
Nemesis:
Preventing Web Authentication

& Access Control Vulnerabilities

Michael Dalton, Christos Kozyrakis

Stanford University

Nickolai Zeldovich

Massachusetts Institute of Technology

Web Application Overview

2

FS

User: Bob

Op: Upload pic1.jpg

DB

User: httpd

Op: Write pic1.jpg

User: webdb

Op: INSERT pictbl

FS/DB access executed with full app privileges!

Web Authentication is Broken

Semantic Gap – independent auth sys

Web Authentication vs. DB, FS, LDAP, …

Webapps are effectively setuid progs

All FS, DB ops have privs of webapp

Not privs of webapp user (Confused Deputy)

Programmer must insert auth checks

Check web app user before all FS/DB op

Safe only if programmer is perfect
3

And in the real world…

Programmers forget auth/ACL checks

Authentication/Authorization OWASP Top 10

Difficult to prevent automatically

Each app has its own authentication system

Apps have different privilege/ACL systems

Widespread, highly damaging

Vulns usually result in ‘admin’ access to app

4

Authorization Bypass Vulns

Resource access without authorization

Missing authorization check

Incorrect authorization check

if(client_authorized($_GET['fileName'])

 openFile($_GET['filename']))

Add URL parameter: filename=/etc/passwd

5

Authentication Bypass Vulns

Authentication without valid credentials

URL/Cookie Validation Error

Weak Crypto

 Ruby on Rails

http://n8.tumblr.com/post/117477059/
security-hole-found-in-rails-2-3s

if (isset($_COOKIE['user']))

 $userName = $_COOKIE['user'];

Edit cookie, add name/value pair: 'user=admin‘

6

Ideal Auth/ACL System

Only authenticates correctly/safely

No authentication bypass attacks

Always enforces ACLs correctly

No authorization bypass attacks

Existing systems fail on both counts
May authenticate unsafely if vulnerable

Do not enforce ACLs automatically

7

Nemesis Overview

Stops authentication, authorization atks

Without requiring app auth code rewrites

Infers when authentication done safely

Use DIFT to track auth credentials

Enforces ACLs automatically on file/DB
ACLs specify privs for web clients

8

Nemesis System Overview

Language Interpreter DIFT

Core Library
ACL

Enforce

Web

App 1

Automatic auth inference

2 tag bits per object

Tag prop on all object ops

Web

App 2

Intercept I/O ops for File ACLs

Intercept SQL ops for DB ACLs

Web

App 3

9

Safe Authentication Inference

Propagate user credential, taint bits

2 tag bits per object (String, integer, etc)

Infer when auth occurs safely

Tainted info compared equal to auth cred

Add check to string or array comparison op

Record authentication inferred user

Auth bypass attacks do not change this user

10

Authentication Example

11

$user = $_GET['username']

$user = mysql_real_escape_string($user)

$pw = md5sum($_GET['password'])

$realpw = $db->query(“SELECT pw FROM
users WHERE userName =“ + $user +

“;”

if ($pw == $realpw) {

 $realpw

 Variable T

 $user

 $pw

Authenticated!

P

Authorization Enforcement

Enforce ACLs on FS, DB access

Apply to authentication inferred user

Restrict DB table/row, file access

Many tables store per-user rows

Taint information used in some rules
New user registration

Password change

12

Attack Prevention

Authorization Bypass

Nemesis ACLs enforced automatically

Not dependent on any app-enforced checks

Authentication Bypass
Auth inference not affected by attack

Inference requires user input == password

ACLs check inferred user

Prevents access to any privileged resource!

Configuration Requirements

Authentication inference

Table/column info for auth credentials

ACL enforcement

ACL from sysadmin for DB, File access

Future work
Current configuration provided by admin

Log DB, File ops along with inferred user

Auto-generate ACLs from logs
14

Nemesis Prototype

Added DIFT support to PHP interpreter

Password, Taint bits for String, int, etc

Assume Raksha checking OS & PHP
interpreter for low-level attacks

Auth inference on string comparison
==, != operators

Don’t have a full SQL query rewriter

Had to manually insert DB checks
15

Experimental Results

No discernible performance overhead

Application Size (Lines)
Auth Lines
Added

ACL Check
Lines Added

Attack Prevented

Php iCalendar 13,500 3 22 Auth Bypass

PhpStat 12,700 3 17 Missing ACL Check

Bilboblog 2,000 3 11 Incorrect ACL Check

phpFastNews 500 5 17 Auth Bypass

Linpha Gallery 50,000 15 49
SQL Injection in
Password Check

DeluxeBB 22,000 6 143 Missing ACL Check

16

Authenticatication Bypass:
Bilboblog

Internal login script internet accessible

Admin username and password undefined

PHP + Register Globals = Fail

Undefined vars initialized by URL params

Attacker supplies the admin password!
Ensures the ‘submitted’ password is equal

17

Protecting Bilboblog

Vulnerable app does not perform auth

Compares user input to user input

Attack has no effect on shadow auth

Attacker-supplied admin password is tainted

Does not have user credential bit set

Access to privileged resources denied

ACL checks use shadow authenticated user

18

Authorization Bypass: DeluxeBB

Forum supports private messages

Stored in DB, restricted to sender/receiver

Invalid access control check

Malformed cookies bypass check entirely

Attacker forges cookies
Can read arbitrary user’s private messages

19

Protecting DeluxeBB

Nemesis does not parse app cookies

Maintains its own shadow auth cookies

DeluxeBB has row ACL for pm table

‘From’ or ‘To’ field = shadow auth user

Exploit rendered harmless
Only read row if From/To shadow auth user

No information leaks can occur

20

Future Work

Develop full language for ACLs

Automate SQL query rewriting for ACLs
Database views/triggers (see related work)

MySQL Proxy

Automate ACL generation

Parse DB, File access logs

Infer authentication rules

21

Conclusion

Web authentication is broken
Semantic gap between Web App, DB & FS

Nemesis infers safe authentication
When user input compared equal to password

Nemesis enforces authorization
ACLs apply to authentication inferred user

Validated using real-world PHP Apps
Prevented authentication & authorization bypass

22

