

Physical-layer Identification of RFID Devices

Boris Danev bdanev@inf.ethz.ch Thomas Heydt-Benjamin hey@zurich.ibm.com

Srdjan Capkun capkuns@inf.ethz.ch

Agenda

- 1. ePassport Overview
- 2. ePassport Security
- 3. Problem Statement
- 4. RFID Fingerprinting
- 5. Experimental Evaluation
- 6. Application to ePassports
- 7. Conclusion

1. ePassport Overview

The ePassport

- Contains a purpose-built RFID chip
- That stores personal information (e.g., name, date of birth) and biometrics (e.g., fingerprint, face scan)
- The content is accessible via a standardized wireless interface (ISO 14443 Type A and Type B)
- The International Civil and Aviation Organization (ICAO) standardizes the content
 - EF.DG1: personal information (required)
 - EF.DG2: picture (required)
 - EF.DG[3-14,16]: fingerprints, iris scans (optional)
 - EF.COM: index of available files

2. ePassport Security (1/2)

- Passive Authentication (ICAO required)
 - Data integrity
 - Stores hashes of the information and a public key, hashes are digitally signed with a private key
- Basic Access Control (ICAO optional)
 - Data confidentiality
 - Key = Document number + Date of birth + Date of expiry
 - Messages are encrypted using 3DES and contain MACs
- Active Authentication (ICAO optional)
 - Cloning prevention
 - RSA public and private key pair. The private key is stored in the inaccessible chip memory
 - Challenge-response protocol

2. ePassport Security (2/2)

- Cloning ePassports without Active Authentication
 - Lukas Grunwald, *BlackHat 2006*
 - Bit by bit copy of content in a self-written ePassport emulator
 - Can be prevented by using Active Authentication
- Retrieving secret ePassport data
 - Marc Witteman, *What the Hack 2008*
 - Using power analysis to retrieve the private key
- Read ePassports with predictable document numbers
 - Adam Laurie reads BAC protected UK passport
 - An educated guess (sequential document numbers)
- ePassports Reloaded
 - J. Van Beek, *BlackHat Asia 2008*
 - Attacks on the Passive and Active Authentication

3. Problem Statement

- The Questions
 - Can we identify (fingerprint) a RFID chip at the physical layer?
 - What identification accuracy can be expected?
- Motivations
 - Information can be easily copied, but hardware is more difficult
 - From human biometrics to hardware "biometrics"
- Current status
 - Hardware setup for signal acquisition
 - Implementation of a fingerprinting RFID tag reader
 - Feature extraction and matching algorithms

4. RFID Fingerprinting (1/3)

Signal Acquisition Setup

Purpose-built HF (13.56MHz) RFID Reader ISO 14433 Type A and Type B Acquisition antenna setup

Captured signal transmission

4. RFID Fingerprinting (2/3)

- Experiments performed
 Experiment 1 (Standard)
 Fc = 13.56 MHz
 - Experiment 2 (Varied Fc)
 Fc = 12.86 14.36 MHz
 - Experiment 3 (Burst)
 - Sinusoidal burst of RF energy
 - Experiment 4 (Sweep)
 - Sinusoidal frequency sweep of RF energy

4. RFID Fingerprinting (3/3)

- Timing Features
 - Measuring time between reader query and chip response
 - At different carrier frequency (Fc = 12.86 14.36 MHz)
- Modulation-shape Features
 - Type A response is On-Off keying
 - Extract the shape of the On-Off keying by Hilbert transformation
- Spectral Features
 - Extract frequency information
 - Burst and sweep frequencies are selected by means of Fourier transformation and high-dimensional Principal Component Analysis

5. Experimental Evaluation

Data Sets

Table 1: RFID device populations (passports and JCOP NXP smart cards).

Туре	Number	Label	Country	Year	Place of Issue			
Passport	2	ID1, ID2	C1	2006	P1			
	1	ID3	C1	2006	P2			
	1	ID4	C1	2006	P3			
	1	ID5	C1	2007	P4			
	1	ID6	C2	2008	P5			
	1	ID7	C3	2008	P6			
	1	ID8	C1	2008	P1			
JCOP	50	J1J50	JCOP NXP 4.1 cards (same model and manufacturer)					

Evaluating Accuracy

- Classification (e.g., country of issuance, year, etc)
- Identification (i.e., identify individual passports)

5.1. Classification Accuracy

- 4 different classes
 - 8 ePassports from 3 countries + 10 JCOP cards = 4 classes
- Classification accuracy
 - Timing features
 - Very low classification accuracy
 - Each country seems to use RFID chips from same manufacturer. The standard is well implemented
 - Modulation features
 - High classification accuracy (100%)
 - Different RFID chips?
 - However even passports within same country exhibit
 - differences in the modulation

5.2. Identification Accuracy (1/2)

- 50 JCOP NXP 41 cards
 - Same model and manufacturer
- Burst and Sweep features

Equal Error Rate (EER) = 5% (i.e., 95% accurate identification)

5.2. Identification Accuracy (2/2)

- Combining Burst and Sweep Features
 - EER improves to 2.4%
- Receiver Operating Characteristic (ROC)
 - Shows the improvement for various False Accept Rates(FAR) and False Reject Rates (FRR)
 2 100

			e e e e e e e e e e e e e e e e e e e		**
FAR	FRR	GAR = 100%- FRR) – FRF	80	-
0.1%	50%	50%	6) = 100	60	
1%	10%	90%	Rate(%	40	and the first
>5%	0%	100%	Accept	40	and a second
T -1-1-			nuine	20	

Table 1: Recognition Accuracy

Gel

10%

6. Application to ePassports

- ePassport cloning detection
 - Scenario 1: The RFID fingerprint is stored in back-end database
 - Measured before deployment
 - Stored in back-end database, indexed by the ID of the transponder
 - Online verification
 - Scenario 2: The RFID fingerprint is stored on the transponder.
 - RFID fingerprint size = 120 bytes.
 - Stored in the chip memory (36/72KB EEPROM in NXP chips)
 - The fingerprint integrity should be ensured, i.e. digitally signed by the document-issuing authority
 - Offline verification

7. Conclusion and Future Work

- Passive RFID transponders exhibit unique features on the physical layer due to manufacturing variability.
- Such variations are inherent even to identical (same model and manufacturer) transponders.
- Future work needs to address a number of issues:
 - Can we improve the identification accuracy?
 - How hard is to reproduce an RFID physical-layer fingerprint? (e.g., radio signal replaying)
 - Additional attacks and countermeasures

Q & A