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Abstract
Security vulnerabilities continue to plague web appli-
cations, allowing attackers to access sensitive data and
co-opt legitimate web sites as a hosting ground for mal-
ware. Accordingly, researchers have focused on various
approaches to detecting and preventing common classes
of security vulnerabilities in web applications, includ-
ing anomaly-based detection mechanisms, static and dy-
namic analyses of server-side web application code, and
client-side security policy enforcement.

This paper presents a different approach to web appli-
cation security. In this work, we present a web appli-
cation framework that leverages existing work on strong
type systems to statically enforce a separation between
the structure and content of both web documents and
database queries generated by a web application, and
show how this approach can automatically prevent the
introduction of both server-side cross-site scripting and
SQL injection vulnerabilities. We present an evaluation
of the framework, and demonstrate both the coverage and
correctness of our sanitization functions. Finally, exper-
imental results suggest that web applications developed
using this framework perform competitively with appli-
cations developed using traditional frameworks.

Keywords: Web applications, strongly typed languages,
functional languages, cross-site scripting, SQL in-
jection.

1 Introduction

In the last decade, web applications have become an
extremely popular means of providing services to large
numbers of users. Web applications are relatively easy to
develop, the potential audience of a web application is a
significant proportion of the planet’s population [36, 10],
and development frameworks have evolved to the point
that web applications are approaching traditional thick-
client applications in functionality and usability.

Unfortunately, web applications have also been found
to contain many security vulnerabilities [40]. Web ap-
plications are also widely accessible and often serve as
an interface to large amounts of sensitive data stored in
back-end databases. Due to these factors, web applica-
tions have attracted much attention from cyber-criminals.
Attackers commonly exploit web application vulnerabil-
ities to steal confidential information [41] or to host mal-
ware in order to build botnets, both of which can be sold
to the highest bidder in the underground economy [46].

By far, the most prevalent security vulnerabilities
present in web applications are cross-site scripting (XSS)
and SQL injection vulnerabilities [42]. Cross-site script-
ing vulnerabilities are introduced when an attacker is
able to inject malicious scripts into web content to be
served to other clients. These scripts then execute with
the privileges of the web application delivering the con-
tent, and can be used to steal authentication credentials
or to install malware, among other nefarious objectives.
SQL injections occur when malicious input to a web ap-
plication is allowed to modify the structure of queries
issued to a back-end database. If successful, an attacker
can typically bypass authentication procedures, elevate
privileges, or steal confidential information.

Accordingly, much research has focused on detecting
and preventing security vulnerabilities in web applica-
tions. One approach is to deploy web application fire-
walls (WAFs), usually incorporating some combination
of misuse and anomaly detection techniques, in order to
protect web applications from attack [6, 14, 8, 29, 45].
Anomaly detection approaches are attractive due to their
black-box approach; they typically require no a priori
knowledge of the structure or implementation of a web
application in order to provide effective detection.

Another significant focus of research has been on ap-
plying various static and dynamic analyses to the source
code of web applications in order to identify and miti-
gate security vulnerabilities [21, 33, 25, 2, 7, 50]. These
approaches have the advantage that developers can con-



tinue to create web applications using traditional lan-
guages and frameworks, and periodically apply a vulner-
ability analysis tool to provide a level of assurance that
no security-relevant flaws are present. Analyzing web
applications is a complex task, however, as is the inter-
pretation of the results of such security tools. Addition-
ally, several approaches require developers to specify se-
curity policies to be enforced in a specialized language.

A more recent line of research has focused on provid-
ing client-side protection by enforcing security policies
within the web browser [43, 22, 13]. These approaches
show promise in detecting and preventing client-side at-
tacks against newer web applications that aggregate con-
tent from multiple third parties, but the specification of
policies to enforce is generally left to the developer.

In this paper, we propose a different approach to web
application security. We observe that cross-site script-
ing and SQL injection vulnerabilities can be viewed as
a failure on the part of the web application to enforce a
separation of the structure and the content of documents
and database queries, respectively, and that this is a result
of treating documents and queries as untyped sequences
of bytes. Therefore, instead of protecting or analyzing
existing web applications, we describe a framework that
strongly types both documents and database queries. The
framework is then responsible for automatically enforc-
ing a separation between structure and content, as op-
posed to the ad hoc sanitization checks that developers
currently must implement. Consequently, the integrity
of documents and queries generated by web applications
developed using our framework are automatically pro-
tected, and thus, by construction, such web applications
are not vulnerable to server-side cross-site scripting and
SQL injection attacks.

To illustrate the problem at hand, consider that HTML
or XHTML documents to be presented to a client are typ-
ically constructed by concatenating strings. Without ad-
ditional type information, a web application framework
has no means of determining that the following opera-
tions could lead to the introduction of a cross-site script-
ing vulnerability:

String result = "<div>" + userInput + "</div>";

The key intuition behind our work is that because
both documents and database queries are strongly typed
in our framework, the framework can distinguish be-
tween the structure (<div> and </div>) and the content
(userInput) of these critical objects, and enforce their
integrity automatically.

In this work, we leverage the advanced type system
of Haskell, since it offers a natural means of expressing
the typing rules we wish to impose. In principle, how-
ever, a similar framework could be implemented in any

language with a strong type system that allows for some
form of multiple inheritance (e.g., Java or C#).

In summary, the main contributions of this paper are
the following:

• We identify the lack of typing of web documents
and database queries as the underlying cause of
cross-site scripting and SQL injection vulnerabili-
ties.

• We present the design of a web application develop-
ment framework that automatically prevents the in-
troduction of cross-site scripting and SQL injection
vulnerabilities by strongly typing both web docu-
ments and database queries.

• We evaluate our prototype web application frame-
work, demonstrate the coverage and correctness of
its sanitization functions, and show that applications
under our framework perform competitively with
those using existing frameworks.

The remainder of this paper is structured as follows.
Section 2 presents the design of a strongly typed web
application framework. The specification of documents
under the framework and how their integrity is enforced
is discussed in Section 3, and similarly for SQL queries
in Section 4. Section 5 evaluates the design of the frame-
work, and demonstrates that web applications developed
under this framework are free from certain classes of vul-
nerabilities. Related work is discussed in Section 6. Fi-
nally, Section 7 concludes and presents avenues for fur-
ther research.

2 Framework design

At a high level, the web application framework is com-
posed of several familiar components. A web server
component processes HTTP requests from web clients
and forwards these requests in an intermediate form to
the application server based on one of several configura-
tion parameters (e.g., URL path prefix). These requests
are directed to one of the web applications hosted by
the application server. The web application examines
any parameters to the request, performs some process-
ing during which queries to a back-end database may be
executed, and generates a document. Note that in the fol-
lowing, the terms “document” or “web document” shall
generically refer to any text formatted according to the
HTML or XHTML standards. This document is then
returned down the component stack to the web server,
which sends the document as part of an HTTP response
to the web client that originated the request. A graphical
depiction of this architecture is given in Figure 1.
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Figure 1: Architectural overview of the web application framework.

Web applications developed for our framework are
structured as a set of functions with access to a com-
bination of configuration data and application state.
More precisely, web applications execute inside the App
monad. Monads are a category theoretic construction
that have found wide application in Haskell to sequence
actions or isolate code that can produce side effects.1 For
the purposes of our framework, we use the App monad to
thread implicit state through the functions comprising a
web application, and to provide a controlled interface to
potentially dangerous functions. In particular, the App
monad itself is structured as a stack of monad transform-
ers that provide a functional interface to a read-only con-
figuration type AppConfig, a read-write application state
type AppState, and filtered access to the IO monad. The
definitions for AppConfig and AppState are given in
Figures 2 and 3.

data AppConfig = AppConfig {
appCfgPort :: Int,

appCfgPrefix :: String,

appCfgRoutes :: RouteMap,

appCfgFileRoot :: FilePath,

appCfgDBConn :: Connection,

appCfgDBStmts :: StmtMap

}

Figure 2: Definition for the AppConfig type.

The AppConfig type holds static information relating
to the configuration of the application, including the port
on which to listen for HTTP requests and the root direc-
tory of static files to serve from the filesystem. Of partic-
ular interest, however, are the RouteMap and StmtMap
fields. The RouteMap type describes how URL paths
are mapped to values of type DocumentGen, which are
simply functions that generate documents within the App
monad. In addition, the RouteMap type contains a de-
fault DocumentGen type that specifies an error page.
Given an incoming HTTP request destined for a partic-

1For further information on monads, please refer to [37, 48].

ular web application, the application server uses that ap-
plication’s RouteMap type to determine the proper func-
tion to call in order to generate the document to be re-
turned to the client.2 Finally, the StmtMap type asso-
ciates unique database query identifiers to prepared state-
ments that can be executed by a document generator.

data AppState = AppState {
appStClient :: Maybe SockAddr,

appStUrl :: Maybe Url

}

Figure 3: Definition for the AppState type.

The AppState type contains mutable state that is spe-
cific to each request for a document. In particular, one
field records information indicating the source of the re-
quest. Additionally, another field records the URL that
was requested, including any parameters that were spec-
ified by the client. More complex state types that hold
additional information (e.g., cached database queries or
documents) are possible, however.

3 Document structure

In this section, we introduce the means by which doc-
uments are specified under the framework. Then, we
discuss how these specifications allow the framework to
automatically contain the potentially harmful effects of
dynamic data.

3.1 Document specification
Once an appropriate route from the RouteMap structure
has been selected by the application server, the asso-
ciated document generator function is executed within
the context of the App monad (i.e., with access to the

2This construction is similar to the “routes” packages present in
popular web development frameworks such as Rails [18] and Py-
lons [4].



data Document Document {
docType :: DocumentType,

docHead :: DocumentHead,

docBody :: DocumentBody

}

data DocumentType = DOC TYPE HTML 4 01 STRICT

| DOC TYPE HTML 4 01 TRANS

| ...

| DOC TYPE XHTML 1 1

data DocumentHead = DocumentHead {
docTitle :: String,

docLinks :: [Node],

docScripts :: [Node],

docBaseUrl :: Maybe Url,

docBaseTarget :: Maybe Target,

docProfile :: [Url]

}

data DocumentBody = DocumentBody {
docBodyNode :: Node

}

Figure 4: Definition for the Document type.

configuration and current state of the application). The
document generator function processes the request from
the application server and returns a variable of type
Document. The definition of the Document type and its
constituent types are shown in Figure 4.

As is evident, documents in our framework are not
represented as an unstructured stream of bytes. Rather,
the structure of the Document type closely mirrors
that of parsed HTML or XHTML documents. The
DocumentType field indicates the document’s type, such
as “HTML 4.01 Transitional” or “XHTML 1.1”. The
DocumentHead type contains information such as the ti-
tle and client-side code to execute. The DocumentBody
type contains a single field that represents the root of a
tree of nodes that represent the body of the document.

Each node in this tree is an instantiation of the
Node type. Each Node instantiation maps to a distinct
(X)HTML element, and records the set of possible prop-
erties of that element. For instance, the TextNode data
constructor creates a Node that holds a text string to be
displayed as part of a document. The AnchorNode data
constructor, on the other hand, creates a Node that holds
information such as the href attribute, rel attribute, and
a list of child nodes corresponding to the text or other el-
ements that comprise the “body” of the link. A partial
definition of the Node type is presented in Figure 5.

With this construction, the entire document produced
by a web application in our framework is strongly typed.
Instead of generating a document as a byte stream, doc-

data Node = TextNode {
nodeText :: String

} | AnchorNode {
anchorAttrs :: NodeAttrs,

anchorHref :: Maybe Url,

anchorRel :: Maybe Relationship,

anchorRev :: Maybe Relationship,

anchorTarget :: Maybe Target,

anchorType :: Maybe MimeType,

anchorCharset :: Maybe CharSet,

anchorLang :: Maybe Language,

anchorName :: Maybe AttrValue,

anchorShape :: Maybe Shape,

anchorCoords :: Maybe Coordinates,

anchorNodes :: [Node]

} | DivNode {
divAttrs :: NodeAttrs,

divNodes :: [Node]

} ...

Figure 5: Sample Node definitions.

ument structure is explicitly encoded as a tree of nodes.
Furthermore, each element and element attribute has an
associated type that constrains, to one degree or another,
the range of possible values that can be represented. For
instance, the MimeType, CharSet, and Language types
are examples of enumerations that strictly limit the set
of possible values the attribute can take to legal values.
Standard (X)HTML element attributes (e.g., id, class,
style) are represented with the NodeAttr type. Op-
tional attributes are represented using either the Maybe
type,3 or as an empty list if multiple elements are al-
lowed.

Note that it is possible for a Document to represent
an (X)HTML document that is not necessarily consistent
with the respective W3C grammars that specify the set of
well-formed documents. One example is that any Node
instantiation may appear as the child of any other Node
that can hold children, which violates the official gram-
mars in several instances. Strict conformance with the
W3C standards is not, however, our goal.4

Instead, the typing scheme presented here allows our
framework to specify a separation between the structure
and the content of the documents a web application gen-
erates. More precisely, the dynamic data that enters a
web application as part of an HTTP request (e.g., as a
GET or POST parameter) can indirectly influence the
structure of a document. For instance, a search request
to a web application may result in a variable number of

3Maybe allows for the absence of a value, as Haskell does not pos-
sess nullable types. For example, the type Maybe a can be either
Just "..." or Nothing.

4Indeed, standards-conforming documents have been shown to be
difficult to represent in a functional language [12].



class Render a where

render :: a -> String

instance Render AttrValue where

render = quoteAttr

quoteAttr :: AttrValue -> String

quoteAttr a = foldl’ step [] (attrValue a)

step acc c | c == ’<’ = acc ++ "&lt;"

| c == ’>’ = acc ++ "&gt;"

| c == ’&’ = acc ++ "&amp;"

| c == ’"’ = acc ++ "&quot;"

| otherwise = acc ++ [c]

Figure 6: Render typeclass definition and (simplified)
instance example. Here, quoteAttr performs a left fold
over attribute values using foldl’, which applies the
step function to each character of the string and ac-
cumulates the result. The definition of step specifies
a number of guards, where | c == ’<’ is a condition
that must be satisfied for the statement acc ++ "&lt;"
to execute. This statement simply appends the string
"&lt;" to acc, the accumulator, in order to build a new,
sanitized string. If no guard condition is satisfied, the
character is appended without conversion.

table rows in the generated document depending on the
number of results returned from a database query. Due
to our framework, however, client-supplied data cannot
directly modify the structure of the document in such a
way that a code injection can occur.

3.2 Enforcing document integrity
Once a Document has been constructed by the web ap-
plication in response to a client request, it is returned to
the application server. The application server is respon-
sible for converting this data structure into a format the
client can understand – that is, it must render the doc-
ument into a stream of bytes representing an (X)HTML
document. Consequently, the set of types that can com-
prise a Document are instances of the Render typeclass,
shown in Figure 6.5

The Render type class specifies that any instance of
the class must implement the render function. From the
type signature, the semantics of the function are clear:
render converts an instance type into a string represen-
tation suitable for presentation to a client. Crucially, for
our purposes, the Render type class is also responsible
for enforcing the integrity of a document’s structure.

5Haskell typeclasses are roughly similar to Java interfaces, in that
they specify a function interface that all instances (in Java, implemen-
tors) must provide.

As an example, Figure 6 presents a simplified render
definition for the AttrValue type that is used to indicate
element attribute strings that may assume (almost) arbi-
trary values. In order to preserve the integrity of the doc-
ument, an attribute value must not contain certain charac-
ters that would allow an attacker to inject malicious code
into the document. Consider, for instance, the following
element:

<input type="hidden" name="h1" value="..."/>

Now, suppose an attacker submitted the following
string as part of a request such that it was reflected to
another client as the value of the hidden input field:

"/>

<script src="http://example.com/malware.js">

</script>

<span id="

The result would be the following:

<input type="hidden" name="h1" value=""/>

<script src="http://example.com/malware.js">

</script>

<span id=""/>

To prevent such an injection from occurring, the
render function for the AttrValue class applies a sani-
tization function on the string wrapped by AttrValue.
Any occurrence of an unsafe character is replaced by
an equivalent HTML entity encoding that can safely ap-
pear as part of an attribute value.6 Similar render func-
tions are defined for the set of types that can comprise a
Document.

Therefore, to prepare a Document as part of an HTTP
response to a client, the application server applies the
render function to the document, which recursively
converts the data structure into an (X)HTML document.
As part of this process, the content of the document is
sanitized by type-specific render functions, ensuring
that client-supplied input to the web application cannot
modify the document structure in such a way as to result
in a client-side code injection.

4 SQL query structure

Similarly to the case of documents, SQL queries are
given structure in our framework through the application
of strong typing rules that control how the structure of
the query can be combined with dynamic data. In this
section, we examine the structure of SQL queries and
discuss two mechanisms by which SQL query integrity
is enforced under the framework.

6In the real implementation, the sanitization function is somewhat
more complex, as there are multiple encodings by which an unsafe
character can be injected. The example function given here is sim-
plified for the purposes of presentation.



INSERT INTO users(login, passwd)

VALUES(?, ?)

SELECT * FROM users

WHERE login=’admin’ AND passwd=’test’

UPDATE users SET passwd=’$passwd’

WHERE login=’$login’

Figure 7: Examples of SQL queries.

4.1 Query specification

SQL queries, as shown in Figure 7, are composed of
clauses, predicates, and expressions. For instance, a
clause might be SELECT * or UPDATE users. An exam-
ple of a predicate is login=’admin’, where ’admin’ is
an expression. Clauses, predicates, and expressions are
themselves composed of static tokens, such as keywords
(SELECT) and operators (=), and dynamic tokens, such as
table identifiers (users) or data values (’admin’).

Typically, the structure of a SQL query is fixed.7

Specifically, a query will have a static keyword denot-
ing the operation to perform, will reference a static set
of tables and fields, and specify a fixed set of predicates.
Generally, the only components of a query that change
from one execution to the next are data values, and, even
then, their number and placement remain fixed.

SQL injection attacks rely upon the ability of the at-
tacker to modify the structure of a query in order to per-
form a malicious action. When SQL queries are con-
structed using string operations without sufficient saniti-
zation applied to user input, such attacks become trivial.
For instance, consider the UPDATE query shown in Fig-
ure 7. If an attacker were to supply the value “quux’ OR
login=’admin” for the $login variable, the following
query would result:

UPDATE users SET passwd=’foo’

WHERE login=’quux’ OR login=’admin’

Because the attacker was able to inject single quotes,
which serve as delimiters for data values, the structure of
the query was changed, resulting in a privilege escalation
attack.

4.2 Integrity enforcement with static query
structure

In contrast to the case of document integrity enforce-
ment, a well-known solution exists for specifying SQL

7This is not always the case, but the case of dynamic query structure
will be considered later in this section.

SELECT * FROM users WHERE login=? AND passwd=?

UPDATE users SET passwd=? WHERE login=?

Figure 8: Examples of prepared statements, where “?”
characters serve as placeholders for data substitution.

query structure: prepared statements. Prepared state-
ments are a form of database query consisting of a
parameterized query template containing placeholders
where dynamic data should be substituted. An example
is shown in Figure 8, where the placeholders are signified
by the “?” character.

A prepared statement is typically parsed and con-
structed prior to execution, and stored until needed.
When an actual query is to be issued, variables that may
contain client-supplied data are bound to the statement.
Since the query has already been parsed and the place-
holders specified, the structure of the query cannot be
modified by the traditional means of providing malicious
input designed be interpreted as part of the query. In
the case of the injection attack described previously, the
result would be as the following (note that the injected
single quotes have been escaped):

UPDATE users SET passwd=’foo’

WHERE login=’quux’’ OR login=’’admin’

From our perspective, the query has been typed as a
composition of static and dynamic elements; it is ex-
actly this distinction between structure and content that
we wish to enforce. Haskell’s database library (HDBC),
as do most other languages, supports the use of prepared
statements. Therefore, the framework exports functions
that allow a web application to associate prepared state-
ments with a unique identifier in the AppConfig type.
During request processing, a document generator can
then retrieve a prepared statement using the identifier,
bind values to it, and execute queries that are not vul-
nerable to injection attacks.

One detail remains, however. The HDBC library also
provides functions allowing traditional ad hoc queries
that are assembled as concatenations of strings to be exe-
cuted. Without any other modification to the framework,
a web application developer would be free to directly call
these functions and bypass the protections afforded by
the framework. Therefore, an additional component is
required to encapsulate the HDBC interface and prevent
execution of these unsafe functions. This component
takes the form of a monad transformer AppIO, which
simply wraps the IO monad and exposes only those func-
tions that are considered safe to execute. The structure
of this stack is shown in Figure 9. In this environment,
within which all web applications using the framework
operate, unsafe database execution functions are inacces-
sible, since they will fail to type-check. Thus, assuming



Figure 9: Graphical representation of the monad stack
within which framework applications execute. The
AppIO monad encapsulates applications, preventing
them from calling unsafe functions within the IO monad.

the correctness of the HDBC prepared statement inter-
face, web applications developed using the framework
are not vulnerable to SQL injection.

4.3 Integrity enforcement with dynamic
query structure

Though most SQL queries possess a fixed structure, there
does exist a small class of SQL queries that exhibit dy-
namic structure. For instance, many SQL database im-
plementations provide a set membership operator, where
queries of the form

SELECT * FROM users WHERE

login IN (’admin’, ’developer’, ’tester’)

can be expressed. In this case, the size of the set of data
values can often change at runtime. Another example
is the case where the structure of queries is determined
by the user, for instance through a custom search form
where many different combinations of predicates can
be dynamically expressed. Unfortunately, since these
queries cannot be represented using prepared statements,
they cannot be protected using the monadic encapsula-
tion technique described previously.

Therefore, a second database interface is exposed by
the framework to the application developers. Instead of
relying upon prepared statements, this interface allows
developers to dynamically construct queries as a tree of
algebraic data types as in the case of web documents.

data Select = Select {
sFields :: [Expr],

sTables :: [Expr],

sCons :: Maybe Expr,

sGrpFields :: [Expr],

sGrpCons :: Maybe Expr,

sOrdFields :: [Expr],

sLimit :: Maybe Int,

sOffset :: Maybe Int,

sDistinct :: Bool

}

data Expr = EXPR TABLE Table

| EXPR FIELD Field

| EXPR DATA String

| EXPR NOT Expr

| EXPR OR Expr Expr

| EXPR AND Expr Expr

| ...

data Table = Table {
tName :: String,

tAlias :: Maybe String

}

data Field = Field {
fName :: String,

fAlias :: Maybe String

}

Figure 10: Definition for the Select type.

Figure 10 shows an example of the type representing a
SELECT query.

To populate instances of these types, the interface pro-
vides a set of combinators, or higher-order functions, that
can be chained together. These combinators, which as-
sume names similar to SQL keywords, implement an em-
bedded domain-specific language (DSL) that allows ap-
plication developers to naturally specify dynamic queries
within the framework. For instance, a query could be
constructed using the following sequence of function in-
vocations:

qSelect [qField "*"] >>=

qFrom [qTable "users"] >>=

qWhere (((qField "login") == (qData "admin")) &&

((qField "passwd") == (qData "test")))

Similar to the case of the Document type, queries con-
structed in this manner are transformed into raw SQL
statements solely by the framework.8 Therefore, the
types that represent queries also implement the Render

8Note that, as in the case of web documents, we do not attempt to
enforce the generation of correct SQL, but rather focus on preventing
attacks by preserving query structures specified by the developer.



Context Semantics

Document nodes Conversion to static string
Document node attributes Encoding of HTML entities

Document text Encoding of HTML entities
URL components Encoding of HTML entities, percent encoding
SQL static value Removal of spaces, comments, quotes
SQL data value Escaping of quotes

Table 1: Example contexts for which specific sanitization functions are applied, and the semantics of those sanitization
functions under various encodings.

typeclass. Consequently, sanitization functions must be
applied to each of the fields comprising the query types,
such that the intended structure of the query cannot be
modified. This can be accomplished by enforcing the
conditions that no data value may contain an unescaped
single quote, and that all remaining query components
may not contain spaces, single quotes, or character signi-
fying the beginning of a comment. Assuming that these
sanitization functions are correct, this construction ren-
ders applications developed under the framework invul-
nerable to SQL injection attacks while allowing for more
powerful query specifications.

5 Evaluation

To demonstrate that web applications developed using
our framework are secure by construction from server-
side XSS and SQL injection vulnerabilities, we con-
ducted an evaluation of the system. First, we demon-
strate that all dynamic content contained in a Document
must be sanitized by an application of the render func-
tion, and that a similar condition holds for dynamically-
generated SQL queries. Then, we provide evidence that
the sanitization functions themselves are correct – that is,
they successfully strip or encode unsafe characters. We
also verify that the prepared statement library prevents
injections, as expected. Finally, to demonstrate the vi-
ability of the framework, an experiment to evaluate the
performance of a web application developed using the
framework is conducted.

5.1 Sanitization function coverage

The goal of the first experiment was to justify the claim
that all dynamic content contained in a Document or
query type must be sanitized prior to presentation to the
client that originated the request. To accomplish this, a
static control flow analysis of the framework was per-
formed. Figure 11 presents a control flow graph of the
application server in a simplified form, where function
calls are sequenced from left to right. Of particular inter-

est is the renderDoc function, which retrieves the appro-
priate document generator given a URL path, executes it
in the call to route, sanitizes it by applying render, and
creates an HTTP response by calling make200. The sani-
tized document is then returned to procRequest, which
writes it to the client. Therefore, the entire process of
converting the document to a byte stream for presentation
to the client is solely due to the recursive render appli-
cation. Similarly, because the only interface exposed to
applications to execute SQL queries are execStmt and
execPrepStmt from within the App monad, queries is-
sued by applications under the framework must be san-
itized either by the framework or the HDBC prepared
statement functions.

Figure 12 displays a subset of the full control
flow graph depicting an instance of the render func-
tion for the AnchorNode Node instantiation. For
clarity of presentation, multiple calls to render and
maybeRenderAttr have been collapsed into single
nodes. Recall from Figure 5 that the definition of
AnchorNode does not contain any bare strings; instead,
each field of the type is either itself a composite type,
or an enumeration for which a custom render function
is defined. Since no other string conversion function
is applied in this subgraph, we conclude that all data
contained in an AnchorNode variable must be filtered
through a sanitization function.

The analysis of this single case generalizes to the set of
all types that can comprise a Document or query type. In
total, 163 distinct sanitization function definitions were
checked to sanitize the contexts shown in Table 1. For
each function, our analysis found that no irreducible type
was concatenated to the document byte stream without
first being sanitized.

5.2 Sanitization function correctness
The goal of this experiment is to determine whether the
sanitization functions employed by the framework are
correct (i.e., whether all known sequences of danger-
ous characters are stripped or encoded). To establish
this, we applied a dynamic test-driven approach using the



serveApp

appCfgPort socket bindSocket listen newMVar procConns

accept forkIO procRequest

socketToHandle hSetBuffering hGetContents handleRequest hPutStr hClose

runRequestParse renderDoc

reqUrl put getRoute urlPath appCfgRoutes route render make200

execStmt execPrepStmt

Figure 11: Simplified control flow graph for application server.

render

renderNode

concatMap maybeRenderAttr

quoteAttr

Figure 12: Example control flow graph for Render Node
instance.

QuickCheck property testing library [9]. QuickCheck
allows a developer to specify invariants in an embed-
ded language that should hold for a given set of func-
tions. The library then automatically generates a set of
random test cases, and checks that the invariants hold
for each test. In our case, we selected invariants based
upon known examples of XSS [44] and SQL injection
attacks [15]. In addition, we introduced modifications
of the invariants that account for different popular doc-
ument encodings, since these encodings directly affect
how browser parsers interpret the sequences of bytes that
comprise a document.

Since the coverage of the sanitization functions has
been established by the control flow analysis, we focused
our invariant testing on the low-level functions responsi-
ble for processing string data. In particular, we specified
invariants for 7 functions that are responsible for sani-

tizing (X)HTML content, element attributes, and various
URL components.9 An example invariant specification
is shown in Figure 13.

propAttrValueSafe :: AttrValue -> Bool

propAttrValueSafe input =

(not $ elem ’<’ output) &&

(not $ elem ’>’ output) &&

(not $ elem ’&’ $ stripEntities output) &&

(not $ elem ’"’ output) where

output = render input

Figure 13: Simplified example sanitization function
invariant specification. Here, propAttrValueSafe
is a conjunction of predicates, where not $ elem c
output specifies that the character c should not be an
element of the output of render in this context. Since
“&” is used to indicate the beginning of an HTML entity
(e.g., &amp;), the stripEntities function ensures that
ampersands may only appear in this form.

For each of the sanitization functions, we first tested
the correctness of the invariants by checking that they
were violated over a set of 100 strings corresponding to
real-world cross-site scripting, command injection, and
other code injection attacks. Then, for each sanitization
function, we generated 1,000,000 test cases of random
strings using the QuickCheck library. In all cases, the
invariants were satisfied.

In addition to performing invariant testing on the set of
document sanitization functions, we also applied a sim-
ilar testing process to the sanitization of query types de-
scribed in Section 4.3. Finally, we applied manual invari-

9The 163 functions noted above eventually apply one of these 7
context-specific sanitization functions for web documents.



ant testing on the HDBC prepared statement interface. In
all cases, the invariants on the integrity of the queries and
the database itself held.

5.3 Framework performance
In this experiment, we compared the performance of a
web application developed using our framework to sim-
ilar applications implemented using other frameworks.
In particular, we developed a small e-commerce site
with a product display page, cart display page, and
checkout page under our framework, using the Pylons
framework 0.9.7 [4], and as a Java servlet using Tom-
cat 6.0.18.10 Each application was backed by a SQLite
database containing product information. The applica-
tion servers were hosted on a server running Ubuntu
Server 8.10 with dual Intel Core 2 Duo CPUs, 2 GB
of RAM, and 1000BaseT Ethernet network interfaces.
The httperf [20] web server benchmarking tool was
deployed on a similar server to generate load for each
application.

Figure 14 presents averaged latency and throughput
plots for 8 benchmarking runs for each framework tested.
In each run, the number of concurrent clients issuing re-
quests was varied, and the average response latency in
milliseconds and the aggregate throughput in kilobytes
was recorded. In this experiment, our framework per-
formed competitively compared to Pylons and Tomcat,
performing somewhat better than Pylons in both latency
and throughput scaling, and vice versa for Tomcat. In
particular, the latency plot shows that our framework
scales significantly better with the number of clients than
the Pylons framework. Unfortunately, our framework ex-
hibited approximately a factor of two increase in latency
compared to the Tomcat application. Cost-center profil-
ing revealed that this is mainly due to the overhead of
list-based String operations in Haskell,11 though this
could be ameliorated by rewriting the framework to pre-
fer the lower-overhead ByteString type. Therefore, it
is not unreasonable to assume that web applications de-
veloped using our framework would exhibit acceptable
performance behavior in the real world.

5.4 Discussion
The security properties enforced by this framework are
effective at guaranteeing that applications are not vulner-
able to server-side XSS and SQL injection. There are
limitations to this protection that need to be highlighted,
however, and we discuss these here.

10Pylons is a Python-based framework that is similar in design to
Ruby on Rails, and is used to implement a variety of well-known web
applications (e.g., Reddit (http://reddit.com/)).

11Strings are represented as lists of characters in Haskell – that is,
type String = [Char].

First, web applications can, in some cases, be vulner-
able to client-side XSS injections, or DOM-based XSS,
where the web application can potentially not receive any
portion of such an attack [28]. This can occur when a
client-side script dynamically updates the DOM after the
document has been rendered by the browser with data
controlled by an attacker. In general, XSS attacks stem-
ming from the misbehavior of client-side code within the
browser are not addressed by the framework in its current
form.

Recently, a new type of XSS attack against the
content-sniffing algorithms employed by web browsers
has been demonstrated [5]. In this attack, malicious non-
HTML files that nevertheless contain HTML fragments
and client-side code are uploaded to a vulnerable web
application. When such a file is downloaded by a vic-
tim, the content-sniffing algorithm employed by the vic-
tim’s browser can potentially interpret the file as HTML,
executing the client-side code contained therein, result-
ing in an XSS attack. Consequently, our framework im-
plements the set of file upload filters recommended by
the authors of [5] to prevent content-sniffing XSS. Since,
however, the documents are supplied by users and not
generated by the framework itself, the framework cannot
guarantee that it is immune to such attacks.

Finally, CSS stylesheets and JSON documents can
also serve as vectors for XSS attacks. In principle,
these documents could be specified within the frame-
work using the same techniques applied to (X)HTML
documents, along with context-specific sanitization func-
tions. In the case of CSS stylesheets that are uploaded to
a web application by users, additional sanitization func-
tions could be applied to strip client-side code fragments.
However, the framework in its current form does not ad-
dress these vectors.

6 Related work

An extensive literature exists on the detection of web ap-
plication vulnerabilities. One of the first tools to analyze
server-side code for vulnerabilities was WebSSARI [21],
which performs a taint propagation analysis of PHP in
order to identify potential vulnerabilities, for which run-
time guards are inserted. Nguyen-Tuong et al. proposed
a precise taint-based approach to automatically harden-
ing PHP scripts against security vulnerabilities in [39].
Livshits and Lam [33] applied a points-to static analy-
sis to Java-based web applications to identify a number
of security vulnerabilities in both open-source programs
and the Java library itself. Jovanovic et al. presented
Pixy, a tool that performs flow-sensitive, interprocedural,
and context-sensitive data flow analysis to detect security
vulnerabilities in PHP-based web applications [25]; Pixy
was later enhanced with precise alias analysis to improve
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Figure 14: Latency and throughput performance for the Haskell, Pylons, and Tomcat-based web applications.

the accuracy of the technique [26]. A precise, sound, and
fully automated technique for detecting modifications to
the structure of SQL queries was described by Wasser-
mann and Su in [49]. Balzarotti et al. observed that more
complex vulnerabilities in web applications can mani-
fest themselves as interactions between distinct modules
comprising the application, and proposed MiMoSA to
perform multi-module vulnerability analysis of PHP ap-
plications [2]. In [7], Chong et al. presented SIF, a frame-
work for developing Java servlets that enforce legal in-
formation flows specified by a policy language. A syn-
tactic technique of string masking is proposed by Johns
et al. in [23] in order to prevent code injection attacks in
web applications. Lam et al. described another informa-
tion flow enforcement system using PQL, and addition-
ally propose the use of a model checker to generate test
cases for identified vulnerabilities [30]. In [1], Balzarotti
et al. applied a combination of static and dynamic anal-
ysis to check the correctness of web application sanitiza-
tion functions. Wassermann and Su applied a combina-
tion of taint-based information flow and string analysis to
enforce effective sanitization policies against cross-site
scripting in [50]. Nadji et al. propose a similar notion
of document structure integrity in [38], using a combi-
nation of web application code randomization and run-
time tracking of untrusted data on both the server and the
browser. Finally, Google’s ctemplate [17], a templating
language for C++, and Django [11], a Python-based web
application framework, include an Auto-Escape feature
that allows for context-specific sanitization of web doc-
uments, while Microsoft’s LINQ [35] is an approach for
performing language-integrated data set queries in the
.NET framework.

The approach described in this work differs from the
above server-side techniques in several respects. First, an
advantage of several of the above techniques is that they
provide greater generality in their enforcement of secu-

rity policies; in particular, SIF allows for the enforce-
ment of complex information flows and uses some of the
techniques presented in this work. Our framework, on
the other hand, requires neither information flow policy
specifications or additional static or dynamic analyses to
protect against cross-site scripting or SQL injection vul-
nerabilities. String masking embodies a similar notion of
a separation of code and data for web applications, but is
implemented as a preprocessor for existing web applica-
tions and allows the possibility for both false positives
and false negatives. Django and ctemplate are similar in
spirit to this work in that they apply a similar context-
sensitive sanitization of documents generated from tem-
plate specifications. In both cases, however, this saniti-
zation is optional and relies upon a separate document
parser, whereas documents in our framework are spec-
ified in the language itself. ctemplate in particular has
an advantage in that it supports limited sanitization of
CSS and JSON documents, though this analysis is not
currently based upon a robust parser. Finally, LINQ pro-
vides a language-based mechanism for dynamically con-
structing parameterized queries on arbitrary data sets, in-
cluding SQL databases, and is therefore similar to the
system proposed in this framework. Use of this interface
is, however, optional and can be bypassed.

In addition to server-side vulnerability analyses, much
work has focused on client-side protection against ma-
licious code injection. The first system to implement
client-side protection was due to Kirda et al. In [27],
the authors presented Noxes, a client-side proxy that
uses manual and automatically-generated rules to pre-
vent cross-side scripting attacks. Vogt et al. proposed a
combination of dynamic data tainting and static analysis
to prevent cross-site scripting attacks from successfully
executing within a web browser [47]. BrowserShield,
due to Reis et al., is a system to download signatures for
known cross-site scripting exploits; JavaScript wrappers



that implement signature detection for these attacks are
then installed into the browser [43]. Livshits and Erlings-
son described an approach to cross-site scripting and
RSS attacks by modifying JavaScript frameworks such
as Dojo, Prototype, and AJAX.NET in [32]. BEEP, pre-
sented by Jim et al. in [22], implements a coarse-grained
approach to client-side policy enforcement by specify-
ing both black- and white-lists of scripts. Erlingsson
et al. proposed Mutation-Event Transforms, a technique
for enforcing finer-grained client-side security policies
by intercepting JavaScript calls that would result in po-
tentially malicious modifications to the DOM [13].

In contrast to the client-side approaches discussed
here, our framework does not require a separate analy-
sis to determine whether cross-site scripting vulnerabil-
ities exist in a web application. In the case of web ap-
plications that include client-side scripts from untrusted
third parties (e.g., mashups), a client-side system such as
BEEP or Mutation-Event Transforms can be considered
a complementary layer of protection to that provided by
our framework.

Several works have studied how the safety of func-
tional languages can be improved. Xu proposed the
use of pre/post-annotations to implement extended static
checking for Haskell in [51]; this work has been ex-
tended in the form of contracts in [52]. Li and Zdancewic
demonstrated how general information flow policies
could be integrated as an embedded security sublan-
guage in Haskell in [31]. A technique for performing
data flow analysis of lazy higher-order functional pro-
grams using regular sets of trees to approximate program
state is proposed by Jones and Andersen in [24]. Mad-
havapeddy et al. presented a domain-specific language
for securely specifying various Internet packet proto-
cols in [34]. In [16], Finifter et al. describe Joe-E, a
capability-based subset of Java that allows programmers
to write pure Java functions that, due to their referential
transparency, admit strong analyses of desirable security
properties.

The work presented in this paper differs from those
above in that our framework is designed to mitigate spe-
cific vulnerabilities that are widely prevalent on the Inter-
net. The generality of our approach could be enhanced,
however, by integrating general information flow poli-
cies, at the cost of an additional burden on developers.

Several application servers for Haskell have already
been developed, most notably HAppS [19]. To the best
of our knowledge, however, none of these frameworks
implement specific protection against cross-site script-
ing or SQL injection vulnerabilities. Finally, Elsman and
Larsen studied how XHTML documents can be typed
in ML [12]. Their focus, however, is on generating
standards-conforming documents; they do not directly
address security concerns.

7 Conclusions

In this paper, we have presented a framework for devel-
oping web applications that, by construction, are invul-
nerable to server-side cross-site scripting and SQL in-
jection attacks. The framework accomplishes this by
strongly typing both documents and database queries that
are generated by a web application, thereby automati-
cally enforcing a separation between structure and con-
tent that preserves the integrity of these objects.

We conducted an evaluation of the framework, and
demonstrated that all dynamic data that is contained in
a document generated by a web application must be
subjected to sanitization. Similarly, we show that all
SQL queries must be executed in a safe manner. We
also demonstrate the correctness of the sanitization func-
tions themselves. Finally, we give performance numbers
for representative web applications developed using this
framework that compare favorably to those developed in
other popular environments.

In future work, we plan to investigate how the frame-
work can be modified to allow developers to specify
“safe” transformations of document structure to occur in
a controlled manner. Also, we plan to investigate static
techniques for verifying the correctness of the sanitiza-
tion functions in terms of their agreement with invari-
ants extracted from web browser document parsers and
database query parsers, for instance using a combina-
tion of static and dynamic analyses [3, 5]. Finally, fu-
ture work will consider how language-based techniques
for ensuring document integrity could be applied on the
client.
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