Baggy bounds checking

C/C++ programs are vulnerable

Lots of existing code in C and C++
More being written every day
C/C++ programs are prone to bounds errors

Bounds errors can be exploited by attackers

Previous solutions are not enough

Finding all bugs is unfeasible
Using safe languages requires porting

Existing solutions using fat pointers (Ccured,
Cyclone) break binary compatibility

Backwards compatible solutions are slow
And performance is critical for adoption

Baggy bounds checking (BBC)

* Enforce allocation instead of object bounds

l=— Object bounds —i
l=— Allocation bounds =

Object Padding

* Constrain allocation sizes and alignment to
powers of two

 Fit size in one byte
* No need to store base address

* Fast lookup using linear table

BBC Benefits

Works on unmodified source code
Broad coverage of attacks

Interoperability with uninstrumented binaries

Good performance
— 30% average CPU overhead

* 6-fold improvement over previous approaches on SPEC

— 7.5% average memory overhead
— 8% throughput degradation for Apache

System overview

Unmodified C Generate IR

Source Code
T
|
i Baggy Runtime
| Bounds Support
i Checking Library
e e e e e e &

I Binary Generate
Libraries Code
-
Hardened

Executable

Attack Example

e Pointers start off valid
p = malloc(200);

* May become invalid
q=p + 300;

 And then can be used to hijack the program
*q = 0x00000BAD

Traditional Bounds Checking

Use table to map allocated range to bounds
p = malloc(200);

Lookup bounds using source p
q=p+300;
Check result g using bounds

Note that source pointer p assumed valid

— points to allocation or result of checked arithmetic
— maintain this invariant throughout execution

But keeping bounds information is expensive...

Baggy Bounds

* Pad allocations to power of 2
— malloc(200) -> malloc(256) -

* Align to allocation size
— Upper bound: Ox888888FF
— Lower bound: 0x88888800

* Can recover bounds using

— The valid source pointer +

Ox888888FF

Pad

Obj

T

Y

Ox88888800
— The binary logarithm of the allocation size

Bound table implementation

Previous solutions need e.g. splay tree to
ookup bounds for a given source pointer

f force allocations to be a multiple of 16 byte
slots, can use an array with 1 byte per slot

r

16 bytes

+

16 bytes

‘

Application Bound
Memory Table

Efficient table lookup

mov eax, p ; Copy pointer
shr eax, 4 ; Right-shift by 4
mov al, [TABLE+eax] ; One memory read

* Loads allocation size logarithm in register %al
* However:
* No need to recover explicit bounds
* Use valid pointer and allocation size directly

Efficient Checks

q=p+300;
mov ebx, p ; copy source 0x88888800
Xor ebx, g ; Xor with result 0x8888892C
0x0000012C
shr ebx, al ; right shift >> 8

; by table entry 0x00000001
jnz error ; check for zero 11

(Legal) Out-of-bounds pointers

C programs can use out-of-bounds pointers
Cannot dereference
Can use in pointer arithmetic

C standard allows only one byte beyond object
— Some programs go beyond, or below object e.g.
char *array = malloc(100) — 1;
// how can use array[1..100]

Dealing with OOB pointers

* 1. Mark to avoid dereference
— Set pointer top bit
— Protect top half of address space
e 2. Recover valid pointer if marked
— Can use extra data structure
— BBC: support most cases without a data structure

— (can support more in 64-bit mode — see later)

Common out-of-bounds pointers

T

slot |F-—----

' <+——— pottom half of slot
object %

¥

<—— top half of slot

slot |-—----

L] S

Extra check in fast path
[YES NO 1
‘Get valid pointer >‘ Table lookup ‘

Result
{ YES NO —l
m -

16

Optimized fast path

‘ Table lookup ’1
Result

Get valid pointer

YES

Source
OK
‘ | fNo

17

Memory Allocations

Heap using binary buddy system
— Perfect fit for baggy bounds
Align stack frames at runtime

— Only if contains array or address taken variable
Pad and align globals at compile time

Memory allocated by uninstrumented code
has default table entry

— Default value 31: maximal bounds

Performance Evaluation

* Measured CPU and memory overhead
— Olden and SPEC benchmarks

* Baggy
— Baggy bounds checking as described

e Splay
— Splay tree from previous solutions

— Standard allocator
— Same checks

Execution Time vs. Splay Tree

W Baggy W Splay

o 20
.§18
= 16
,'|C=>14
3 12
@ 10
w8
o
.g6
= 4
€ 2
O (0 -
2
C £ T = - T o > a Q4% = = x o
2 g m 8 ¢ 5 9 o & o Fg & ¥ o 9 w
a £ @ 3 @ N © % w E & 3z L C©
Q@ o £ 5 9 QO s * S v
— _:, ©
)
Q

* 30% for baggy vs. 6x for splay tree on average

20

Memory Usage vs. Splay Tree

M Baggy M Splay

| | | |
N N oM aNwn—no
< ™ ~ — o

Alowd\)jead pazijew.ioN

93eJlane
X9)JOA
3|IOM]
JasJed
Jow
diz3
de3
Ayesd
¢dizq
dsy
ppeasJ}
Jomod
Jo1wiiad
1sw
Yijesy
pgWo
110sI1q
uq

e 7.5% for baggy vs. 100% for splay on average

21

Apache Throughput

Requests per second
w
o
o
o

—Base
1000
0
1 2 3 4 5 6
Concurrency

* 8% throughput decrease with saturated CPU

Effectiveness

* Evaluated using buffer overflow suite

e Blocked 17 out of 18 attacks
e Missed overflow between structure fields

Baggy bounds on x64

* Baggy bounds can fit inside pointers

zZero size address

fe——21 ——>{= 5 = 38

Avoid memory lookup entirely:
mov rax, p ; COpY pointer
shr rax, 38 ; shift tag to %al

x64 Out-of-bounds pointers

offset

size

Zero

address

le—— 13 —>le 5 le— 8§ —>}e

38

* Adjust pointer by offset in spare bits
* Greatly increases out-of-bounds range

Conclusions

* Baggy Bounds Checking provides practical
protection from bounds errors in C\C++

* Works on unmodified programs
* Preserves binary compatibility

* Good performance
— Low CPU overhead (30% average)
— Low memory overhead (7.5% average)

* Can protect systems in production runs

