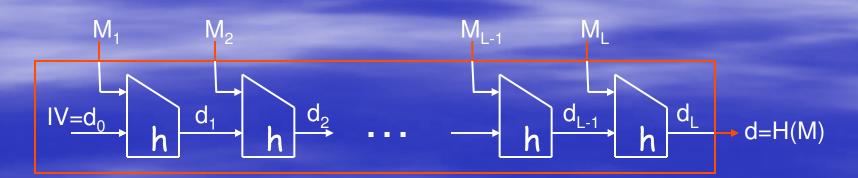
Cryptographic Hash Functions and their many applications

Shai Halevi – IBM Research

USENIX Security – August 2009

Thanks to Charanjit Jutla and Hugo Krawczyk


What are hash functions?

Just a method of compressing strings $-E.g., H : \{0,1\}^* \rightarrow \{0,1\}^{160}$ - Input is called "message", output is "digest" Why would you want to do this? - Short, fixed-size better than long, variable-size True also for non-crypto hash functions - Digest can be added for redundancy - Digest hides possible structure in message

But not always... How are they built? Typically using Merkle-Damgård iteration: 1. Start from a "compression function" $- h: \{0,1\}^{b+n} \rightarrow \{0,1\}^{n}$

c = 160 bits h = d = h(c,M) = 160 bits

2. Iterate it

What are they good for?

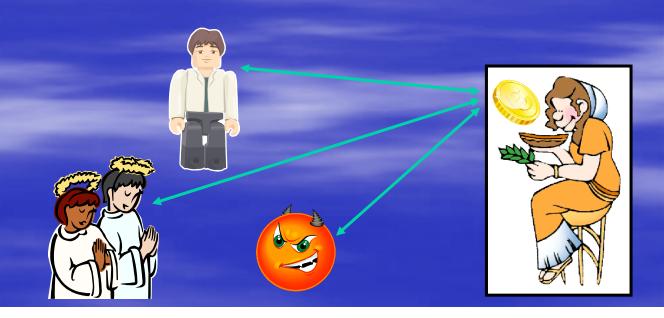
"Modern, collision resistant hash functions were designed to create small, fixed size message digests so that a digest could act as a proxy for a possibly very large variable length message in a **digital signature algorithm**, such as RSA or DSA. These hash functions have since been widely used for many other "ancillary" applications, including hash-based **message authentication codes**, **pseudo random number generators**, and **key derivation functions**."

"Request for Candidate Algorithm Nominations", -- NIST, November 2007

Some examples

- Signatures: $sign(M) = RSA^{-1}(H(M))$ Message-authentication: tag=H(key,M) • Commitment: commit(M) = H(M,...)Key derivation: AES-key = H(DH-value) Removing interaction [Fiat-Shamir, 1987] - Take interactive identification protocol - Replace one side by a hash function Challenge = H(smthng, context)

- Get non-interactive signature scheme smthng, response


Part I: Random functions vs. hash functions

Random functions

What we really want is H that behaves "just like a random function": Digest d=H(M) chosen uniformly for each M - Digest d=H(M) has no correlation with M - For distinct M_1, M_2, \dots , digests $d_i = H(M_i)$ are completely uncorrelated to each other - Cannot find collisions, or even near-collisions - Cannot find M to "hit" a specific d - Cannot find fixed-points (d = H(d)) -etc.

The "Random-Oracle paradigm" [Bellare-Rogaway, 1993]

Pretend hash function is really this good
 Design a secure cryptosystem using it
 Prove security relative to a "random oracle"

The "Random-Oracle paradigm" [Bellare-Rogaway, 1993]

Pretend hash function is really this good
 Design a secure cryptosystem using it

 Prove security relative to a "random oracle"

 Replace oracle with a hash function

 Hope that it remains secure

The "Random-Oracle paradigm" [Bellare-Rogaway, 1993]

- 1. Pretend hash function is really this good
- 2. Design a secure cryptosystem using it
 - Prove security relative to a "random oracle"
- 3. Replace oracle with a hash function
 - Hope that it remains secure
- Very successful paradigm, many schemes
 - E.g., OAEP encryption, FDH, PSS signatures
 - Also all the examples from before...
 - Schemes seem to "withstand test of time"

Random oracles: rationale

is some crypto scheme (e.g., signatures), that uses a hash function H proven secure when H is random function \rightarrow Any attack on real-world \leq must use some "nonrandom property" of H We should have chosen a better H - without that "nonrandom property" Caveat: how do we know what "nonrandom properties" are important?

This rationale isn't sound [Canetti-Goldreich-H 1997]

Exist signature schemes that are: 1. Provably secure wrt a random function 2. Easily broken for EVERY hash function Idea: hash functions are computable - This is a "nonrandom property" by itself Exhibit a scheme which is secure only for "non-computable H's" - Scheme is (very) "contrived"

Contrived example

If H is random, always the "Else" case
If H is a hash function, attempting to sign the code of H outputs the secret key

Cautionary note

- ROM proofs may not mean what you think...
 Still they give valuable assurance, rule out "almost all realistic attacks"
- What "nonrandom properties" are important for OAEP / FDH / PSS / ...?
- How would these scheme be affected by a weakness in the hash function in use?
- ROM may lead to careless implementation

Merkle-Damgård vs. random functions

Recall: we often construct our hash functions from compression functions - Even if compression is random, hash is not E.g., H(key|M) subject to extension attack - H(key | M|M') = h(H(key|M), M')- Minor changes to MD fix this But they come with a price (e.g. prefix-free encoding) Compression also built from low-level blocks - E.g., Davies-Meyer construction, $h(c,M)=E_M(c)\oplus c$ - Provide yet more structure, can lead to attacks on provable ROM schemes [H-Krawczyk 2007]

Part II: Using hash functions in applications

Using "imperfect" hash functions

- Applications should rely only on "specific security properties" of hash functions
 - Try to make these properties as "standard" and as weak as possible
- Increases the odds of long-term security
 - When weaknesses are found in hash function, application more likely to survive
 - E.g., MD5 is badly broken, but HMAC-MD5 is barely scratched

Security requirements

Deterministic hashing - Attacker chooses M, d=H(M) Hashing with a random salt - Attacker chooses M, then good guy chooses public salt, d=H(salt,M) Hashing random messages -M random, d=H(M) Hashing with a secret key - Attacker chooses M, d=H(key,M)

Stronger

Weaker

Deterministic hashing

Collision Resistance

 Attacker cannot find M,M' such that H(M)=H(M')

 Also many other properties

 Hard to find fixed-points, near-collisions, M s.t. H(M) has low Hamming weight, etc.

Hashing with public salt

Target-Collision-Resistance (TCR)

 Attacker chooses M, then given random salt, cannot find M' such that H(salt,M)=H(salt,M')

 enhanced TRC (eTCR)

 Attacker chooses M, then given random salt, cannot find M', salt' s.t. H(salt,M)=H(salt',M')

Hashing random messages

Second Preimage Resistance

- Given random M, attacker cannot find M' such that H(M)=H(M')
- One-wayness
 - Given d=H(M) for random M, attacker cannot find M' such that H(M')=d

Extraction*

For random *salt*, high-entropy M, the digest d=H(*salt*,M) is close to being uniform

* Combinatorial, not cryptographic

Hashing with a secret key

Pseudo-Random Functions

 The mapping M→H(*key*,M) for secret *key* looks random to an attacker

 Universal hashing*

 For all M≠M', Pr_{key}[H(*key*,M)=H(*key*,M')]<ε

* Combinatorial, not cryptographic

Application 1: Digital signatures

Hash-then-sign paradigm - First shorten the message, d = H(M) - Then sign the digest, s = SIGN(d)Relies on collision resistance - If H(M)=H(M') then s is a signature on both Attacks on MD5, SHA-1 threaten current signatures - MD5 attacks can be used to get bad CA cert [Stevens et al. 2009]

Collision resistance is hard

- Attacker works off-line (find M,M')
 - Can use state-of-the-art cryptanalysis, as much computation power as it can gather, without being detected !!
- Helped by birthday attack (e.g., 2⁸⁰ vs 2¹⁶⁰)
- Well worth the effort
 - One collision \rightarrow forgery for any signer

Signatures without CRHF [Naor-Yung 1989, Bellare-Rogaway 1997] Use randomized hashing - To sign M, first choose fresh random salt - Set d= H(salt, M), s= SIGN(salt || d) Attack scenario (collision game): – Attacker chooses M, X same salt (since salt is explicitly signed) - Signer chooses random salt - Attacker must find M' s.t. H(salt,M) = H(salt,M')

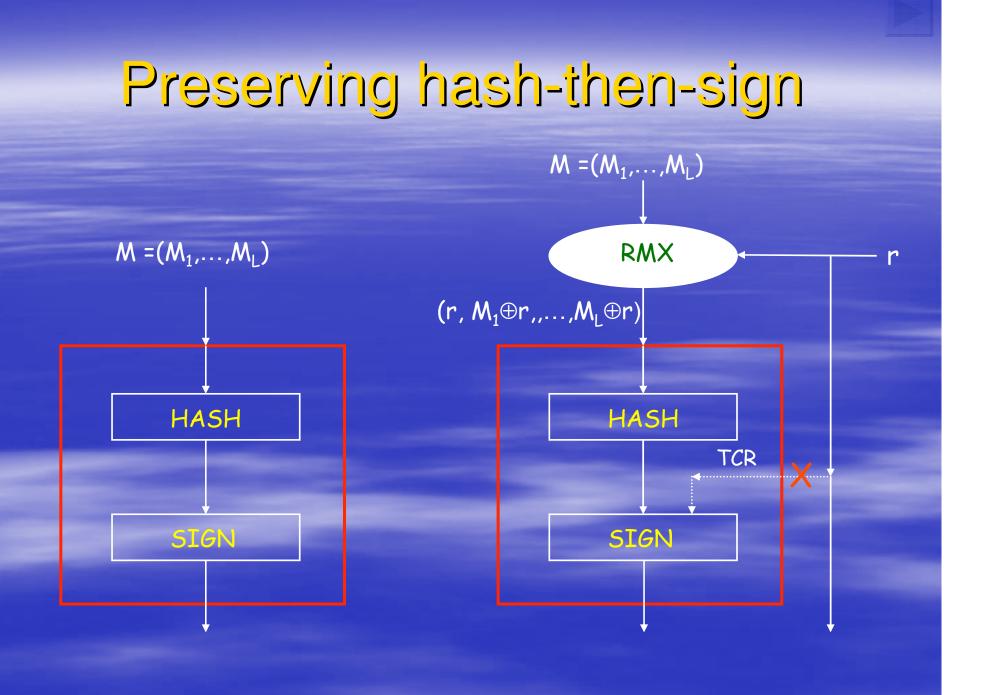
Attack is inherently on-line
 Only rely on target collision resistance

TCR hashing for signatures

Not every randomization works

- H(M|*salt*) may be subject to collision attacks
 - when H is Merkle-Damgård
- Yet this is what PSS does (and it's provable in the ROM)
- Many constructions "in principle"
 - From any one-way function
- Some engineering challenges
 - Most constructions use long/variable-size randomness, don't preserve Merkle-Damgård

 Also, signing salt means changing the underlying signature schemes


Signatures with enhanced TCR [H-Krawczyk 2006]

Use "stronger randomized hashing", eTCR - To sign M, first choose fresh random salt - Set d = H(*salt*, M), s = SIGN(d) Attack scenario (collision game): - Attacker chooses M attacker can use different salt' - Signer chooses random salt - Attacker needs M', salt' s.t. H(salt, M)=H(salt', M') Attack is still inherently on-line

Randomized hashing with RMX [H-Krawczyk 2006]

- Use simple message-randomization
 RMX: M=(M₁, M₂,...,M_L), r →
 (r, M₁⊕r, M₂⊕r,...,M_L⊕r)
- Hash(RMX(r,M)) is eTCR when:
 Hash is Merkle-Damgård, and
 Compression function is ~ 2nd-preimage-resistant

Signature: [r, SIGN(Hash(RMX(r,M)))]
 - r fresh per signature, one block (e.g. 512 bits)
 No change in Hash, no signing of *r*

Application 2: Message authentication Sender, Receiver, share a secret key Compute an authentication tag - tag = MAC(key, M) Sender sends (*M*, *tag*) Receiver verifies that tag matches M Attacker cannot forge tags without key

Authentication with HMAC [Bellare-Canetti-Krawczyk 1996]

Simple key-prepend/append have problems when used with a Merkle-Damgård hash -tag=H(key | M) subject to extension attacks - tag=H(M | key) relies on collision resistance HMAC: Compute tag = H(key | H(key | M)) - About as fast as key-prepend for a MD hash Relies only on PRF quality of hash $-M \mapsto H(key|M)$ looks random when key is secret

Authentication with HMAC [Bellare-Canetti-Krawczyk 1996]

Simple key-prepend/append have problems Compard hash when used As a result, barely attacks — tə⁄ affected by collision stance attacks on MD5/SHA1 HMA key (M)) r a MD hash - About as rast as the property Relies only on PRF property of hash $-M \mapsto H(key|M)$ looks random when key is secret

Carter-Wegman authentication [Wegman-Carter 1981,...]

- Compress message with hash, $t=H(key_1,M)$ - Hide t using a PRF, tag = t \oplus PRF(*key*₂,nonce) - PRF can be AES, HMAC, RC4, etc. - Only applied to a short nonce, typically not a performance bottleneck Secure if the PRF is good, H is "universal" − For M≠M′,∆, Pr_{kev} [H(*key*,M)⊕H(*key*,M′)=∆]<ε) - Not cryptographic, can be very fast

Fast Universal Hashing

"Universality" is combinatorial, provable \rightarrow no need for "security margins" in design Many works on fast implementations From inner-product, $H_{k1,k2}(M_1,M_2) = (K_1 + M_1) \cdot (K_2 + M_2)$ [H-Krawczyk'97, Black et al.'99, …] From polynomial evaluation $H_k(M_1,...,M_l) = \sum_i M_i k^i$ - [Krawczyk'94, Shoup'96, Bernstein'05, McGrew-Viega'06,...]

As fast as 2-3 cycle-per-byte (for long M's)
 – Software implementation, contemporary CPUs

Part III: Designing a hash function Fugue: IBM's candidate for the NIST hash competition

Design a compression function?

PROs: modular design, reduce to the "simpler problem" of compressing fixed-length strings - Many things are known about transforming compression into hash CONs: compression \rightarrow hash has its problems - It's not free (e.g. message encoding) - Some attacks based on the MD structure - Extension attacks (rely on H(x|y)=h(H(x),y)) "Birthday attacks" (herding, multicollisions, ...)

Example attack: herding

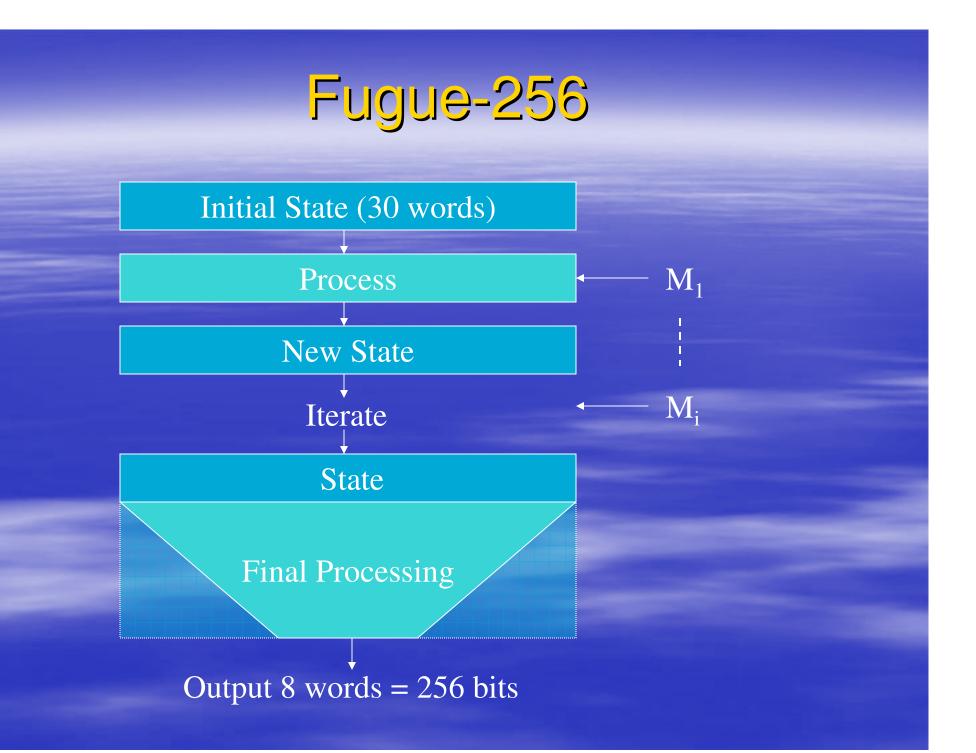
[Kelsey-Kohno 2006]

d

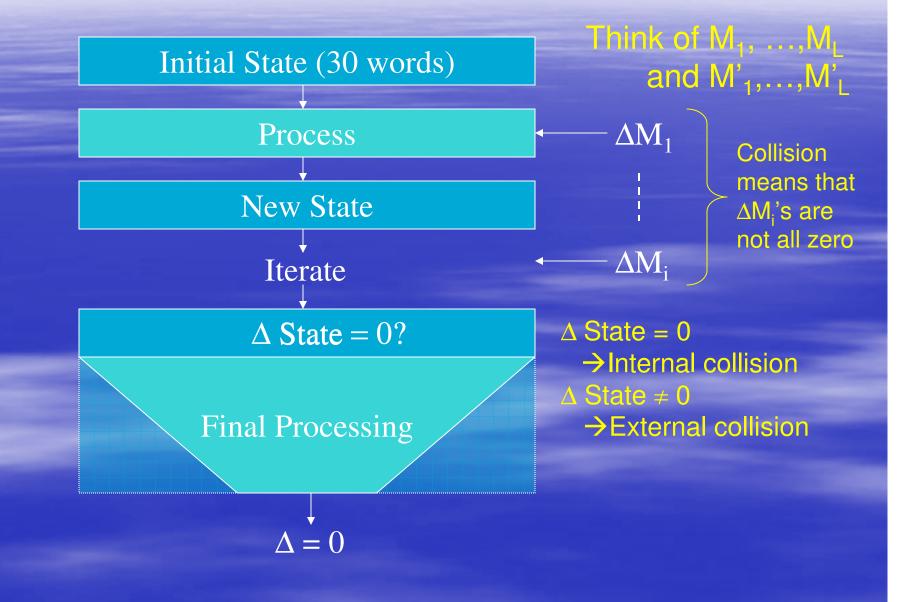
Find many off-line collisions $d_{1,1}$ $M_{2.1}$ - "Tree structure" with $\sim 2^{n/3} d_{i i}$'s d, d_{1,2} - Takes ~ 2^{2n/3} time Publish final d (d, , Then for any prefix P - Find "linking block" L s.t. H(P|L) in the tree - Takes ~ $2^{2n/3}$ time Read off the tree the suffix S to get to d \rightarrow Show an extension of P s.t. H(P|L|S) = d

The culprit: small intermediate state

With a compression function, we: - Work hard on current message block - Throw away this work, keep only n-bit state Alternative: keep a large state - Work hard on current message block/word – Update some part of the big state More flexible approach - Also more opportunities to mess things up


The hash function Grindahl [Knudsen-Rechberger-Thomsen 2007] State is 13 words = 52 bytes Process one 4-byte word at a time – One AES-like mixing step per word of input After some final processing, output 8 words

- After some final processing, output a words
 Collision attack by Peyrin (2007)

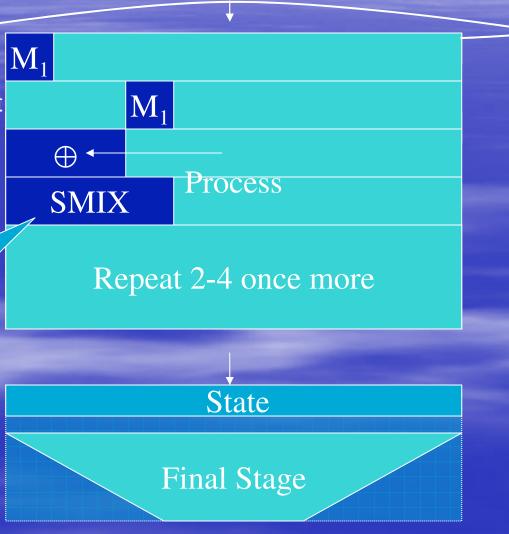

 Complexity ~ 2¹¹² (still better than brute-force)
 Recently improved to ~ 2¹⁰⁰ [Khovratovich 2009]
 - "Start from a collision and go backwards"

The hash function "Fugue" [H-Hall-Jutla 2008]

Proof-driven design - Designed to enable analysis \rightarrow Proofs that Peyrin-style attacks do not work State of 30 4-byte words = 120 bytes Two "super-mixing" rounds per word of input - Each applied to only 16 bytes of the state - With some extra linear diffusion Super-mixing is AES-like – But uses stronger MDS codes

Collision attacks

Processing one input word

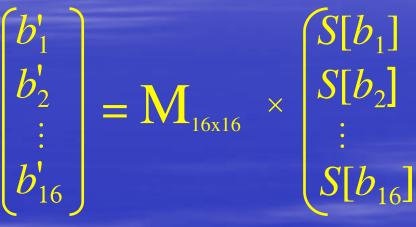

Initial State (30 words)

1. Input one word

- 2. Shift 3 columns to right
- 3. XOR into columns 1-3

4. "super-mix" operation on columns 1-4

This is where the crypto happens



SMIX in Fugue

Similar to one AES round – Works on a 4x4 matrix of bytes - Starts with S-box substitution -Byte b, $S[256] = \{...\};$ -b = S[b]; Does linear mixing Stronger mixing than AES - Diagonal bytes as in AES - Other bytes are mixed into both column and row

SMIX in Fugue

In algebraic notation:

 M generates a good linear code

 If all the b_i' bytes but 4 are zero then ≥ 13 of the S[b_i] bytes must be nonzero
 And other such properties

Analyzing internal collisions*

now $\Delta_{28-1} \neq 0$ still $\Delta_{1-4} \neq 0$ before SMIX: $\Delta_{1-4} \neq 0 \leq 4$ SM h xero byte diffs before input word: $\Delta_1 \neq 0$ Δ After last input word: ∆State=0

>>> 3 columns

* a bit oversimplified

Analyzing internal collisions*

Δ ₂₅₋₁ ≠0		≫ 3 colι	umns	
∆ ₂₈₋₄ ≠0		⊕•		
∆ ₂₈₋₄ ≠0	≤ 4	Stoftaero	byte diffs	
now $\Delta_{28-1} \neq 0$		≫ 3 colι	umns	
still ∆ ₁₋₄ ≠0		⊕		
before SMIX: $\Delta_{1-4} \neq 0$		SMIX		
before input word: $\Delta_1 \neq 0$	Δ			
er input word: ∆State=0				

afte

* a bit oversimplified

Analyzing internal collisions*

before input: $\Delta_1 = ?, \Delta_{25-30} \neq 0$	Δ'			
Δ ₂₅₋₁ ≠0		≫ 3 colι	umns	
∆ ₂₈₋₄ ≠0		⊕•		
∆ ₂₈₋₄ ≠0		SMIX		
now $\Delta_{28-1} \neq 0$		≫ 3 colι	umns	
still ∆ ₁₋₄ ≠0		⊕•		
before SMIX: $\Delta_{1-4} \neq 0$		SMIX		
before input word: $\Delta_1 \neq 0$	Δ			
after input word: ∆State=0				

* a bit oversimplified

The analysis from previous slides was upto here

TIX_0 $\Delta S[-1]$ SMIX	0 0 X1 0		tion of P	C	diffe	ren	ces	bef	o byte ore t tions		
CMIX											
ROR3	Y1 ₀ Y1 ₁	r 1 ₂ r 1 ₃									
SMIX	Y13 0	0 0	41							$Y1_0Y1$	1_1Y1_2
CMIX	$Z1_0 Z1_1$	$Z1_{2}Z1_{3}$	<i>X</i> 1		nanna fannanna fanna nanna fana	nan de la comune de la contecta de come				$Y1_0Y1_0$	1_1Y1_2
ROR3	Z10 Z11	$Z1_{2}Z1_{3}$	<i>X</i> 1							$Y 1_0 Y$	$l_1Y l_2$
TIX_1	$Z1_{3} = 0$	0 0 X1							$Y 1_0 Y 1_1 Y$	$1_2Z1_0Z1_0$	1_1Z1_2
11A-1	0	3	6	9	12	15	18	21	24	27	29
$\Delta S[-2]$ SMIX	x2 Y10	0 0 X1	Z^{1}	3 0 x2					$Y1_0Y1_1Y$	$1_2Z1_0Z1_0$	1_1Z1_2
CMIX	$y_{2_0} y_{2_1}$	$y_{2_2} y_{2_3} x_1$	Z^{1}	l ₃ 0 x2					$Y1_0Y1_1Y$	$1_2Z1_0Z1_0$	1_1Z1_2
ROR3		$y_{2_2} y_{2_3} X_1$	Z^{1}	$l_3 0 x^2$		X1			$Y1_0Y1_1Y$	$1_2Z1_0Z1_0$	1_1Z1_2
	y2 ₃ X1	0 0 0 2	71 ₃ 0 x2 0		<i>X</i> 1			$Y1_0Y1_1$	$_{1}Y1_{2}Z1_{0}Z1_{1}Z$	$(1_2 y 2'_0 y 2'_0)$	$2_1 y 2_2$
SMIX	z20 z21	$z_{2_2} z_{2_3} 0 2$	(1 ₂ 0 x2 0		X1			$Y_{1_0}Y_{1_1}$	$_{1}Y1_{2}Z1_{0}Z1_{1}Z$	$(1_2 y_2^2) y_2^2$	2, 122
CMIX			-		X1	$Z1_3$			$_{1}Y_{12}Z_{10}Z_{11}$		
ROR3	-	z2 ₂ z2 ₃ 0 2	130 22 0			£13					
TIX ^{††}	z2 ₃ 0	Z13 0 x2		<i>X</i> 1	0 Z1 ₃		$Y1_0Y1_1$	$Y_{1_2}Z_{1_0}Z_{1_1}$	$_{1}Z1_{2}y2_{0}'y2_{1}y$	(2 ₂ z2 ₀ z2	$z_1 z_2$

^a All *blank* cells are zero. Primed variables are defined in Section 10.1.4. The *shaded* cells are the ones affected in that step. The *boxed* variables are the ones that are *not determined* by variables from earier (lower) steps. Variables that are necessarily *non-zero* are in *capital*. Rounds are referred to by the subscript on the TIX step for that round. ^{††} Continued on next page.

Table 9: Evolution of Differential State for internal Collision (contd.)

	0			3		6			9		12	1	5	18		21	24	27	2
'IX_2	z2 ₃	0	$Z1_3$	0	<i>x</i> 2			Х	1		$Z1_3$	1		Y10	Y1 ₁ Y1	l_2Z1_0Z1	$_{1}Z1_{2}y2_{0}'y$	$2_1y_{22}z_0$	z2'1z:
AS[-3] MIX	<i>x</i> 3	$y2_0'$	$Z1_3$	0	<i>x</i> 2			$z2_3^{\dagger} X$	[1 x3		$Z1_3$	1		Y10	$Y1_1Y1_1$	$l_2 Z 1_0 Z 1$	$_{1}Z1_{2}y2_{0}'y$	$2_1y_22_2z_0$	$z2'_{1}z$
CMIX	y3 ₀	$y3_1$	$y3_2$	y3 ₃	x^2			22 ₃ X	1 13		$Z1_3$			Y10	Y1 ₁ Y1	l_2Z1_0Z1	$_{1}Z1_{2}y2_{0}'y$	$2_1y_22_2z_0$	$z2'_{1}z$
ROR3	y3'0	$y3_1$	y3 ₂	$y3_3$	x^2			$z_{2_{3}} X$	1 13		$Z1_{3}$	0 x	2	$Y1_{0}$	Y1 ₁ Y1	l_2Z1_0Z1	$_{1}Z1_{2}y2_{0}'y$	$2_1y_22_2z_0$	$z2'_{1}z$
MIX	y33	x^2	0	0		$z 2_3 X$	1 #3		Z_{1_3}	0	x^2	Y	1_0Y1_1	$Y1_{2}Z1_{0}$	$Z_{1_1}Z_1$	$_{2}y_{0}^{\prime}y_{0}^{\prime}y_{0}^{\prime}$	$y_{2_2}z_{2_0}z_{0}z_{0}$	$2'_{1}z 2_{2}y 3'_{0}$	y31y
MIX	<i>z</i> 3 ₀	$z3_1$	$z3_2$	<i>z</i> 3 ₃		$z_{2_3}X$	1 23		$Z1_3$	0	x^2	Y	$1_0 Y 1_1$	$Y1_{2}Z1_{0}$	$Z1_1Z1$	$_{2}y2_{0}'y2_$	$1 y 2_2 z 2_0 z$	$2'_{1}z 2_{2}y 3'_{0}$	y3 ₁ 3
OR3	23 ₀	z''_{1}	z''_{2}	<i>2</i> 3 ₃		$z2_3X$	1 #3		$Z_{1_{3}}$	0	x^2	Y	1 ₀ y1' ₁	$y1'_2Z1_0$	$Z1_1Z1$	$_{2}y_{0}^{\prime}y_{0}^$	$1 y 2_2 z 2_0 z$	$2'_{1}z 2_{2}y 3'_{0}$	y3 ₁ 3
TX-3	<i>z</i> 3 ₃	0	$z_{2_{3}}$	<i>X</i> 1	<i>x</i> 3	0 0	Z_{1_3}	0 2	2 0	0	$Y1_0y1_1'$	$y1'_2Z$	1 ₀ Z1 ₁	$Z1_2 y2_0'$	y2 ₁ y2	2 z 2 ₀ z 2	$_{1}^{\prime}z2_{2}y3_{0}^{\prime}y$	$3_1y3_2z3_0$	z''_{1}
S[-4]	<i>x</i> 4	$y3'_0$	$z2_3$	X1	23	0 0	Z_{1_3}	z33 2	2 x4	0	$Y1_0y1_1'$	$y1'_2Z$	1_0Z1_1	$Z1_2 y2_0'$	$y_{2_1} y_2$	2 220 22	$_{1}^{\prime}z2_{2}y3_{0}^{\prime}y$	$3_1y3_2z3_0$	$z_{1_{1_{2}}}^{\prime}$
	y_{40}	$y4_1$	y42	$y4_3$	x 3	0 0	$Z_{1_{3}}$	z33 2	2 x4	0	$Y1_0 y1_1'$	$y1'_2Z$	1_0Z1_1	$Z1_{2}y2_{0}'$	$y_{2_1} y_2$	$2_2 z 2_0 z 2_0$	$_{1}^{\prime}z2_{2}y3_{0}^{\prime}y$	$3_1y3_2z3_0$	$z_{1'}^{2'}$
	$y4'_0$	y 41	y42	$y4_3$	<i>x</i> 3	0 0	$Z_{1_{3}}$	z33 z	2 x4	0	$Y1_0y1_1'$	$y1_{2}'z$	$l'_0 Z l_1$	$Z1_2 y2_0'$	$y_{2_1} y_2$	$2 z 2_0 z 2_0$	$22_2y_0^{\prime}y_0$	$3_1y3_2z3_0$	z_{1}^{2}
MIX	y4 ₃	23	0	0	$Z1_3$	z3 ₃ x2	<i>x</i> 4	0 Y	'1 ₀ y1' ₁	y1'	$2^{2}z1_{0}^{\prime}Z1_{1}$	$Z1_2y$	$2'_0 y 2_1$	$y_{2_2} z_{2_0}$	$z2'_{1} z2$	$2_2 y 3'_0 y 3'_0$	$1 y 3_2 z 3_0 z$	$3_1' z 3_2' y 4_0'$	y4 ₁ į
	<i>z</i> 4 ₀	$z4_1$	$z4_2$	z4 ₃	$Z1_{3}$	z3 ₃ z2	<i>x</i> 4	0 Y	1 ₀ y1' ₁	y1!	$2^{2} z 1_{0}^{\prime} Z 1_{1}^{\prime}$	$Z1_2y$	$2'_0 y 2_1$	$y_{2_2} z_{2_0}$	$z2'_{1} z2'_{1}$	$2_2 y 3'_0 y 3'_0$	$1 y 3_2 z 3_0 z$	$3'_1 z 3'_2 y 4'_0$	y4 ₁ 3
IOR3	z4 ₀	$z4'_{1}$	$z4'_{2}$	z4 ₃	$Z1_{3}$	z3 ₃ x2	x 4	0 Y	1 ₀ y1' ₁	y1!	$2^{2} z 1_{0}^{\prime} Z 1_{1}^{\prime}$	$Z1_2y$	$2_0'' y 2_1'$	$y2_{2}' z2_{0}$	$z_{1}^{2'_{1}} z_{2}^{2}$	$2_2 y_{3_0}^{\prime} y_{3_0}^{\prime}$	1 y3 ₂ z3 ₀ z	$3'_1 z 3'_2 y 4'_0$	y4 ₁ į
	z43	$Z1_3$	$z3_3$	x^2	x 4	0 Y1	oy1'1	$y1_2'z$	$1_0' Z 1_1$	Z1	$_{2}y2_{0}^{\prime\prime}y2_{1}^{\prime\prime}$	$y_{2_{2}}^{\prime}z_{2}^{\prime}$	$2_0 z 2'_1$	$z2_2 y3_0'$	y3 ₁ y3	2 230 23	$_{1}^{\prime}z3_{2}^{\prime}y4_{0}^{\prime}y$	$4_1y4_2z4_0'$	z4'12
	x5		$z3_3$	x^2	x 4	0 Y1	₀ y1' ₁	$y_{1_{2}}^{\prime} z$	1 <u>0</u> Z11	Z1	$_{2}y2_{0}^{\prime\prime}y2_{1}^{\prime\prime}$	$y_{2_{2}}^{\prime}z_{2}^{\prime}$	$2_0 z 2'_1$	$z2_2 y3_0'$	y3 ₁ y3	₂ z3 ₀ z3	$\frac{1}{2}z_{2}^{\prime}y_{0}^{\prime}y_{$	$4_1y4_2z4_0'$	z4'12
15[-5]		$^{+}_{y4'_{0}}$						+ z4 ₃	+ x5										
	0			3		6		1	9		12	1	5	18		21	24	27	:

Analyzing internal collisions

 What does this mean? Consider this attack:

 Attacker feeds in random M₁,M₂,... and M'₁,M'₂,...
 Until State_L ⊕ State'_L = some "good ∆"
 Then it searches for suffixed (M_{L+1},...,M_{L+4}), (M'_{L+1},...,M'_{L+4}) that will induce internal collision

Theorem*: For any fixed Δ , Pr[\exists suffixes that induce collision] < 2⁻¹⁵⁰

* Relies on a very mild independence assumptions

Analyzing internal collisions

- Why do we care about this analysis?
 Peyrin's attacks are of this type
- All differential attacks can be seen as (optimizations of) this attack
 - Entities that are not controlled by attack are always presumed random

A known "collision trace" is as close as we can get to understanding collision resistance

Fugue: concluding remarks

Similar analysis also for external collisions

 "Unusually thorough" level of analysis

 Performance comparable to SHA-256

 But more amenable to parallelism

 One of 14 submissions that were selected by NIST to advance to 2nd round of the SHA3 competition

Morals

- Hash functions are very useful
- We want them to behave "just like random functions"
 - But they don't really
- Applications should be designed to rely on "as weak as practical" properties of hashing - E.g., TCR/eTCR rather than collision-resistance
 A taste of how a hash function is built

Thank you!