Protecting Confidential Data on Personal Computers with Storage Capsules

Kevin Borders, Eric Vander Weele, Billy Lau, and Atul Prakash

Problem: Malicious Software

- Computing becomes pervasive, so is malware
 - Over 23 million computers cleansed in 2008 [1]
- Consequences are severe:
 - Financial loss
 - Identity theft
 - Fraud

Scenario

- Tasks that require confidentiality protection
 - Perform financial analysis of credit card expenditure
 - Writing journal containing controversial political beliefs
 - Writing business proposal

Goals

Provide confidentiality for local sensitive files against malicious software

Related Work: Trusted Boot

- Not 100% safe
- Need to verify all software prior to installation
 - Hard
- Verify documents
 - Even harder!!

Related Work: Strict Inter-Process Flow Control

- Mandatory Access Control with strict control flow policy = Limited Usability
- Air gap greatly limits utility

Contribution - Storage Capsules

 A system that can securely access confidential information from a compromised commodity OS

Approach

- Allow normal OS and standard applications to access sensitive data
- Two modes of operation:

Normal Mode	Secure Mode
• No restrictions	• Prevent network output
• Perform non-sensitive operations	• Edit sensitive documents
No storage protection	• Encrypt changes to Storage Capsules

From the User's Perspective

Similar to TrueCrypt, but contents safe when open

Capsule Architecture

Green
=
Trusted
Computing
Base

Red = Not Trusted

Threat Model

- We trust:
 - The user,
 - The capsule VM, and
 - The VMM
- Do not trust:
 - The primary OS
 - Applications
- Covert Channels
 - Channels within the primary VM are blocked
 - Channels in Capsule VM, VMM, and hardware may not be blocked

Accessing a Storage Capsule

VMM Module

Closing a Storage Capsule

Closing a Storage Capsule

Covert Channels Illustrated

Attacks - Covert Channels

- Primary OS and Capsule could be manipulated, but we:
 - Fix the file store size
 - Re-encrypt the store before every export
 - The user controls transition timing with a secure key escape sequence
- External Devices store data on floppy, CD-ROM, USB, SCSI, etc.
 - Device output is disabled in secure mode

Attacks - Covert Channels (pt. 2)

- VMM manipulate memory utilization and layout, store information in virtual network
 - VMM does not over-commit memory and uses fixed layout
 - Restart the virtual network during transition to normal mode
- Hardware store data in CPU or disk cache
 - Restoration code adds noise to CPU, full reset would completely clear CPU
 - Would need to clear all disk caches or move all files to block disk covert channels

Attacks - Secure Mode Forgery

- Malware could fake secure mode UI
- To be safe, users are only required to:
 - Remember that they are supposed to enter a key escape sequence (like ctrl+alt+del) to enter secure mode
 - Heed warnings

Performance - Transitions

To Secure Mode

To Normal Mode

Disk Performance - Secure Mode

- For Apache build:
 - Storage Capsules 38% slower than native system
 - Only 5.1% slower than running TrueCrypt in VM

Limitations

- Changes made outside Capsules in secure mode are lost
 - Background computations
- Network connections are lost in secure mode
 - Downloads, services, etc.
- Short-lived sessions are impractical due to transition time

Conclusion

- Introduced Storage Capsules, a new mechanism for securing files on personal computers
 - Similar to existing file encryption software
 - Provide better protection and usability
 - Works in the face of a compromised OS
- Covert channel analysis
 - Explores covert channels on many layers

Questions

