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Many Protocols

N

# Authentication and key exchange
m SSL/TLS, Kerberos, IKE, JFK, IKEv2,

#Wireless and mobile computing

s Mobile IP, WEP, 802.11i

#Electronic commerce
» Contract signing, SET, electronic cash, ...

# And more
s Web services, ...




Mobile IPv6 Architecture

Mobile Node (MN)
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Corresponding Node (CN)

# Authentication is a
requirement

# Early proposals weak

Home Agent (HA)



< EAP/802.1X/RADIUS Auther

tication >

< Group Key Handshake >

MSK
<

< Data Communication >
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IKE subprotocol from IPSEC
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Result: A and B share secret g~ mod p

Analysis involves probability, modular exponentiation,
complexity, digital signatures, communication networks




Protocol Attacks
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# Kerberos [Scederov et. Al.]

m Public key version - lack of identity in message causes
authentication failure

# WLAN 802.11i [He , Mitchell]

» Lack of authentication in msg causes dos vulnerability
m Proved correct using PCL [ Datta , Derek, Sundararajan]
4 GDOI [meadows — Pavlovic]

s Authorization failure

# SSL [Mitchell — Shmatikov]

s Version roll-back attack, authenticator confusion between
main and resumption protocol

# Needham-Schroeder [Lowe]
= We will look at this today
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Kerberos Protocol
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Microsoft IechiNet

Microsoft Security Bulletin MS05-042
Vulnerabilities in Kerberos Could Allow Denial of Service,

Information Disclosure, and Spoofing (899587)
Published: August 9, 2005

Affected Software:

Microsoft Windows 2000 Service Pack 4

Microsoft Windows XP Service Pack 1 and

Microsoft Windows XP Service Pack 2

Microsoft Windows XP Professional x64 Edition

Microsoft Windows Server 2003 and

Microsoft Windows Server 2003 Service Pack 1

Microsoft Windows Server 2003 for Itanium-based Systems and
Microsoft Windows Server 2003 with SP1 for ltanium-based Systems
Microsoft Windows Server 2003 x64 Edition

Credit: Cervesato, = Attack found in PKINIT-25; fixed in PKINIT-27
Jaggard, Scedrov, | 4 Used in Windows and Linux (called Heimdal)

Tsay, Walstad

= Also in implementation by CableLabs (for cable boxes)




Attack on PKINIT (basic idea)
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Repair
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Main points of this talk

#Widely used protocols central to security

s Wort
s Wort

s Wort
+ All

N designing correctly
n analyzing for bugs

N proving them correct
methods use some simplifying assumptions

+ Diversity and overlap of methods is a good thing
#Develop basic science and engineering

x New

protocols are being developed

= Methods can be used for other systems
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Hun of a protocol

Inltlate f

Correct if no security violation in any run




Protocol analysis methods
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# Cryptographic reductions
= Bellare-Rogaway, Shoup, many others
s UC [Canetti et al], Simulatability [BPW]
= Prob poly-time process calculus [LMRST ...]

# Symbolic methods
= Model checking
+ FDR [Lowe, Roscoe, ...], Murphi [M, Shmatikov, ...], ...
= Symbolic search
+ NRL protocol analyzer [Meadows], ...

= Theorem proving
+ |sabelle [Paulson ...], Specialized logics [BAN, ...]
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High

Modeling detail

Low

A

Protocol analysis spectrum

Hand proofs
S
Poly-time calculus

Multiset rewriting with 3

Spi-calculus #¢

Athena e Paulson

e ® NRL
Strand spaces

BAN logic
* . Model checking
Protocol logic FDR. *Mur(p
Low High

Protocol complexity
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“The” Symbolic Model

# Messages are algebraic expressions
= Nonce, Encrypt(K,M), Sign(K,M), ...
# Adversary

s Nondeterministic

s Observe, store, direct all communication
+ Break messages into parts

+ Encrypt, decrypt, sign only if it has the key
s Example: (K1, Encrypt(K1, “hi”) )
= K1, Encrypt(K1, “hi”) = “hi”
+ Send messages derivable from stored parts




Many formulations

p
# Word problems [Dolev-Yao, Dolev-Even-Karp, ...]

s Protocol step is symbolic function from input message to output
# Rewrite systems [CDLMS, ...]

m Protocol step is symbolic function from state and input message to
state and output message

# Logic programming [Meadows NRL Analyzer]
s Each protocol step can be defined by logical clauses
» Resolution used to perform reachability search
# Constraint solving [Amadio-Lugiez, ... ]
m  Write set constraints defining messages known at step i
# Strand space model [MITRE]
m Partial order (Lamport causality), reasoning methods
# Process calculus [CSP, Spi-calculus, applied m, ...)
m Each protocol step is process that reads, writes on channel
m Spi-calculus: use v for new values, private channels, simulate crypto

Automated tools based on the symbolic model detect important,
nontrivial bugs in practical, deployed, and standardized protocols




Formal S Intruder
Protocol Model




Automated Finite-State Analysis

N
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# Define finite-state system
= Bound on number of steps
= Finite number of participants :
= Nondeterministic adversary with finite options

# Pose correctness condition
s Can be simple: authentication and secrecy
= Can be complex: contract signing

# Exhaustive search using “verification” tool
= Error in finite approximation = Error in protocol
= No error in finite approximation = 77?7




Limitations
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# System size with current methods
= 2-6 participants
Kerberos: 2 clients, 2 servers, 1 KDC, 1 TGS
m 3-6 steps in protocol
= May need to optimize adversary

# Adversary model
= Cannot model randomized attack
= Do not model adversary running time




State Reduction on N-S Protocol
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Security Protocols in Mure

# Standard “benchmark” protocols
s Needham-Schroeder, TMN, ...
n Kerberos

# Study of Secure Sockets Layer (SSL)

s Versions 2.0 and 3.0 of handshake protocol

= Include protocol resumption
# Tool optimization
# Additional protocols

= Contract-signing

= Wireless networking
... ADD YOUR PROJECT HERE ...

Tool by Dill et al.




Rational Reconstruction (TLS)
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# Begin with simple, intuitive protocol
= |gnore client authentication

= |gnore verification messages at the end of the
handshake protocol

= Model only essential parts of messages (e.g.,
ignore padding)

# Execute the model checker and find a bug

# Add a piece of TLS to fix the bug and repeat
= Better understand the design of the protocol




Summary of Incremental Protocols
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# A = Basic protocol
# B = A + version consistency check
# D = B + certificates for both public keys

+ Authentication for client + Authentication for server

# E = D + verification (Finished) messages
+ Prevention of version and crypto suite attacks

#®F = E + nonces
+ Prevention of replay attacks

# G = “Correct” subset of SSL

+ Additional crypto considerations (black art) give SSL 3.0




Anomaly (Protocol F)
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... Suite ...

_—
... Suiteg ...

Al ———

C — — SWitch to negotiated cipher -
Finished Finished
q h
data data
é h




‘Anomaly (Protocol F)
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Protocol Resumption
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Sessionld, Ver.= 3.0, Ng, ...

e ——————————————————————————-
Verg= 3.0, Ng, ...

e

C Finished Finished
d h

data data




Version Rollback Attack
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Sessionld, Ver

Verg= 2.0, Ng, ...
C FinisrX Finxd S
{ NS} SecretKey { NC} SecretKey
d h
data data
q h

SSL 2.0 Finished messages do not include version numbers or cryptosuites
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Contract Signing

Seller advertises and receives bids
Buyer may have several choices

#Both parties want to sign a contract
#Neither wants to commit first




Another example: stock trading

«
Willing to sell stock at price X ’\\g&

Ok, willing to buy at price X @
&j

4=
stock broker customer

v Why signed contract?
« Suppose market price changes
« Buyer or seller may want proof of agreement
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A general protocol outline

| am going to sign the contract

>
| am going to sign the contract
<
Here is my signature
>
Here is my signature
<

# Trusted third party can force contract

= Third party can declare contract binding if
presented with first two messages.
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Refined protocol outline

sign(A, (contract, hash(rand_A)))

>
sign(B, (contract, hash(rand_B)))
<
rand_A
>
rand_B
<

# Trusted third party can force contract

= Third party can declare contract binding by signing
first two messages.




Asokan-Shoup-Waidner protocol

Agree Abort

m1=sign(A, (c, hash(r_A)) @ . e
O sign(B, (m1, hash(rB))) S I

€
; = \

. >
' If not already
sig (a4,abort
G e ) @ resolved

Regolve Attack?

( / Q(\*@/
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Replay Attack

—sig, (... hash(R,)) —
< N

R, > ﬁ
(

sigy (PKa, PKp, T, text, hash(Rp))




Fixing the Protocol

)
Input: Input:
K, T, text PKg, T, text

m, = sig, (PK,, PKg, T, text, hash(R,))

m, = sigg(m,, hash(Rg))

A m; = sig, (R, , hash(Rg))

> g B o Ny <
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XOM Provides Isolation

e e R B R o e s e D D ot e D o O,
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e
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R
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Model Checking XOM
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# XOM Model is a state machine:

a State Vector
+ A set of all things on the chip that can hold state
+ Based on the Processor Hardware

s Next-State Functions

+ A set of state transitions that the hardware can have

+ Derived from the instructions that can be executed on the
processor

s |nvariants
+ Define the correct operation of the XOM processor
+ Two Goals: Prevent observation and modification




No Observation Invariant

1. Program data cannot be read by adversary
= XOM machine performs tag check on every access
= Make sure that owner of data always matches the tag

N

Adversary Data

User Data

if r.data is user data then
check that: r.tag = user

else
check that: r.tag = adversary
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No Modification Invariant

2. Adversary cannot modify the program without detection
= Adversary may modify state by copying or moving user data
= Need a “ideal” correct model to check against

0 ;

XOM |deal
Model = Model
For Memory:

if xom.m,.data = user data then
check that: ideal.m.data = xom.m..data
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Checking for Correctness

# Model checker helped us find bugs and correct them
s 2 old errors were found
s 2 new errors were found and corrected

4 Example:

m Case where it’s possible to replay a memory location

= This was due to the write to memory and hash of the
memory location not being atomic
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Reducing Complexity

# Fewer operations makes logic simpler

# Exhaustively remove actions from the next-state functions

m If aremoved action does not result in a violation of an invariant
then the action is extraneous

= Example:
Caches Registers
Data Tag Data Tag
Secure Load: Tag Register Use: Check

and Data is copied that tag matches user

from cache
Ta ke Check ‘
sure th — Happens

mat Anyways!
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Basic Pattern for Doing Your Project

# Read and understand protocol specification
= Typically an RFC or a research paper
= We’ll put a few on the website: take a look!

4 Choose a tool

= Murj or other tool

# Start with a simple (possibly flawed) model

s Rational reconstruction to understand how
protocol works and why

# Give careful thought to security conditions
= This is often the most interesting part!
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CS259 Term Projects - 2008

Fast Handover Key Bluetooth v2.1 + EDR

Mobile IPvp Binding Distribution Using Pairing Authentication

Update SEND in Mobile IPv6  Protocol
BitTorrent OpenlID 2.0 Handoffs in 802.16¢g
HIPAA online TCG Remote Direct Anonymous
) : : Attestation (DAA)
compliance auditor Attestation
Protocol

Pynchon Gate
Protocol:

http://www.stanford.edu/class/cs259/
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Security Analysis of
OTRv2

Onion Routing

802.16e Multicast-
Broadcast Key

Distribution Protocols

Analysis of Octopus

and Related Protocols

Formalization of
HIPAA

Analysis of ZRTP

Short-Password Key
Exchange Protocol

CS259 Term Projects - 2006

Security analysis of
SIP

MOBIKE - IKEv2
Mobility and
Multihoming Protocol

Analysis of the IEEE
802.16e 3-way
handshake
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CS259 Term Projects - 2004

iIKP protocol family

IEEE 802.11i wireless
handshake protocol

Secure Ad-Hoc

Distance Vector
Routing

Secure Internet Live
Conferencing

Electronic voting XML Security

Onion Routing Electronic Voting

An Anonymous Fair
Exchange

E-commerce Protocol <& Infrastructure

Windows file-sharing
protocols




Protocol composition logic

A
\

g (@ )

Protocol Honest Principals,

mm Attacker
. 3 y
Private

()

# Alice’s information

[ = Protocol
Logic has )( / — = Private data
symbolic and (\/ ( N\ / ) = Sends and receives
computational

semantics




Goals of PCL

# PCL is an evolving research framework for
approaching this basic question:

= Is it possible to prove security properties of current practical
protocols using compositional, direct reasoning that does not
mention the actions of the attacker?

N

# Example

m If the client and server exchange hashes of the messages
they have seen, encrypted under a shared key, then they
must have matching conversations

Can such ordinary conversational arguments be proved
sound and used for practical examples?




Logic: Background
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L
# Logic
= Syntax Formulas
*p,Ppva —(pva)p=1g
= Semantics Truth
+ Model, M = {p = true, g = false}
Ml=pvq
# Proof System
= Axioms and proof rules Provability
op=(q=p) P pP=¢

q
s Soundness Theorem

+ Provability implies truth
+ Axioms and proof rules hold in all “relevant” models




Protocol logic: Actions
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send t; send a termt
receive X; receive a term into variable x
new n; generate nonce n

# A program is a sequence of actions

InitCR(A, X) = [ RespCR(B) = [
new m; receive Y, B, {y, Y};
send A, X, {m, A}; new n;
receive X, A, {Xx, sigy{“r’, m, x, A}}; send B, Y, {n, sigg{“r’, y, n, Y}};

send A, X, sig,{“i”, m, x, X}}; receive Y, B, sigy{“i”, y, n, B}};
Ia Is




Execution Model
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# Initial Configuration, IC
= Set of principals and keys
= Assignment of > 1 role to each principal

# Run

= [nterleaving of actions of honest principals and
attacker starting from IC

new x send {x}g Position in run
A >— > —> H
receive {X}g receive {z}g

B—>——>—>—3+—>»—>0
new z send {z}g




Formulas true at a position in run
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# Action formulas
a = Send(P,t) | Receive (P,t) | New(P,t)
| Decrypt (P,t) | Verify (P,1)
# Formulas
¢ :=a | Has(P,t) | Fresh(P,t) | Honest(N)
| Contains(t, ty) | =@ | ¢4 @, | Ix ¢
| a<a
# Modal formula

o [ actions ] p ¢
Specifies secrecy
& Example =
Has(X, secret) ... (X=A v X=B)




Challenge-Response Property

Specifying authentication for Responder
GCR |= true [ RespCR(A) ]z Honest(A) ... (

Send(A, {A,B,m}) < Receive(B, {A,B,m})

Receive(B, {A,B,m}) < Send(B, {B,A,{n, sigg {“r",m, n, A}}}) A

Send(B, {B,A,{n, sigg {“r",m, n, A}}}) < Receive(A, {B,A,{n, sigg {“r’ m, n, A}}}) A
Receive(A, {B,A,{n, sigg {“r",m, n, A}}}) < Send(A, {A,B,{sig,{1",m,n,B}}}) A
Send(A, {A,B,{sig,{‘",m,n,B}}} < Receive(B, {A,B,{sig{‘i",m,n,B}}}) )

)

Authentication as “matching conversations” [Bellare-Rogaway93]




Proof System
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#Goal: Formally prove security properties
® Axioms

= Simple formulas about actions, etc.
#Inference rules

= Proof steps

#®Theorem

= Formula obtained from axioms by
application of inference rules




Sample axioms
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# Actions
true [ send m ], Send(P,m)

#Public key encryption

Honest(X) A Decrypt(Y, ency{m}) ... X=Y

# Signature
Honest(X) A Verify(Y, sigy{m})
... aign(X, sigy{m})




Correctness of CR — step
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InitCR(A, X) = [ RespCR(B) = [
new m; receive Y, B, {y, Y};
send A, X, {m, A}; new n;
receive X, A, {x, sigy{“r”’, m, x, A}}; send B, Y, {n, sigg{“r’, y, n, Y}};
send A, X, sig,{“i”, m, x, X}}; receive Y, B, sigy{“i”’, y, n, B}};

Ia ls

1. B reasons about his own action
CR |- true [ RespCR(B) ] g Verify(B, sig, {“I", m, n, A})

2. Use signature axiom
CR |- true [ RespCR(B) ] g Sign(A, sigA{“i”, m, n, A})
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Proving Invariants

# We want to prove
v T |Honest(X) — o,
where @ |
(Sign(X, sigy(9”, m, n, Y) — Receive(Y, n, sigy(“r’, m, n, X)))

# “¢ holds at all pausing states of all traces”

= Since the fragment of honest party action between
pausing states is a protocol segment, the propagation of
¢ looks like:

v @ --- actions of A --- ¢ ---- actions of B --- ¢ --- attacker
actions -- ¢ ---- actions of B --- ¢ -- ...
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Proving Invariants (2)

#Rule for establishing I":
= Prove ¢ holds when threads have started

= Prove, for all protocol segments, it ¢ held
at the beginning, it holds at the end
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Correctness of CR — step 2

J@So far

= CR |- true [ RespCR(B) ]g Sign(A, sig{i”, m, n, A})

# Use invariant T" to prove:
= CR |- true [ RespCR(B) ]z Receive(A, n, sigB{*r”, m, n, A})

# Reason from B’s point of view to prove:
= CR |- true [ RespCR(B) ]; FirstSend(B, n, (n, sigB{r”, m, n, A})))

# Apply Nonce freshness axiom to prove:

= CR |- true [ RespCR(B) ]z Receive(A, (n, sigB{*r”, m, n, A})) <
Send(B, sigB{r”, m, n, A})

# A few similar steps leads to the full proof!




Sample PCL studies
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# Wireless 802.11i

s Model checking to find errors, improve
s PCL proof of correctness, including TLS

# Kerberos

= Including variants “PK-Init” and “DH-init”

# Extensible Authentication Protocol (EAP)
= Model check to find errors, improve
s PCL proof of correctness, identify subtleties

# Mesh Security Architecture (IEEE 802.11s)

s Motorola group added some axioms, found
problems, identified invariants, proved correctness




Composing protocols
2 T

N

H » Honest(X) ... ... CR » Honest(X) ... ...

I_ Secrecy I’ |' Authentication

UIT |- Secrecy I'ul” |- Authentication

\/

I'UI” |- Secrecy A Authentication [additive]

DHe CR » T'UI” [nondestructive]
]

ISO P Secrecy A Authentication
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STS family

\4

JFK,

JFK.

JFK I

RFK I




PCL e Computatlonal PCL
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Proof System

Proof System £ A

Computatlonal PCL
Syntax £ A
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Complexity-theoretic model

Semantics
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CPCL analysis of Kerberos V5

# Kerberos has a staged architecture
= 1: generate nonce and send it encrypted
= 2: Use as key to encrypt another nonce

= 3: use 2" nonce to encrypt other msgs

4 Our proof shows “GoodKey”-ness of
both the nonces

# Authentication properties are proved
assuming that the encryption scheme
provides ciphertext integrity




Foundational results
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K Computational PCL

= Symbolic logic for proving security properties of
network protocols using public-key encryption

4 Soundness Theorem:

= |f a property is provable in CPCL, then property holds
in computational model with overwhelming
asymptotic probability.

# Benefits
s Symbolic proofs about computational model

= Computational reasoning in soundness proof (only!)
= Different axioms rely on different crypto assumptions




Challenges for computational
reasoning
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# More complicated adversary

= Actions of computational adversary do not have a simple
inductive characterization

# More complicated messages

s Computational messages are arbitrary sequences of bits,
without an inductively defined syntactic structure

# Different scheduler
= Simpler “non-preemptive” scheduling is typically used in
computational models (change symbolic model for equiv)
# Power of induction ?

= Indistinguishability, other non-trace-based properties appear
unsuitable as inductive hypotheses

= Solution: prove trace property inductively and derive secrecy
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Automation

# Prolog-based method for checking
sufficient conditions for provability of
invariants




Conclusion
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#Practical protocols may contain errors
= [ools find bugs, reveal req., guarantees

# Variety of tools
= Model checking can find errors
= Proof method can show correctness
for specific model of execution and attack

# Closing gap between logic and crypto

+ Symbolic reasoning sound for statements about
probability, complexity

+ Does not require strong crypto assumptions
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= M. Backes, A. Datta, A. Derek, N. Durgin, C. He,
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# More information

= Protocol model-checking web page
+ http://crypto.stanford.edu/protocols/mc.html

= Protocol Composition Logic
+ http://crypto.stanford.edu/protocols/

Science is a social process






