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Memory Safety Future is Bright

User-space memory safety is improving
Safe languages
SAFECode, CCured, Baggy bounds checking, 

Softbound, etc
Memory safety for operating systems exists!

Singularity (C#), SPIN (Modula-3)
Linux on Secure Virtual Architecture (C)



A New Enemy Arises: 
Software/Hardware Interactions

What is a low-level software-hardware interaction?
 Instruction that manipulates hardware resources
Below semantics of the programming language

Perfectly type-safe code! But:
Can corrupt control-flow or data-flow

Examples:
Processor State
 I/O Objects
MMU mappings



Memory Safety: Processor State

Operating systems explicitly manage Processor State
Processor states saved in memory buffers 

Type-safe stores can modify a saved processor state
Can subvert control/data-flow integrity
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Memory Safety: I/O

 I/O device memory and RAM in same address space
However, I/O memory is different

 I/O memory incompatible with standard compiler analysis
 I/O memory has side effects on hardware

 Intel E1000E Bug on Linux 2.6
 Invalid write on I/O memory
 Damaged Intel E1000E Network Cards
 Potential DoS Attack



Memory Safety: MMU
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Memory Safety: MMU

MMU can make kernel pages 
accessible to user-space
 BID9356, BID9686, BID18177 

(www.securityfocus.com)
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It’s Already Here!

 Intel E1000E Bug
MMU exploits in Linux

Need solutions before these attacks become more
sophisticated and commonplace!



SVA-OS: Memory Safety for Low-
Level Software-Hardware Interactions

First system to provide comprehensive memory 
safety for low-level software/hardware interactions
Linux 2.4.22 on Secure Virtual Architecture (SVA)

Compiler analysis and runtime checks
Little overhead above and beyond traditional memory 

safety

Effective at preventing software/hardware exploits



Outline

Motivation
High-level Solutions
Design of SVA-OS
Experimental Results
Future Work and Conclusions



Foundations: What Do We Need?

System that provides traditional memory safety
SVA-OS will preserve memory safety

Examples
Type-safe languages, e.g. Singularity
Compiler techniques for commodity operating 

systems, e.g. Secure Virtual Architecture (SVA)



Solution: Processor State

New instruction to save old state and restore new state
 State saved in internal SVA-OS memory
 State referenced by ID returned from VM

Policy left to OS 
 Scheduling, context switching, signal delivery
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Solution: Memory Mapped I/O

New instruction to map I/O memory into address space
New instructions to load/store I/O objects
Add run-time checks to ensure that:

 Regular load/stores access memory
 I/O accesses access I/O memory

P1
Memory Pointer

P2
I/O Pointer

store (v, *p2);

iostore (v, *p1);
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Solution: MMU

Add run-time checks on MMU updates
 Mapping kernel memory into user-space
 Mapping data inconsistent with types

Same mechanism as VMMs
 Finer-grain checks
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Secure Virtual Architecture1 

Compiler-based virtual machine
 Hosts a commodity OS (e.g., Linux)
 Provides traditional memory safety guarantees (control-flow and 

data-flow integrity) 

Memory Safety
Run-time Library

Hardware 

OS Memory Allocator

SVA Virtual 
Machine

OS Kernel

SVA ISA

Native ISA

Native Code Generator
SVA Run-time

Library

Safety Compiler

Hardware

1Criswell et al. [SOSP 2007]



From SVA to SVA-OS

Extend the SVA software/hardware interface
New instructions control software/hardware 

interactions

Enforce memory safety for low-level operations
Use static analysis when possible
Add run-time checks when necessary 



Solution: Processor State

Save old state and place new state in a single instruction
 sva_swap_integer

Return opaque handle
Buffer saved in SVA-OS memory

 Buffer released on sva_swap_integer call
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Solution: Memory Mapped I/O

Operating system uses a pseudo-allocator
Map I/O objects into virtual address space

New instructions for I/O reads and writes
sva_io_readb, sva_io_writeb

Compiler marks I/O memory as type-unknown
Load/store check on each access
Load/store checks on memory objects that alias



Solution: MMU

VMM-like interface to declare and update MMU mappings
 sva_declare_l1_page, sva_declare_l2_page
 sva_update_l1_mapping, sva_update_l2_mapping

Runtime checks for typed memory
 Pointer analysis in SVA segregates data by types
 SVA-OS ensures this stays consistent

Run-time checks for dividing memory
 SVA-OS memory and kernel memory
 Kernel memory and user-space memory
 I/O memory and regular kernel memory



Linux 2.4 Port on SVA-OS

Less than 100 lines changes from original SVA 
Linux port
switch_to ➞ sva_swap_integer
 readb ➞ sva_io_readb
set_pte ➞ sva_update_l1_mapping
pte_alloc_one ➞ sva_declare_l1_page

Compiler changes:
Allocation of I/O objects: ioremap
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Does It Work?

Tested two real world MMU exploits
BID9356, BID9686 on Linux 2.4
BID18177 exploit code not available

Injected errors into our Linux 2.4 port
New system calls

Studied the E1000E Intel Network bug
Paper study because only on Linux 2.6



MMU Exploits on Linux 2.4
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MMU Exploits on Linux 2.4

BID9686
 Missing error check on mremap
 MMU mappings not cleared
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MMU Exploits on Linux 2.4

BID9686
 Missing error check on mremap
 MMU mappings not cleared
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Map count = 0

Both bugs were detected by SVA-OS, not SVA

BID9356
 fork, mmap



Error Injection 

Modification of Processor State

Double mapping of a type-safe memory object

Modify metadata of SVA with incorrect bounds
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Error Injection 

Modification of Processor State

Double mapping of a type-safe memory object

Modify metadata of SVA with incorrect bounds

SVA-OS: Caught as an invalid integer to pointer cast

SVA-OS: Second mapping caught by MMU checks

SVA: Memory safety guarantees disabled

SVA: control flow changed

SVA: Subsequent store succeeds

SVA-OS:Access to SVA memory caught by MMU checks



E1000E Bug on Linux 2.6

cmpxchg on dangling pointer
Instruction thought it was code memory
Unpredictable behavior on I/O memory
Network card damaged

With SVA-OS
No I/O memory mapped on code page
Load/Store checks on I/O memory



Web Server Bandwidth: thttpd
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 Athlon 2100+, 1GB of RAM, 1Gb/s network
 Higher is better
 Micro-benchmark overheads in paper



User-Application Benchmarks

Benchmark i386 (s) SVA (s) SVA-OS (s) % Increase (i386 to SVA-OS)

bzip2 18.7 18.3 18.0 0.0%

lame 133.3 132.0 126.0 -0.1%

perl 22.3 22.3 22.3 0.0%

 Negligible overhead on user-space applications
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Future Work

Improve Static Analysis
Reduce run-time checks

Additional Security Properties
Information flow control

Apply to other systems
Type-safe language OS, e.g. Singularity
JVMs, hypervisors



Contributions

Identified memory-safety violations from low-
level software/hardware operations

First system to provide comprehensive safety 
guarantees for such operations
Leaves control under OS
Incurs little run-time overhead above SVA

Questions?
See what we do at http://sva.cs.uiuc.edu


