= s—Esome crypto scheme (e.g., S|gnatureé),
hat uses a hash function H
= S proven secure when H is randem; function

==

- Any attack on real-world s musti,use
some “nonrandom property o

= \\/e_should have chosen a better H

=ithout thgﬁ“ JplrzllefelpNdre g
eal: NowW do we Know Whatnonrandom

properties™ are important?

— = EXist signatiire schemes that are:

1. Provably secure wrt a random function
2. Easily broken for EVERY hash function

= |dea: hash functions are computanie
— This is a “nonrandom property: by. itself

RENEXIIDIT 2 SChEme Which ISisecureenly;

" fUf I oonauicieloi kot

— Scheme is (very) “contrived”

e —————— —

Coriirived exzrrmg

S
— ——

e — ———

" Start froml any secure signature scheme
— Denote signature algorithm by SIG15(key,msg)

= Change SIG1 to SIG2 as follows:
, Technicalities
SIG2"(key,msg): interprate msg as code I

— It II(1)=H(i) for i=1,2,3,...,|msg|, then eutput key
— Else output the same as SIG1™(key,msg)

i H s randomialways_the_ "Elsgicase
N NS as T tnction, attemptingstoersign
the code of H outputs the secret key

= ROM proc_)fs may not-mean what VOul think::.
— Still'they give valuable assurance, rule out
“almost all realistic attacks”

= \WWhat “nonrandom properties: arejnmporiant
for OAEP / FDH / PSS / ..

ewWAveUldihese scheme be aiifectedoy.a

Wﬂﬁ&h#ﬂﬂm N Use?
"ROM may lead to careless implementation

SR RecallF We oliteniconstiuct our Nash uncHons
e cempression functions

— Even if compression Is random, hash Is not
= E.g., H(key|M) subject to extension attack

— H(key | M|M’) = h(H(key|M), M)
— Minor changes to MD fix this
= But they come with a price (e.g. prefix-free encoding)

= mpressionﬁso JWflisirens low=laveliealoccs
g, Davies=lVieyer constructionyh(c,M)=E,,(c)Pc
— Provide yet more structure, can lead to attacks
on provable ROM schemes [H-Krawczyk 2007]

—PartliF Using hash flinctions
N applications

sing “irnosr

—
e e

e —

= Applications should rer only on “specific
Security-properties™ of hash functions
— Try to make these properties as “standard” and

as weak as possible

" |ncreases the odds of long-term security.
=\Whenweaknesses are found.in hash function,

appllgwmikelyio slivve
S TElg., MD5 is badly broken, but HMAC-MD5 is

barely scratched

rity 150

e
-
—

D_ermlnlstlc hashlng Stronger
— Attacker chooses M, d=H(M) /\

= Hashing with a random salt
— Attacker chooses M, then good guy:
chooses public salt, d=H(salt,\M)
ashlng iandem messages,

:5 NNt Tels), RIS
"Hashing with' a secret key

— Attacker chooses M, d=H(key,M)

i ——

— CoII|S|on Resistance
— Attacker cannot find MM suchi that Bi(IM)=H(IVI%)

= Also many other properties

— Hard to find fixed-points, near-collisions,
M s.t. H(M) has low Hamming weight, etc.

Flasning witr puolic sl

i c—
E ———

— S ——
e — ———

C = arget-Collision=Resistance (TCR)
— Attacker chooses M, then given random sait,
cannot find M"* such that H(salt,M)=H(salt,\N")

= enhanced TRC (eTCR)

— Attacker chooses M, then given random satlt,
annotfind M’ salt’ s.t. H(salt M)=H(salt ,M")

g

i § econad Prelmage Re5|stance

— Given random M, attacker cannot find M/
such that H(M)=H(M")

= One-wayness

— Given d=H(M) for random M, attacker cannot
find M" such that H(M")=ad

NEXiraction’”

r—*aﬂeeﬁ@-hlgh entropy oy M, the digest
d=H(salt,M) Is close to being umform

* Combinatorial, not cryptographic

i ——
e —

= Pselido-RandemrEunctions

— The mapping M~H(key,M) for secret key
looks random to an attacker

= Universal hashing®
— For all M=M", Pr,. | H(key,M)=H(key,M")]<e

* Combinatorial, not cryptographic

S ashEthen=signparadiom
— First shorten the message, d = H(M)
— Then sign the digest, s = SIGN(d)

= Relies on collision resistance
— It H(M)=H(M") then s Is a signature on both

- _Attacks.on MD5, SHA-1 threaten current
'gnatures_..

D5 aacks can be used to getbad CA cert

[Stevens et al. 2009]

—— - - ______

e —

— Attacker WOTKSToli=line (find I\/I V15

— Can| use state-of-the-art cryptanalysis, as much
computation power as It can gather, without
being detected !!

= Helped by birthday attack (e.g., 2°° vs 2'6%)
eliwverihthe effort

_—One Worgery—foﬁy Signer
-

NEGIEN NGRS G ”Qle g=racjevel L DI7

. — e —

~ = Use randomized fashing
— To'sign M, first choose fresh random salt
— Set d= H(salt, M), s= SIGN(salt|| d)

= Attack scenario (collision game):
— Attacker chooses M, §,’l’ same salt (since salt

Signerchooses random saliu s A A

w@m VIREHE(EEIT M) = H(salt, M)
=Aftack Is inherently on-line
— Only rely on target collision resistance

151N for Um

L —

— Nol*every randomlzatlon WOIKS

iH(Vl{saltismay be subject to collision attacks
= when H'is Merkle-Damgard

— Yet this is what PSS does (and it’s provable in the ROM)

= Many constructions “in principle”
— From any one-way function

PMEengineenng challenges

"= \Vost conpstruict selleng/vanaklersize randomness,
e preserve Merkle-Damgard

= Also, signing salt means changing the underlying
signature schemes

VIECHRENRGED r

JRERTAWCZTE2005]

e ——

L= (Use “strongerrandomized hashing?, encR
— To'sign M, first choose fresh random salt
— Set d = H(salt, M), s =SIGN(d)

= Attack scenario (collision game):
— Attacker chooses M attacker can use

(gNer cHooses random Sajit it

mtsmr

= Attack Is still inherently on-line

- Usersinmple message-randomization
C _BMX: M=(M,M,,...M,), r -
(r, M, @r,M,@r,....M @r)

= Hash(RMX(r,M)) is eTCR when:;

— Hash is Merkle-Damgard, and
— Compression functionrisi~ 2"9-preimage-resistant

| N(_J:Iash(-l?\‘MX(r,I\/l))]
reshiper signature, one block (e:g. 512 bits)

— No change in Hash, no signing of r

1
. v o
‘

Preservjru

(r, M\;@r,,.... M\ ®r)

~ = Sender, Beceiver, share a secret key
= Compuite an authentication tag
_ tag = MAC(key, M)

= Sender sends (N, tag)
= Becelver verifies that matches

ENAliacken cannoriorge tagspinoUTKEY

- Slmple key prepend/append have probléms
whenrused with a Merkle-Damgard hash
— tag=H(key | M) subject to extension attacks

—tag=H(M | key) relies on collision resistance

= HMAC: Compute tag = H(key. [H(key: | M))
About'asfastias key-prependifor a MD,hash

%@MMF‘C{UQHV O hash

— M~H(key|M) looks random when key Is secret

As a result, barely
affected by collision
attacks on MD5/SHA1

:E-P\GI.IES omy'eﬁ'PRF PrOPErty of hash
— M~H(key|M) looks random when key Is secret

F _-_(}_O_Enpres_s message W|th hash, t=H(key,;I\/I)
sHidert using a PRE, tag = t®PRE(key,,nonce)
— PRF can be AES, HMAC, RC4, etc.

— Only applied to a short nonce, typically not a
performance bottleneck

pSecures the PRE IS goodshlis “universal”
e | HREYIIEH (key, M’)=A J<¢)

— Not Cryptographlc can be very fast

niversal rlasnirg

e ——— e

p—

e —
M

e

S Universality2is combinatorial, provapie
S norneed for “security margins” in design

= Many works on fast implementations

= [H-Krawczyk' 97, Black et al."99;, .."]

From polynomial evaluation H (M.,...,M,)=X. M. K
IKrawezyis 94 Shoup 96, Berns{ejn 05, VcGrews

pwega-@ﬁ-ﬂ"‘
=" AS tast as 2-3 cycle-per-byte (for long N's)
— Software implementation, contemporary CPUs

Part i
Designing a hash function

Fugue: IBM's candidate for the
NIST hash com&e__t_i:[ion

B ————

— . e ——]

= =

——

- PROS: modulardesign, reduce (o the “simpler

preklent™ eff compressing fixed-lengthi strings

— Many things are known about transtorming

compression into hash

CONSs: compression—>hash has its problems
—li¥'sinoetiee . (e.g. message.encoding)

_ ased{-)n—{hm structure
s"Extension attacks (rely on H(X|y)=R(H(Xx),Y))

= “Birthday attacks” (herding, multicollisions, ...)

i ——

— - - . — o - M 4
CEREIRE N many oliFlinescollisions o i
R . -) I n/3 3 M, ,
— “Tree structure” with ~2">d,’'s _ 1y
— Takes ~ 227 time

= Publish final d =
= Then for any prefix P
Ina“linking block™ L s.t. H(RP|LL)inithe tiee
S 220/e e
— Read oif the tree the suffix S to'get'to d

- Show. an extension of P s.t. H(P|L|S) = d

-

5 m—_
e ———

ST 2 Compression fnchon, we-:
=" WWork hardlon current message block
— Throw away this work, keep only n-bit state

= Alternative: keep a large state
— Work hard on current message block/word
—Update.some part of the big, state

- More fledole slggfozicn

— Also more opportunities to mess things up

e —

= Sitate s 1.3 woerds = 52 bytes sasaaIINININ
= Process one 4-byte word at a time
— One AES-like mixing step per word of input

= After some final processing, output & words

=_Collision attack by Peyrin (2007)

_ Comp_lw (stillbetiedmantbrute-rorce)
N R Ecently improved to ~ 2190 [Khovratevichi2009]

— “Start from a collision and go backwards”

= ProoiFanven desighn
- — Designed to enable analysis
—> Proofs that Peyrin-style attacks do not work

= State of 30 4-byte words = 120 byites

= Two “super-mixing” rounds perwora of input

—_ Each applied to only 16 bytes of the state
= \With Wne_ar dififisSIeNnN!

ERSTIOEr mixing is AES-like

— But uses stronger MDS codes

Initial State (30 words)

Pro

CECSS

New

State

v
Iterate

|

State

Final Processing

i

Output 8 words = 256 bits

Initial State (30 words)

A 4

Process

Collision

New State

means that
AM/s are

v
Iterate

|

not all zero

A State = 07?

A State =0

Final Processing

- Internal collision
. A State # 0 —
- External collision

i
A=0

v

1.-lnput one word

2. Shift 3 columns to right

3. XOR into columns 1-3

4. “super-mix” operation SEOCESS

on columns 1-4

Repeat 2-4 once more

This is where
the crypto -
happens :

State

Final Stage

e —— e e g~

!H‘! It ‘ LigLIE .

= Similar to one AES round
~ —Works on a 4x4 matrix of bytes

— Starts with S-box substitution
= Byte b, S[256] = {...};

'b= S o

— Does linear mixing

GERMIXIOpthEnAESTIS
:—‘ﬁijonal bytes as in AES

— Other bytes are mixed into both column and row

i R e

I !H‘! 1) ‘ LigLe

i c—
E ———
i —— E

genraic notation:
By (S[b,]
b M« S

b Slbiel

& 7

VIRGERErAIES 2 §000. lINnEZINGCrEE
—

el REN Bytes but 4 are zero
then = 13 of the S|b,] bytes must be nonzero

— And other such properties

A

nelyzirg Iriternal collisions”

— i — : - — — “
"’ﬁ

. —

I
still A, #0 | @«

pefore"SMIX: A, ,#0 | <43MihXerc

After last input word: AState=0

* a bit oversimplified

Aralyzing irternzal collisiorns”

Ays1#0

Ayg 470

Ayg ,#0 | <

now A, ,#0

still A, ,#0

before SMIX: A, ,#0

arter input word: AState=0

* a bit oversimplified

Analyzing internal collisions’

ey

before input: AT="Ase520
Ay #0 >> 3 columns

B et D+

Ay ,#0 SMIX

now A,, #0 >> 3 columns

still A, ,#0 D

— before SMIX: A, ,#0 | SMIX
_ .. before input word: A,+0
"after input word: AState=0

e —

* a bit oversimplified

Table 8 Evolution of Ze

Many nonzero byte
. differences before the
| sax e SMIX operations
The analySIS oMIX :u:l:z:l
frqm previous ““ 0 0
slides was .

upto here i e L L e

¥1la¥ 1:Y 13

Zlp E1y F1aF1s X1 Y1a¥11¥1a

£lg 0O 0 0 X1 Y1p¥ 11 Y 1221081, Flg

T
0 3 [a 12 15 18 i | 2 7 2q
As;-3] 23 ¥ig 0 0 X1 Ty 0 22 V1,V 1,V 1,21,21, 21,

SMIX
¥ ¥2 2 2 X1 Z13 0 x2 Y1p¥ 1, ¥ 1,281,581, 21,

CMIX
!r% y’]] ;.IE; !,ﬂg.x] 'E]E 0 2 X1 I’IEFIJI’IEE]EEIJEIE

RORE
X1 0 0O 0ZE1;0=22 0 X1 ?lul’lll’liglugllglggﬂﬁy’]]yﬂg

BMIX
23y 23y 23,23 0 21022 0 X1 Ylul’llfligluzllglgyﬂE 12 p2,

O
=2a .E'Q"I_ oz 0 Elz0x2 0 X1 Zls lrlulflllrlifluzhflzlﬂi 2 yla

ROR3
23 0 Zl3 0 22 X1 0 Z1s Vi1V 1V 122102 11 212y, g2y 22 29 22, 29

T[x‘”‘

“ All bank cells are zoro. Primed variahles are defined in Section 1001.4. The sheded colls are the ones
affected in that step. The bored variables are the ones that are not determined by varables from earier
(lower) steps. Variables that are necessarily non-zero are in cgpital Rounds are refered to by the
subseript on the TIX stop for that round. 77 Continued on next. paga.

Tahle 9: Evolution of Differential State for internal Collision (contd.)

0 3 G '] 12 15 18 21 | i 20

22 0 Zlzs 0 =2 X1 Zls ¥lo¥ 11¥ 122 108 118 1oy 21 222 2o2] 22
T _3
AS-3 23 pM EFl; O =2 2.t X1 23 Zlg Y1V 11 ¥ 13281581, X Ly iy y 2 e D=2l =2y
SMIX

vl v3 33s ¥l 12 29, X1 73 Zlg V1g¥ 1, ¥ 152 1521, Z 1oy @yt ez 2020t 23,
CMIX

yﬁ-,’:, ;.IE]_ ﬂz: 3'-3_] T2 2'25 X1 z3 zlg o z2 FIDFI.|_Y].QE1031]311[,[2‘&1}213"}1\32E2’2;E_11
ROR3

v 2 0 0 22 X1 73 Zlz 0 T2 Y 10¥ 11¥ 122 102 11 Zla y2 421 1022202 2 2y ydyta
SMIX

24y F328y =3, 3, X1 13 Zl, 0 72 VIg¥ ¥ 152 1,21, 21, y2, y3, y2,22,22, 22,93 33,33,

23y =3] 235 =31 23 X1 73 Zlzy 0 =2 Yigyl] 915 21521, Zloy2 2y 1222202 0 e 233 13y

23z 0 =203 X1 73 0 0 Z1: 0 2 0 0O Yippl]pliZ1pZ81 21092 121 y22 230 2 22 y3p 31532230231 235
TIX _=

AS4) x4 pAilz2: | X1 |x3 0 0 Zlzz3z 72 14 0 Yigyl] pli Z1o81 Zla g 321 §20 220 2 200y yd1yder3p=2] 235
SMIX

CMIX

TCrHS

o pdy pdal gds 13 0 0 Flz=z3; 72 rd 0 Yipgyl] pliZ1ef1 Zlag?) 121 ¢22 =3 =2 =2 y35y31y322 30231 235
h— o pdipds pd: 13 0 0 Flszds 22 x4 0 Yipgpl] plhz15 21 21092 121 422 230 2 =20 y3in31y32= 30231 235
ROR3

@ 0 0 Flgzd;r2 zd 0 YVigyl) pll =1 21,2 1,92 w2y p2p 29y 23] 225 pdf 93 18,233z pdlpd s
. 2y =dy 2dy zd; Elgzdy x2 34 0 Yigyl] wliz 15 21, 21,93 wdy §2y =2y =3 =35 yidf 3y pdsz3p 3z pdind 1
R 24y =d) 24l mds Flezdq 72 xd 0 Yigyl] wll =15 21,8 1,027 w2 v =35 =2 =35 ydf 3y p3sz3pz3zdopdind pds

24z Elg =3z 12 1 0 ¥loyl]lplh =15 20 2 192 p2] 125 220 =2 =20 35 331 ¢32 230 23] =35 pdipdipdazdizd] 245

x5 Zlgzdg 12 1 0 Yigyl) ylh =15 21,2103 w2] p2f =3, =3 =2, y3f 13y 335 235 23] =35 pdipd pdomdf =4 =40
AS[_E] + + +
wd zdy Th
1] K] G o 12 15 18 21 2 ar]
% Primed variables are defined in Sections 1001.5 and 10.1.6.

N d0ES tIS e an 7. ConsiteT U et aGk:
L —Attackertfeeads in ranaom W5, V,,... and M, M, ...
— Until State;, @ State’, = some “good A”

— Then it searches for suffixed (M, +,---,M; .4);
(M ,4,-... M, ») that willlinduce. internal collision

Theorem™: For any fixed'A,

—]2 suffixesﬂat Induce,CollISIonF <2720

* Relies on a very mild independence assumptions

Anzlyzing internzal collisiors

. o — = =

= Why' do we carerabout this analysis?
= Peyrin’s attacks are of this type

= All differential attacks can be seen as
(optimizations of) this attack

— Entities that are not controlled-by: attack are
Always presumed random

Ao “golliziogrigziostises P Ose a5

can get to understanding collision resistance

— “Unusu_ally thorough” level of analysis

= Performance comparable to SHA-256
— But more amenable to parallelism

= One of 14 submissions that were selected

- - Hash functions arevery useful
= \We'want them to behave “just like random
functions”

— But they don't really
= Applications should be designed to rely on

11

- Weakraspracticalr propertles eiiashing
S;g.,:r-@ﬂvem%‘ ratertan collision-resistance

" A taste of how a hash function 1s built

