
Proximity Breeds Danger:
Emerging Threats in Metro-area Wireless Networks

P. Akritidis∗, W.Y. Chin•, V.T. Lam†, S. Sidiroglou‡, K.G. Anagnostakis•

• Systems and Security Department ‡ Computer Science Department
Institute for Infocomm Research (I2R), Singapore Columbia University, USA

{kostas,wychin}@s3g.i2r.a-star.edu.sg stelios@cs.columbia.edu

? Computer Laboratory † Dept. of Comp. Science and Engineering
Cambridge University, UK University of California San Diego, USA

Periklis.Akritidis@cl.cam.ac.uk vtlam@cs.ucsd.edu

Abstract

The growing popularity of wireless networks and mo-
bile devices is starting to attract unwanted attention
especially as potential targets for malicious activities
reach critical mass. In this study, we try to quantify
the threat from large-scale distributed attacks on wireless
networks, and, more specifically, wifi networks in densely
populated metropolitan areas. We focus on three likely
attack scenarios: “wildfire” worms that can spread con-
tagiously over and across wireless LANs, coordinated
citywide phishing campaigns based on wireless spoofing,
and rogue systems for compromising location privacy in
a coordinated fashion. The first attack illustrates how
dense wifi deployment may provide opportunities for at-
tackers who want to quickly compromise large numbers
of machines. The last two attacks illustrate how botnets
can amplify wifi vulnerabilities, and how botnet power is
amplified by wireless connectivity.

To quantify these threats, we rely on real-world data
extracted from wifi maps of large metropolitan areas in
the States and Singapore. Our results suggest that a care-
fully crafted wireless worm can infect up to 80% of all
wifi connected hosts in some metropolitan areas within
20 minutes, and that an attacker can launch phishing at-
tacks or build a tracking system to monitor the location
of 10-50% of wireless users in these metropolitan areas
with just 1,000 zombies under his control.

∗Part of this work was performed while P. Akritidis was visiting I2R
under an industrial attachment programme

†This work was performed while V.T. Lam was working at I2R as a
research engineer

‡Part of this work was performed while visiting I2R

1 Introduction

The last two decades of network security research have
demonstrated that attackers are continuously evolving,
exploring creative ways to exploit systems, and targeting
new technologies and services as they emerge. Indeed,
the widespread use of email brought spam and email-
viruses; broadband connectivity was followed by the rise
of rapid self-propagating worms; while the growing use
of online personal services and electronic commerce re-
sulted in sophisticated personal data theft attacks, includ-
ing phishing. Such trends suggest that any technology
that reaches some kind of critical mass will attract the
attention of attackers.

At the same time, modern attacks such as worms,
spam, and phishing exploit gaps in traditional threat
models that usually revolve around preventing unau-
thorized access and information disclosure. The new
threat landscape requires security researchers to consider
a wider range of attacks: opportunistic attacks in addi-
tion to targeted ones; attacks coming not just from ma-
licious users, but also from subverted (yet otherwise be-
nign) hosts; coordinated/distributed attacks in addition
to isolated, single-source methods; and attacks blending
flaws across layers, rather than exploiting a single vul-
nerability. Some of the largest security lapses in the last
decade are due to designers ignoring the complexity of
the threat landscape.

The increasing penetration of wireless networking,
and more specifically wifi, may soon reach critical mass,
making it necessary to examine whether the current state
of wireless security is adequate for fending off likely
attacks. This paper discusses three types of threats

16th USENIX Security SymposiumUSENIX Association 323

that seem insufficiently addressed by existing technol-
ogy and deployment techniques. The first threat is wild-
fire worms, a class of worms that spreads contagiously
between hosts on neighboring APs. We show that such
worms can spread to a large fraction of hosts in a dense
urban setting, and that the propagation speed can be such
that most existing defenses cannot react in a timely fash-
ion. Worse, such worms can penetrate through networks
protected by WEP and other security mechanisms. The
second threat we discuss is large-scale spoofing attacks
that can be used for massive phishing and spam cam-
paigns. We show how an attacker can easily use a bot-
net by acquiring access to wifi-capable zombie hosts, and
can use these zombies to target not just the local wireless
LAN, but any LAN within range, greatly increasing his
reach across heterogeneous networks. Last but not least,
we discuss the use of Tracknets, city-wide wifi botnets
for unauthorized tracking of user location and behavior.

All three types of attacks, illustrated in Figure 1,
are specific to wireless networks, and are based on the
premise of dense wifi network deployment in urban set-
tings. While most of the underlying vulnerabilities have
been widely known for years, the amplifying power of
densely deployed wifi networking has a profound impact
on both the feasibility and the magnitude of the threats,
suggesting that their importance may have been grossly
underestimated. For instance, the susceptibility of open
wireless LANs to spoofing has been well documented,
but the need to be in physical proximity to the victim
may have deterred the wider use of this attack so far. The
ability to launch such attacks remotely is much more at-
tractive, and can be scaled up by the use of coordination
and a botnet infrastructure.

As a result of underestimating these threats, no coun-
termeasures are currently implemented. The mecha-
nisms needed to thwart these attacks are in most cases
either available but not actively used, or not available but
relatively easy to implement. The fact that such mecha-
nisms are not used is of particular concern. For instance,
802.11i security mechanisms have been available for sev-
eral years, and would address a large part of the problems
described, but unfortunately they are currently not used
by enough users. Similarly, the encryption of of MAC
addresses would significantly increase the work-factor
for Tracknets, but leaving the MAC addresses exposed
was not deemed as a serious enough problem by the
802.11i group. Related to the worm problem, content-
based filtering is widely used and intrusion prevention
is a mature technology, yet to the best of our knowl-
edge, it has not been employed in access point wireless-
to-wireless forwarding Raising awareness on the threats,
using convincing, experimental evidence, is therefore at
least as important as exploring and implementing possi-
ble defenses.

The main focus of this paper is in quantifying these
threats, specifically in metro-area wireless networks. We
rely primarily on publicly available maps of wireless ac-
cess point locations, also known as wardriving maps, and
attempt to derive estimates on the feasibility and effec-
tiveness of the attacks using measurements and simula-
tions. These estimates paint a grim picture on the ex-
posure of current wireless networks to such attacks, and
indicate that the risks are further increased as wireless
penetration continues to grow as predicted.

We also explore possible remediation strategies, most
of which we have implemented and tested experimen-
tally. In some cases, the defenses we have considered
are just a matter of engineering, such as retrofitting re-
active worm defense hooks and filtering capabilities in
wifi gear. In other cases, countering the threat required
novel techniques, such as those for detecting and pre-
venting different variants of the basic spoofing attack –
several such variants were discovered while pondering
about possible defenses, and how attackers might try to
circumvent them.

While some of these techniques would become redun-
dant if 802.11i is widely deployed, we cannot rest on the
assumption that such deployment will happen anytime
soon, particularly in light of usability concerns. For ex-
ample, none of the recently announced municipal wire-
less initiatives that we are aware of employ any form of
protection, most likely due to the current perception of
the risks of open wireless as well as the cost of managing
accounts and passwords for large number of users – in
one instance, 100,000 users and around 9M annual visi-
tors. Furthermore, the choice of running an open wireless
network may not always be a matter of ignorance or com-
placency, but a concious choice; for example, to provide
network access to guests, backup connectivity to neigh-
bors, etc [26]. Whether temporary or long-term, we be-
lieve that our supplementary defense techniques are use-
ful for mitigating at least part of the threat.

2 Wildfire worms

The omnipresence and constantly improving capabili-
ties of wireless mobile devices has attracted the regret-
table attention of attackers, and in particular virus writ-
ers. The “Cabir” virus, which first appeared in 2004, was
the first instance of mobile malware [27]. The virus ex-
ploited vulnerabilities in the Symbian OS and propagated
through Bluetooth wireless connections. Experts predict
the threat for smart phones and mobile devices is likely
to increase significantly in the near future [40, 28].

Although such attacks may become prevalent in the
years to come, in this paper we consider whether large-
scale attacks are already feasible today on existing wire-
less infrastructure using current technology. In particu-
lar, we focus on worms that could spread entirely over

16th USENIX Security Symposium USENIX Association324

� � � � � � � � � � � 	 �
 � �
 � � � � � �� �� ! " � � # �$ % & ' () * & + , -& . . + * . & % / , 01 , / 0 % 23 + , 4 2 * +5 6) 0 * + & 7 /) / % / * 24 , + 8 & 7) * 5 / &/ 0 9 * (% / , 0
� ! � : � � # � ;< & 2 2 / 5 ** = 1) , / % & % / , 0, - 2 1 , , > 0 .- , ++ * ? / + * (% / , 0 % ,8 &) / (/ , 6 24 * 7 2 / % * 2 @ � � � � � � � �A , (& % / , 0B + & (C / 0 .D 5 & /) & 7) * % ,8 , % / 5 & % * ?(+ / 8 / 0 &) 2

Figure 1: Dense wifi amplifies botnet threats.

E F G H I J
K

L M
N

Figure 2: Simplified model of wildfire worm propagation.

802.11 wireless networks, even if such networks are
completely heterogeneous. In this environment, the main
concern is not necessarily the infection of mobile devices
such as PDAs and cell phones, but the existing large pop-
ulation of laptops, desktops and other computers com-
municating over wifi. We consider worms that propa-
gate entirely over wireless connections, trying to infect
other computers tuned to the same access point (AP) and
also other APs within range. A notable fraction of hosts
in such an environment may also be mobile, and could
therefore carry the infection from one AP to another.
In densely populated metropolitan areas, it is conceiv-
able that such a worm could infect a large fraction of
wireless-connected hosts, especially considering perva-
sive vulnerabilities such as the ones exploited by Slam-
mer [12], and recent browser vulnerabilities [13]. Such
“client-side” vulnerabilities are of particular interest in
a wifi setting, because unlike wired environments where
a user needs to visit a malicious site to get exploited, it
is often possible for an infected client to inject this kind
of exploit via spoofing to any session between the target
and a legitimate server. Considering the worst-case, a
device driver exploit such as the recently discovered In-
tel driver attack [24, 36, 42] could carry the worm across
platforms, and would even bypass VPN software which
often blocks all local, wireless connections.

Although there has been considerable work in the lit-
erature on how to deal with large-scale attacks on tradi-
tional “wired” networks, there are at least three differ-
ences between wireless networks that require alternative
solutions. First, wireless attacks can spread contagiously
over wireless links based on proximity – similarly to real-
world diseases – in contrast to the any-to-any communi-
cation possible over the Internet. This renders previous
models and analyses of Internet-based worm propagation
ineffectual as they cannot be directly mapped to wire-
less networks. Second, traffic in wireless networks is
difficult to control using conventional methods, in lack
of “hard” enforcement points such as firewalls between
the communicating nodes. This is likely to significantly
constrain the space for potential defenses. For instance,

if such a wireless worm were to be unleashed today, it
would most likely go undetected by most, if not all, cur-
rent attack detection infrastructures [17, 2, 3]. Finally,
devices (e.g. handheld devices in the near future) in
these environments are likely to be significantly more
resource-constrained, at least in contrast to traditional
desktop settings, and it is therefore more difficult and ex-
pensive to employ end-point security measures.

This paper is not the first to examine the threat
of worms in wireless networks. Other researchers
have made attempts at deriving contagion models in
MANETs, examining viruses that spread according to
user mobility, or measuring propagation dynamics in a
campus network (these studies are discussed further in
Section 6). Our paper is first to explore, in depth, the
problem of wildfire worms and proximity propagation
in densely populated areas. Specifically, we discuss the
threat of worms that propagate entirely over wifi connec-
tions, and attempt to quantify the threat in terms of infec-
tion prevalence and infection timescales. Providing reli-
able estimates of potential infection prevalence is impor-
tant for creating awareness on the severity of the threat,
while the likely infection times are needed to guide the
design of suitable countermeasures. Our analysis relies
on simulated outbreaks of wifi worms driven by real-
world data derived from wifi maps of large metropolitan
areas around the world. Among other observations, our
results suggest that a carefully crafted wildfire worm can
infect all vulnerable wifi-connected computers in 80%
of access points in some studied areas within 10-20 min-
utes – timescales at which traditional defenses may not
be able to react in a timely fashion.

In this section, we describe the design and attack vec-
tors of a wifi worm. The fundamental principle is that a
wildfire worm relies on local, proximity-based propaga-
tion within shared medium broadcast environment such
as WLAN.

2.1 Wifi worm propagation

Figure 2 illustrates the propagation dynamics of wildfire
worms. Three access points A, B and C provide wire-

16th USENIX Security SymposiumUSENIX Association 325

less coverage to end users, e.g. mobile nodes 1–7. They
could represent, for example, WLANs deployed at ad-
jacent buildings. Note that overlapping usually exists
between adjacent access points for both residential net-
works (especially in densely populated cities) and corpo-
rate wireless networks (to allow for continuous connec-
tivity and seamless mobility roaming).

Assume node 1 is the initial source of infection, i.e. it
was infected previously at some other location before as-
sociating with access point A. Once activated, the worm
analyzes WLAN A and probes all victims in the neigh-
borhood; hence node 2 and node 3 eventually get in-
fected. Note that node 3 is under coverage of both A and
B. Normally node 3 picks and associates with only one
access point, which is decided by certain criteria such as
wifi signal-to-noise ratio. A worm-infected node, how-
ever, can gather a list of usable access points within reach
and scan them for victims in the proximity. Effectively,
the worm toggles association between usable WLANs to
spread itself. Eventually all nodes in WLAN B and C are
compromised through node 3 and nodes 5/6 respectively.

Nodes at coverage intersection of access points are
“bridges” that help propagate the worm. These nodes
can be thought of as “connectors” in the small-world
phenomenon hypothesis [44, 41]. Contrary to the con-
text of traditional Internet worms in which node 1 could
probe and infect node 7 instantly, propagation dynam-
ics of wildfire worms are similar to gradual and local
diffuseness of disease. Therefore, a major advantage
and difference of a wildfire worm over a regular Inter-
net worm is that a wildfire worm can propagate entirely
locally within each connectivity area, and thus evade fire-
walls and intrusion detection/prevention systems located
at traditional enforcement points on the boundary be-
tween the local networks and the Internet.

Fertile ground for wildfire worms are wireless hotspot
networks, which provide Internet access in public areas
such as restaurants and airports, and private wireless net-
works of home users in residential areas. For example,
Singapore government is realizing a “Digital Singapore”
with wireless hotspots available at every street corner
where people can log onto the Internet and receive emails
on the move. Section 2.6.2 evaluates whether wifi pen-
etration in metropolitan areas is sufficient for sustaining
the spread of a wifi worm.

2.2 Mobility

Presently, the wireless node population consists mostly
of laptops, and to a lesser extent of PDAs and smart-
phones (including wifi VoIP phones). The mobility pat-
terns of wireless users can affect worm dynamics in three
ways. First, mobility could compensate for sparse con-
nectivity that may hinder wildfire-style propagation, as
users carry the worm to networks previously unreach-

able by the worm. This is not restricted to just the places
where the user turns on the laptop, as Laptops can also be
programmed to wake up periodically as the user moves
from one place to another At the same time, user mobil-
ity also helps worm propagation into protected networks,
whether they use WEP or more secure WPA/WPA2 pro-
tection, as the user will voluntarily (and perhaps even au-
tomatically) authenticate to those networks. Finally, the
worm could create fake access points to lure and infect
mobile users.

2.3 Open vs. Protected Access Points

There is a significant number of publicly available
“open” access points; the rest are protected with Wired
Equivalent Privacy (WEP) encryption or Wifi Protected
Access (WPA). A worm can propagate over unprotected
wireless networks in the way shown in Figure 2. More-
over, as a result of design and implementation flaws,
WEP encryption is insecure. There is a handful of WEP
attacks in the literature, e.g. weak IV attacks [30],
keystream re-use [15, 22] and more recently fragmen-
tation attacks [20] . These attacks are not just of theoret-
ical value; they have been implemented into many prac-
tical and efficient WEP cracking tools freely available
on the Internet. Wepcrack [8] did a performance com-
parison on some of such tools. Among them, Aircrack
[1] is particularly powerful with a high success rate and
relatively low cracking time that could vary between 5
seconds to 1 minute. However Aircrack needs to spend
considerable time to sniff and capture sufficient wireless
packets before cracking attempt. For example, after an-
alyzing wireless usage statistics at a university campus
[7], we determine that it may take 1-2 hours on average
to successfully crack WEP encryption. Instead of pas-
sively sniffing packets, the worm could also employ ac-
tive attacks e.g., discovering the encrypted version of a
plaintext packet [8]. As for WPA, while not inherently
weak, it is susceptible to bruteforce attacks if used with
a weak password in the most common WPA/PSK con-
figuration. Given the apparent susceptibility of the cur-
rently available protection mechanisms, it seems likely
that worms would consider carrying the additional pay-
load of including cracking tools.

2.4 Infection process

In the design of a wildfire worm, we note that there are
two possible ways to exploit vulnerabilities. The first
approach, known as the “push method”, is to directly
probe for an exploitable service and inject code to that
service on clients just as traditional worms (e.g. DCOM
RPC vulnerability on port 135 for Blaster worm). With
the second approach, dubbed “pull method”, instead of
relying on a service vulnerability, the attacker exploits
vulnerabilities, such as browser vulnerabilities by per-

16th USENIX Security Symposium USENIX Association326

forming a man-in-the-middle attack. For example, the
infected node can listen on the wifi and wait for the vic-
tim to make a DNS request, spoof the response pointing
to itself (or some other, unused address), pretend it is the
web-server and respond with pages that include exploits
such as the WMF exploit [13] or other exploits for IE
and Mozilla that attempt to execute malicious code. ARP
spoofing and TCP injection attacks may be used as well.
We note that the distinction between worm and virus is
blurred in this case, as propagation may require some
form of user interaction, yet the attack is piggybacked on
communication to a third party, rather than between in-
fected and targeted host. The broadcast nature of most
wireless setups makes “pull” attacks attractive for wild-
fire worms as they can be exploited at a scale that was
never possible for Internet worms.
2.5 Proof-of-concept implementation

We have implemented a proof-of-concept wildfire worm
for both Windows XP and Windows Vista. This worm,
dubbed Wildfire/A, has been submitted to security ven-
dors for testing. The implementation of this worm was
surprisingly straight-forward given the plethora of tools
publicly available.

The WLAN API available for both Windows-Vista
and -XP facilitates the process of managing AP associa-
tion and scanning. Through this API, the worm is able to
actively scan for open “visible” APs and, in turn, asso-
ciate with them. Once associated with an AP, the worm
scans the local subnet for vulnerable machines. For
this particular proof-of-concept implementation we only
considered push exploits, namely, the chunked-encoding
vulnerability found in the Apache Web server 1.22. The
worm payload is packaged as a self-extracting archive
that contains the libraries required by the WLAN API as
well as a copy of the actual worm. We have confirmed
that the worm operates as expected in a small scale ex-
periment with 4 APs and 15 vulnerable hosts.
2.6 Analysis

As with all worms, wildfire worms need to exploit a vul-
nerability to infect end-hosts. Unlike Internet worms that
can effectively spread even if the vulnerable population
is very small [48], wifi worms depend on the vulnera-
bility being widespread. This raises two questions: what
critical mass does a wildfire worm require to be effective,
and whether there are indeed such pervasive vulnerabili-
ties.
2.6.1 Vulnerabilities

To determine whether there is a significant number of
pervasive vulnerabilities, we analyze vulnerability data
from a variety of sources, including NVD [4], Securi-
tyfocus [6], and other independent sources. We focus
on remotely exploitable vulnerabilities in the default in-

stallation of Windows XP Service Pack 2, between Au-
gust 2004 (the Windows XP SP2 release date) and Jan-
uary 2007. We classify vulnerabilities based on whether
they can be triggered through direct injection (“push” ex-
ploits) or through spoofing attacks as discussed in the
previous section (“pull” exploits). Starting from basic in-
formation available through the NVD database, we ver-
ify the vulnerability information and derive further de-
tails such as exploit availability, exploitation technique,
disclosure date, and patch dates primarily from Security-
focus archives but also other independent sources.

For all the qualifying vulnerabilities, we attempt to get
a rough estimate of the vulnerability window: the amount
of time the vulnerability was known and not patched in
the majority of hosts. Unfortunately, publicly-available
information does not always give us an accurate timeline
of exploitation time vs. disclosure time, and we there-
fore have to make certain assumptions. In particular, we
optimistically assume that by the time a vendor (in this
case, Microsoft) releases an update, all hosts in the net-
work are instantly updated and patched. In most (but
not all) cases, the vulnerability is disclosed by the ven-
dor only when the update is available. As such, it is not
always possible to determine exactly when the vulnera-
bility became known and to consider this as the start of
the vulnerability window.

In lack of more accurate data, we assume that the vul-
nerability window starts two week before the update is
issued, as Microsoft only posts updates every second
Tuesday of each month. This is corroborated by Syman-
tec which reported an average period of 13 days for the
first half of 2006 between disclosure date of a vulnera-
bility and the release date of an associated patch by Mi-
crosoft [53].

The results indicate significant exposure to vulnerabil-
ities in the default configuration over the last two years,
accounting for more than 50% of all days in the to-
tal period. Vulnerabilities of “push” type, i.e., that af-
fect services and don’t need user interaction, were ac-
tive for 105 days (11.89%) while “pull” type, i.e., that
need user-interaction of some-kind, were active for 428
days (48.47%). We believe this observation suggests a
trend, in which server/services components seem to be
relatively robust when compared to client components.
This is especially alarming in the context of wifi worms,
because they are particularly suited for exploiting such
vulnerabilities, and their abundance may give them an-
other evolutionary advantage over Internet worms. Over-
all, we have found that 60% of the listed vulnerabilities
had public exploits available for 391 days (44.28%) dur-
ing the time period.

Other analyses of vulnerability exposure for the years
2004–2006 published on the Internet paint an even dim-
mer picture for “pull” type attacks. For a total of 284

16th USENIX Security SymposiumUSENIX Association 327

Infection Time (min)
0 10 20 30 40 50 60

In
fe

ct
io

n
pr

ev
al

en
ce

 (%
)

0

10

20

30

40

50

60

70

80

90

100

Bay Area: 32% (12.5K hosts) in 78m
Chicago: 88% (38.1K hosts) in 70m
Dallas: 27% (7.5K hosts) in 41m
Los Angeles: 5% (1.1K hosts) in 6m
Seattle: 39% (19.4K hosts) in 85m

Las Vegas: 15% (3.6K hosts) in 51m
New York: 86% (27.3K hosts) in 77m
Philadelphia: 61% (5.3K hosts) in 46m
San Francisco: 53% (11K hosts) in 76m
Singapore: 16% (2.1K hosts) in 17m

Figure 3: Spread of a wild-fire worm.

days (78%) in 2006, exploit code for known, unpatched
critical flaws in pre-IE7 versions of the browser was pub-
licly available on the Internet, and there were at least
98 days in which no software fixes from Microsoft were
available to fix IE flaws that criminals were actively us-
ing to steal personal and financial data from users [39].
For at least 256 days (70%) in 2005, Internet Explorer
contained unpatched vulnerabilities where the exploit
method had been publicly disclosed but was not neces-
sarily being used, and for at least 38 days in 2005, IE was
vulnerable to unpatched critical security flaws that were
being actively exploited [38]. A fully patched Internet
Explorer installation was known to be unsafe for 98% of
2004, and for 200 days (54%) there was a worm or virus
in the wild exploiting one of those unpatched vulnerabil-
ities [11]. For Firefox, there were 56 days (15%) in 2004
where a publicly known remote-code execution had not
yet been thwarted with a patch [11].
2.6.2 Worm simulation

To understand wildfire worm propagation, we simulate
the outbreak of a worm in nine well-known US cities
and Singapore. For this we relied on publicly available
maps of Access Point locations from the Wigle.net [10]
“wardriving” database, as well as empirically derived
data for the city of Singapore. From these maps, we only
consider open APs where the worm can spread without
having to crack the encryption or the password.

Available war-driving maps chart APs but not con-
nected hosts, so we had to populate them by randomly
distributing hosts around APs. Based on our war-driving
measurements and assuming a pervasive vulnerability,
we distribute an average of 0.5 hosts per AP with Pois-
son distribution at an exponentially distributed distance
of 10 m on average. We model effective AP range as
omnidirectional with a radius of 90 m.

Finally, we do not consider the possibility of bypass-
ing the AP to directly infect hosts within range using low
level techniques because these depend on the available
device driver and may not be widely available. We also
ignore host mobility except that we assume the epidemic
starts from 50 random locations to avoid artificially con-
fining the worm to a sparse disconnected portion of the
city.

The infection time for one hop is determined by four
factors: scanning time, association time, IP acquisition
time and transmission time. Based on our wildfire worm
prototype, we assume a scanning and association time
of about 1.5 seconds. We do not model DHCP interac-
tion in our simulations as the worm can simply hijack an
IP address. With an effective throughput of 14 mbps
and 8 mbps for typical 802.11g and 802.11b networks
respectively, the transmission speed is between 1 Mbytes
and 1.7 Mbytes per second. Since the bandwidth will be
shared among hosts, each host gets a transmission speed
of a few hundreds kbytes/seconds. We assume a trans-
mission speed of 100 kbytes/sec per host. For a worm
size of 100K – which should be sufficient – the transmis-
sion time is about 1 second. A simulated worm-infected
node infects its neighbours sequentially using these pa-
rameters.

Each simulation consists of 20 runs; for each run we
start the infection from 50 different randomly selected
hosts. We collect the mean values across runs of infec-
tion prevalence over time.

Figure 3 is a plot of infection prevalence over time
for a “push” worm. Dense cities are infected very fast:
80% of New York and Chicago in less than 20 min-
utes. San Francisco and Philadelphia are infected fast
as well: about 50% of San Francisco and Philadelphia
are infected in 45 and 11 minutes respectively. A wild-
fire worm does not spread significantly in Los Angeles
and Las Vegas, but on a longer time scale a worm could
still spread with the help of user mobility. The worm can
spread fast as long as there are enough APs to maintain
connectivity, but high density may even bog down the
worm in some cases. In absolute numbers, we see that an
attacker could quickly gain access to ten’s of thousands
of hosts in most cities. The attacker could start simul-
taneous, independent epidemics in many cities using the
Internet to infect a few seed hosts.

As for pull worms, we briefly summarize the simula-
tion results here without a figure. Their simulated spread
is limited compared to push worms – prevalence of pull
attacks is limited to 60% in 3 hours for New York and
Chicago, but they are potentially more dangerous, as
they can take advantage of more vulnerabilities. They
are slower because the infection time must include wait-
ing for the victim to offer an opportunity for infection in
the form of a DNS requests or TCP connection. On the

16th USENIX Security Symposium USENIX Association328

other hand, the worm can wait in parallel for any vic-
tim to become active. We use a very rough estimate of
10 minutes for waiting time to get an idea of the time
scales involved, acknowledging that some machines may
have no browsing activity at the time. The pull worm
also requires higher density since we assume a shorter
range of 60 m. Weaker antennas and increased interfer-
ence typically weaken client transmission characteristics
when compared with APs.

Overall, these time-scales suggest that automated de-
fenses are crucial for defending against wildfire worms.

3 Large-scale Wifi Spoofing

One key property of open 802.11 networks is that they
are built around a broadcast medium, where any wire-
less station can transmit wireless frames, and can listen
to all other frames transmitted on the network. This is
reminiscent of shared Ethernet segments of the 90’s.

This property makes wireless LANs susceptible to
spoofing and injection attacks, as discussed extensively
in the context of wired Ethernet (but effectively disap-
peared with the emergence of switched Ethernet). The
basic idea is that an attacker can monitor the communica-
tion between hosts on the wireless network, or between a
host on the wireless network and an external party. If the
communication is not properly encrypted, the attacker
can elicit session state through eavesdropping, and if the
communication is not authenticated, he can then inject
frames to one session endpoint pretending to come from
the other session endpoint.

Most protocols, such as DNS, DHCP and TCP are sus-
ceptible to this attack. In the case of DNS, the attacker
can watch for outgoing DNS queries and inject responses
pointing to a host under his control. For TCP the attack
is similar – all the attacker needs to know is the current
state of the connection in terms of sequence numbers. At
connection setup, he may even completely take over the
connection by injecting the proper SYN-ACK, resulting
in the legitimate endpoint being out of sync. Injection
is also possible at any point in the connection as long
as the attacker can time injection attempts to properly
deliver TCP segments to the victim network stack. The
DHCP protocol can be spoofed to have a victim use an
IP address and default gateway that gives the attacker full
control over all of his traffic. However, it may be less at-
tractive than DNS and TCP spoofing as the attacker has
to wait for the victim to refresh his DHCP lease, or else
attack only hosts that have connected after the attacker
has obtained access to the wifi network.

While in the 90’s such attacks were seen as enablers
for unauthorized access, in today’s threat landscape they
are more likely to be used for “modern” attacks such as
phishing, spam and exploit injection. In the previous sec-
tion we briefly discussed how injection can be used to

propagate a worm through client-side vulnerabilities. In
this section we focus on spoofing primarily for the case
of launching phishing attacks, and discuss ways to detect
and prevent them. DNS spoofing is highly attractive for
phishing as, for example, the attacker may set up a mock
banking website that would relay manipulated requests
to the real site in a man-in-the-middle fashion. We note
that in this case, two-factor authentication cannot help.
Similarly, TCP injection can be used to insert redirection
instructions, advertisements, or spam to otherwise legiti-
mate Web pages. Sophisticated attacks can even subvert
user’s services, such as using a victim gmail account, etc.

The use of such techniques in wifi for phishing has
been documented previously. The so-called “parking lot
attack” involves the attacker being in physical proximity
to the target network. While this attack may be interest-
ing by itself, we are not aware of any extensive use of
this technique. One main disadvantage is that the physi-
cal proximity constraint increases the risk to the attacker,
especially in environments with pervasive CCTV cover-
age that can be used for forensics. In the context of this
paper we explore how proximity enables remotely con-
trolled bots to be used for such activities. In this case,
the attacker can acquire access to a wifi-enabled host lo-
cated in a wifi-rich location. In contrast to traditional
Trojans, the attacker need not try to elicit information
from the owner of the actual machine that is being ex-
ploited. Rather, the attacker may perform spoofing on
any wireless network within range from the host under
his control using channel hopping and/or temporary as-
sociation for the duration of the attack. The dense use of
wifi in metropolitan areas makes this model quite attrac-
tive, as it may significantly amplify the attacker’s capa-
bilities.

3.1 Analysis

To determine the effectiveness of spoofing attacks in
terms of scale we rely on the same publicly-available wifi
maps used for analyzing wildfire worms. We attempt to
get a rough estimate of the number of access points that
hosts on the map can connect to. As we only have access
point locations, we add hypothetical hosts within range
from each access point. We distribute 1 host per AP and
assume a communication range of 60m.

We compute the number of neighboring APs for each
host, that is, all APs within range excluding the AP it is
directly connected to. We consider only “open” APs that
do not use any wireless security protocol, even though
the attacker may well be able to crack into WEP-enabled
networks using well-known attacks and tools.

The results for our analysis on 10 different metro areas
are shown in Figure 4. We see that in half of the cities 90-
99% of all hosts can connect to at least one more neigh-
boring AP; 20-50% of hosts can connect to at least 10

16th USENIX Security SymposiumUSENIX Association 329

1 10 100 1000
Number of neighboring APs within range (log−scale)

Cu
m

ul
. f

ra
ct

io
n

of
 u

se
rs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 Bay
Chicago
Dallas
Los Angeles
Las Vegas
NYC
Philadelphia
San Francisco
Seattle
Singapore

Figure 4: Number of WLAN networks observable from
random hosts in metro areas (range 60 m).

O PQ PRSPST U U T V W XY Z [\] ^ _ \` a b b c _ de f g \ h _ Z]i b]] Z j b h Z g b hk l m n o o p] \ q \]` a b b c _ dr s ^ [a \ ht g g Z u v
w _ d h \ [[x ^] g \ h ^ _ d y Z u v \ gz \ { h ^ g ^ _ d k l m n o o` a b b c _ d| \ g \ u g ^ b _ w _ u b _ [^ [g n| } a] ^ u Z g \| \ g \ u g ^ b _ r s ^ [a \ ht g g Z u v| \ g \ u g ^ b _

Figure 5: Spoofing defense space.

additional APs; and a small but non-negligible number
of hosts, as high as 10% in Chicago are within range of
more than 100 APs. Unsurprisingly, the results are worse
for Chicago, which seems very densely populated, and
less so for relatively sparse areas.

Overall, the results confirm our fear that controlling
wifi-enabled hosts in densely populated areas can be
highly attractive to attackers.

4 Wifi tracknets

The proliferation of city-wide wifi networks has already
raised serious concern over privacy implications. Privacy
advocates fear that wifi networks can be used to record
location information for the operating ISPs, their part-
ners, and possibly law enforcement, raising concerns that
wifi can be used to track general user behavior in a ”Big
Brother” fashion.

However worrying this scenario might appear, it can
be classified as a mere nuisance when compared with
the possibility of anyone being able to remotely set up
a tracking system, without even having to set up physical
infrastructure. Such systems, which could be termed as
Tracknets can be deployed using a reasonably sized bot-
net, providing a user-tracking mechanism that can oper-
ate across wireless network boundaries. Criminal gangs
are known to operate marketplaces for bots, sometimes
with specific features such as high bandwidth and CPU
power, priced between $1 and $40 per compromised PC
according to security exprerts who have monitored IRC
chat room echanges [54]. It is conceivable that attributes
such as wifi connectivity, and location within a metro-
area could be added to the list of features to facilitate
attacks such as those described here.

Such a botnet can then track location information [16],
possibly coupled with user-profiles that can span across
heterogeneous wireless LANs. The location of the zom-
bies comprising the bot can be infered from the ESSID

of their AP using public wifi maps. (In fact, this service
is already provided by companies such as Navizon and
Skyhook.) The number of users that can be tracked us-
ing Tracknets and its coverage are commensurate with
the size of the botnet population and the amplifying ef-
fect of proximity, similar to the spoofing threat discussed
in the previous section.

Several services can leak significant amounts of
privacy-sensitive information. This information can, in
turn, be used for targeted Phishing and spam attacks,
blackmail, and for pre-attack reconnaissance such as
building hit-lists. In addition to high-information-leak
vectors, several techniques can provide personal infor-
mation at a lower granularity that might not be able to
distinctly identify individual users but can be used to
classify sets of users according to broader set of crite-
ria such as OS version version, wireless driver informa-
tion and general browsing behaviour. In this section we
briefly examine some of the most obvious tracking vec-
tors. Our investigation is far from exhaustive and only
scratches the surface of possible ways that users could be
tagged and tracked. Nevertheless, the vectors we discuss
show at least one set of techniques that seem threaten-
ing enough by themselves, and may be representative of
other approaches.

MAC address The obvious way to track users across
heterogeneous WLANs is to use the MAC address as
unique identifier. Trackers can use this information to
correlate any other behavioral information to a MAC
address to easily create profiles. Fortunately, although
MAC addresses are permanent by design, there exist a
number of mechanisms that allow users to change the
identifier. Gruteser et al [32] introduce the idea of short-
lived disposable MAC addresses as a technique for the
reduction of the effectiveness of location tracking. How-
ever, randomizing MAC addresses often leads to prob-
lems. For example, several ISPs use MAC addresses

16th USENIX Security Symposium USENIX Association330

to map IP addresses. Also, some software licenses are
bound to a specific MAC address. Furthermore, even in
the presence of such techniques, user profiling can still
effectively track users in dense urban environments. In
our system, we use MAC addresses as temporary identi-
fiers for correlating information that will be used to cre-
ate user profiles as described below.

Live bookmarks – RSS Live bookmarking is a new
popular method for displaying web feeds as bookmarks.
Its popularity surged when it was introduced in Mozilla
Firefox 1.0 back in 2004 and can now be found in several
other popular web browsers such as Apple’s Safari and
Internet Explorer 7. Live bookmarks subscribe to user-
defined RSS feeds and are periodically updated so as to
display the latest articles. The ability to customize feeds
along with the inherent periodicity of the updates make
Live Bookmarks susceptible to eavesdropper profiling.
In particular, as users subscribe to more RSS feeds they
inadvertently create distinct profiles that can be used to
track them. Given the wide range of tools available for
parsing RSS feeds, it is trivial for a tracker to parse the
feeds so as to extract user personalization in addition to
RSS subscription information. Worse, by using traffic
analysis to identify such communications based on their
periodicity and creating a signature based on packet size
distributions, an attacker could possibly track users over
encrypted WLANs, however, we have not investigated
this scenario further.

Tracknet bots would collect and parse all requests to
RSS feeds. The information derived from the feed is then
associated to an individual node. The node is temporarily
identified by IP and MAC address for the current session.
Any other information that is collected from the partic-
ular node is collected in a tracking tuple that correlates
all other pertinent fields that aid in the identification of
the node. In order to reduce the number of identification
false positives we correlate the RSS fingerprint with the
base station ESSID. Distinct fingerprints that appear at
the same location (e.g. home or workplace) might point
to a distinct identify with a higher level of confidence.

Location tracking Collaborating bots can use radio
signal characteristics of WLANs to determine a user’s
location with relative accuracy using triangulation tech-
niques. This information, in combination with other ex-
tracted personal information can lead to considerable pri-
vacy leaks. Specifically, bots can use this information to
infer user behavior. For example, information on enter-
tainment habits, political orientation, medical informa-
tion can be potentially derived.

Other services Beyond the mechanisms described
above, there are numerous other protocols and services
that leak significant personal information. For example,
numerous Instant Messaging (IM) system do not employ

encryption so all user identification information is avail-
able to eavesdroppers. Although this information might
not be significant on its own, when it is correlated with
other sensitive information, it can be used to construct a
distinct user profile. Other systems that can be used to
fingerprint user behavior are the mail servers that users
connect to, information from other networking protocols
such as NETBIOS and AppleTalk and even which VPN
servers a user connects to.

The growing popularity of Google and other online
service portals, has moved a number of user services
to central aggregated locations where users can check
their RSS feeds and email. Although this configura-
tion changes the network fingerprint that is emitted by
services it does not reduce the amount of information
that is leaked. For example, the Google homepage in-
cludes links to personalized RSS feeds including the
user’s email address in plain text, which often points
to a user’s real identity, e.g., john.doe@gmail.com.
This information can be readily used to create very accu-
rate user profiles since a tracker can intercept these un-
encrypted HTTP transfers.

Another serious vector of information leak is (to no
surprise) the use of cookies. Cookies are used exten-
sively as a mechanism for servers to identify users and
track their access. The threat of Cookies to user privacy
has received considerable attention in the literature [23].
In the context of tracknets, the exchange of Cookie in-
formation can be used to extract personalized user infor-
mation based on both the contents of the Cookies and
their transmission fingerprint. For example, Google, a
company synonymous with Internet search uses cookies
that expire in 2036. The cookie uses a 16-digit identifier
to track user preferences and, inevitably, track user be-
havior. Given the popularity of the search engine, it is
not unreasonable to assume that a large percentage of the
user population will emit this identifier during its life-
time, adding another mechanism for user tracking.

The Dynamic Host Configuration Protocol (DHCP) is
a ubiquitous protocol used for automating network con-
figuration. Unfortunately, there is no privacy protection
for DHCP messages, so an eavesdropper who can mon-
itor the link between the DHCP server and requesting
client can discover the information contained in this op-
tion. For example, the following snippet illustrates the
kind of information that can be derived from a DHCP
request. Information on the types of services and more
importantly hostname information is made readily avail-
able to eavesdroppers.
Client IP: 10.50.16.205
Client Ethernet Address: 00:17:f2:40:61:65
Vendor-rfc1048:
DHCP:REQUEST
PR:SM+DG+NS+DN+NI+NITAG+SLP-DA+SLP-SCOPE+LDAP+T252
MSZ:1500

16th USENIX Security SymposiumUSENIX Association 331

CID:[ether]00:17:f2:40:61:65
LT:7776000
HN:"alamak"

We collect and correlate the information derived from
DHCP headers. In particular, we are interested in user-
identifying information such as the user’s hostname.
This information might appear innocuous but is often
linked to personal information such as the user’s name
or company information. Again, in this case we asso-
ciate DHCP-derived information with the base station’s
ESSID.
4.1 Experimental analysis

We determine how effective an attacker can be in track-
ing users using a botnet consisting of wifi-enabled hosts
within a metropolitan area. For this purpose, we rely
on the same wifi maps used for analyzing the worm and
spoofing attacks. The effectiveness of a tracknet can be
expressed in terms of coverage, that is, the fraction of
wireless LANs that are within range from a given set of
subverted nodes participating in the tracknet. The feasi-
bility of a tracknet also relates to the number of subverted
nodes that the attacker needs to obtain in order to achieve
a certain level of coverage. As the attacker may have lit-
tle control over which hosts to subvert (or buy access to)
and where they are located, in each experiment we as-
sume a random subset of hosts on the wifi map. As MAC
addresses are exposed even when the network uses WEP
or 802.11i encryption, we consider all access points re-
gardless of whether they are open or protected – in other
words, a tracker can monitor any network within range.

The results for 10 metro areas are shown in Figure 6.
We observe that the fraction of subverted hosts needed
to track users is relatively modest: with hosts on just 1%
of all APs in a dense area, a tracknet can cover between
5% and 40% of all traffic. As expected, full coverage is
not easy to achieve, but having trackers on around 7%
can reach between 30% and 80% coverage. As with the
worm and spoofing threats, the high density of Chicago
and NYC make them particularly susceptible to this at-
tack: less than 1,000 zombies are sufficient to cover 40%
of the APs.

At the time of writing this paper, all MAC addresses
are exposed, but it is worth investigating whether using
disposable MAC addresses would help address this prob-
lem. As discussed previously, we are particularly con-
cerned about other high-information-leak profiling tech-
niques that could essentially offer uniquely identifying
information equivalent to a MAC address. We focus on
RSS feeds as one emerging source of leaks, and try to
quantify the ability of an attacker to use this information
for tracking purposes. For this purpose, we have obtained
from an online service provider the set of RSS feeds that
users are subscribed to, for around 100,000 users. The

size of the dataset is important as we seek to measure the
uniqueness of each RSS profile. We therefore measure
for each user, whether any other users have the same ex-
act profile, in which case we say that we have a profile
collision (which could make tracking information am-
biguous and confusing to the attacker). As some users
have empty or very small profiles, we expect more colli-
sions there, and we therefore compute collision statistics
for those users with at least a minimum number of feeds
in their RSS set.

The results are presented in Figure 7. As expected for
a minimum RSS set of zero, that is, no constraints, the
fraction of users with colliding profiles is around 30% –
most of them are users with an empty profile. Remov-
ing only those that have an empty profile, that is, focus-
ing on a minimum set of one entry, the collision proba-
bility is 0.02 to 0.07, significantly lower and reasonable
enough to allow a tracknet to identify a user with high
confidence, especially given that this information can be
correlated with other data. For users with more substan-
tial RSS feeds, the collision probability is between 0.002
and 0.01, indicating highly unique profiles. The scaling
behavior of collision statistics is of particular importance
here: we see that collision probability increases with the
number of RSS profiles in the dataset, yet the difference
seems to be small between a database of 50K users and a
database of 100K users. If a tracknet is supposed to cover
a whole city, the number of profiles can be much larger
than the set we considered here, but our results suggest
that collision probability is unlikely to worsen signifi-
cantly. Furthermore, when a user’s RSS fingerprint is
coupled with location information such as mobility pat-
terns, this set can be reduced even further.

5 Defense strategy

The threat of wildfire worms and large-scale spoofing
can be reduced significantly with the use of existing wire-
less security standards such as WPA/WPA2, with strong
encryption and hard-to-guess passwords. Unfortunately,
despite the wide availability of such techniques, users do
not seem to employ them. Even if this is simply because
there have been no large-scale attacks yet, the use of
passwords hinders usability and robustness. It is likely
that even if such measures are implemented, in many
cases the passwords are not going to be strong enough
to resist brute force attacks. As such, it seems worth-
while investigating alternative, reactive defenses specific
to the attack vectors discussed so far. In the remainder of
this section we discuss such defenses, as implemented in
a prototype system for automated defense against wild-
fire worms and spoofing attacks based on the Linksys
OpenWRT [5] router and optionally using an external
controller and centralized threat analysis.

16th USENIX Security Symposium USENIX Association332

Fraction of Subverted hosts

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Fr
ac

tio
n

of
 A

Ps
 W

ith
in

 R
an

ge

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bay
Chicago
Dallas
Los Angeles
Las Vegas
New York
Philadelphia
Seattle
San Francsico
Singapore

Figure 6: AP coverage of a given fraction of random bots
in a metro area assuming a range of 60 m.

Number of RSS profiles in set (x 10K)
0 10 20 30 40 50 60 70 80

0.002
0.004
0.008

0.02
0.04
0.08

0.2
0.4

Fr
ac

tio
n

of
 c

ol
lid

in
g

pr
of

ile
s min set=0

min set=1

min set=2
min set=6

min set=8

Figure 7: RSS set uniqueness.

5.1 Wireless IPS

In our implementation, we have adapted the snort
IPS [46] to run on OpenWRT. While previous implemen-
tations have used snort to filter traffic between the wire-
less network and the external ethernet connection, our
implementation disables the normal low-level wireless-
to-wireless forwarding and uses ebtables and IPtables
to redirect traffic through userland where it can be pro-
cessed by snort.

As APs typically have limited computing resources,
it may not be possible to have a fully fledged IPS run-
ning on them. Increasing their capabilities may also be
prohibitively expensive. There are at least two possible
options to address this problem. The first option is to use
only a subset of the signatures, most likely signatures
for attacks against vulnerabilities that may not be uni-
versally patched yet. The second option is to implement
the IPS functionality in a centralized wireless controller,
and have the APs forward all local traffic for inspection
before retransmitting to the wireless medium.

The main advantage of using a wireless controller is
that it provides flexibility for devoting more resources
to traffic inspection. It is also consistent with industry
trends towards cheap, “dumb” access points managed
by a wireless switch. However, none of the wireless
switches we are aware of provide any filtering capabil-
ities for internal WLAN traffic such as wildfire worms.
In our case, the additional wireless-to-wireless IPS func-
tionality is implemented as a standalone wireless con-
troller. This functionality can be retrofitted into wireless
controllers or implemented as part of a secondary con-
troller – protocols for AP to controller communication
are being standardized, and thus interoperability is likely
to be achievable.

For zero-day attacks for which there are no signatures,

we rely on honeypot feeds from access points back to an
analysis center. There, we use the Argos system [45],
which uses dynamic taint analysis to trap the execution
of remotely-injected code, for detection coupled with our
custom signature generation system. Our system col-
lects packet trace samples corresponding to the exploita-
tion attempts detected by Argos and then uses a heuris-
tic for generating network-level attack signatures in the
form of simple patterns. The heuristic tries to identify
a substring that is sufficiently large, sufficiently frequent
in the attack samples and sufficiently infrequent in be-
nign traffic. This last part is important for addressing
concerns about false positives as well as attempts to ma-
nipulate signature generation for denial-of-service pur-
poses. Our implementation uses a novel inverse indexing
scheme on previously collected packet traces. While in
our test setup these traces are maintained centrally at the
threat center, it is conceivable that such testing can be
performed at each site independently. These signatures
are then installed on the AP or the wireless controller as
snort sensor rules.

Filtering of internal WLAN traffic assumes that the
worm does not tamper with the wireless device driver
and firmware. If such tampering is possible, the at-
tacker may spoof access point transmissions directly –
for which tools are publicly available [9], and bypass
filtering mechanisms applied to traffic relayed over the
AP. The AP can detect attempts to impersonate it as long
as it can pick up the messages sent by the attacker, but
this leads immediately to another attack scenario: the at-
tacker can hide his emissions from the AP by tuning the
wifi radio power or using directional antennas so that the
spoofed packets can reach the victim, but cannot reach
the AP (or external detection device). We refer to this
as the whisper attack. The attack seems difficult to en-
gineer, as it requires both the low-level driver/firmware

16th USENIX Security SymposiumUSENIX Association 333

hacks of the basic 802.11 spoofing attack, as well as care-
ful tuning of the radio. Unfortunately, newer chipsets
provide improvements in power control, and it is likely
that the attacker can easily find the “right” power setting
to launch the attack by probing both the victim and the
AP with different power settings, all controlled through
the driver API. In some cases, the relative positions of
AP, victim, and attacker may prevent this attack. In ad-
dition, not using an AP to relay frames limits the com-
munication range. Using power control to evade the AP
may limit the range even further, to the point where it
may become impractical to perform whisper attacks in
the context of the massive attacks we discussed.
5.2 Spoofing defense strategy and attack-defense

co-evolution

Assuming WPA and VPN solutions comes with a con-
siderable usability cost; we investigate lightweight alter-
natives. Interestingly, our exploration of defenses against
spoofing attacks has revealed a small arms race. In par-
ticular, while developing defense techniques we discov-
ered several new variations of the attack, each defeat-
ing one of our countermeasures. In this section, we dis-
cuss the attacks, the countermeasures and present results
evaluating their effectiveness. These findings are sum-
marized in Figure 5. We focus on DNS spoofing for sim-
plicity, but in most cases the attacks and countermeasures
are similar for other protocols.
5.2.1 Wireless ingress filtering defense

As discussed previously, the simplest form of DNS
spoofing involves the attacker lurking for DNS requests
to the target site, and then injecting a fake DNS response
pointing to a site under the attacker’s control. It seems
straightforward to defend against this attack through the
use of ingress filtering at the AP. Ingress filtering ensures
that all traffic broadcast by the AP on the wireless net-
work is checked in terms of IP address and the inter-
face on which it is received. That is, traffic originating
from the wireless network should have IP addresses on
the local wireless network. (Similarly, but less relevant
here, traffic from the external network should not have
an IP address on the internal network.) A DNS request is
usually sent to a resolver outside the wireless LAN, and
therefore the DNS response is expected from an external
address. A spoofed response is trivial to detect, as it ar-
rives on the AP from the wireless interface and has an
external IP address.
5.2.2 External collaborator attack

A variation of the spoofing attack that circumvents
ingress filtering involves the use of an external collab-
orator. In this variation of the attack, the attacker is again
eavesdropping on the wireless LAN lurking for DNS re-
quests, but instead of sending the spoofed response from

the wireless LAN, signals another host on the Internet
to send a spoofed response to the victim. Being able to
eavesdrop is crucial, as it allows the attacker to relay the
needed DNS identifier and port number information to
the remote collaborator.

There are two constraints for the attacker that make
this attack more difficult. First, the remote collabora-
tor needs to be able to send packets with the source IP
spoofed. Unfortunately, a recent study [18] shows that
spoofing is still possible on more than 30% of hosts due
to the limited use of source filtering. Second, the remote
collaborator needs to send the spoofed DNS response be-
fore the legitimate DNS response arrives. Thus, the at-
tacker would need to locate a collaborator that is closer
by in terms of round-trip times.

5.2.3 Packet rewriting defense

One way to defend against this attack is to rewrite pack-
ets as they flow through the AP to the outside world,
mapping the DNS id and port number, TCP sequence
numbers, etc., to a different space, then doing the cor-
responding inverse mapping on packets on the way back.
The eavesdropper only knows the internal representa-
tion of those identifiers and cannot relay the necessary
information to the external collaborator. Any spoofed
response from the external collaborator will be trans-
formed to have an identifier that will result in the re-
sponse getting dropped by the victim, making the attack
ineffective.

The mapping can be done using either a hash func-
tion, or a state table, and is robust as long as the map-
ping is unpredictable. In the case of hashing, we need to
use a keyed hash, with the key being the destination IP
address, to prevent the attacker from using a third-party
DNS server to map out the key space. The choice be-
tween state table and hash function is not always clear, as
it involves space-time tradeoffs. If the hardware provides
cheap hashing, then it may be preferred. In our Linksys
OpenWRT implementation the use of a state table was
more efficient as hashing introduced a high per-packet
cost that turned the technique into a bottleneck.

5.2.4 802.11-level spoofing attack

As discussed in the context of wifi IPS, a sophisticated
attacker can circumvent the ingress filtering defense by
violating the 802.11 protocol to transmit frames directly
to the victim. The AP can detect this by monitoring
for transmissions that it did not send. However, it can-
not detect the whisper attack discussed earlier, where the
attacker tunes the wifi radio power so that the spoofed
packets can reach the victim, but cannot reach the AP (or
external detection device).

When filtering fails, the next best option is to detect
and forcibly abort the attack. We pursue this direction in

16th USENIX Security Symposium USENIX Association334

the next section.

5.2.5 Whisper attack detection

We have developed a set of defenses based on the detec-
tion of abnormal combinations of network events. For
example, to detect the injection of a DNS reply, we use
bookkeeping of request-reply pairs to flag excess, incon-
sistent replies. We also raise an alert when a host ap-
pears to retransmit requests after having received replies,
so we can prevent a situation where the attacker keeps
inserting a fake request, just before the legitimate reply
for the previous request arrives, in order to maintain the
request-response balance.

While there are no visible duplicate replies in case of
a whisper attack, the AP may still detect the attack indi-
rectly. A solution for HTTP is to extract from each HTTP
connection the server hostname from the corresponding
mandatory HTTP header and the server address from the
IP header, and compare this pair against the hostname
and IP pairs extracted from observed DNS replies. If a
reply has been whispered, no DNS reply will match the
HTTP header and the attack will be detected.

We have evaluated our technique for detecting whis-
per attacks against 41,426 DNS and 339,317 HTTP re-
quests generated by 65 IP addresses over a period of a
week. We obtained 18 alerts (6 unique web sites), all
of them false, corresponding to a false positive rate of
0.53 × 10

−4 of all HTTP requests. For the same trace
we observed zero excess DNS replies. We further eval-
uated only our first technique for detecting excess DNS
replies against 43,272,448 DNS requests obtained over
a period of more than 1 month by instrumenting an en-
terprise network with about 400 users. We obtained 22
alerts, all of them false, corresponding to a false posi-
tive rate of 0.5 × 10

−7. Looking deeper into the alerts
revealed a Content Delivery Network that is employing
spoofing, probably for server selection.

Once an attack is detected, it has to be blocked. How-
ever, given two inconsistent DNS responses, the detector
cannot directly distinguish which one is legitimate and
which one is spoofed. Doing a secondary lookup is one
option, but the wide use of load balancing, particularly
for popular services, implies that the secondary lookup
may not always agree with one of the two inconsistent re-
sponses. A more relaxed check against the network pre-
fix is also unlikely to help in the general case, as server
replicas may not be co-located. In lack of any other sat-
isfactory solution, our current implementation blocks the
victim and redirects him to a warning page, notifying him
of a potential spoofing attack, and giving him the option
to proceed (and re-issue the request) through temporary
HTTP redirection.

6 Related work
With the growing popularity of mobile devices, mal-
ware targeting wireless environment have started to
emerge [27, 29]. This new security challenge has re-
cently gained some attention from the research commu-
nity.

A study related to ours is the one by Tsow et al [55].
The authors suggest that attackers could drive around a
city taking over vulnerable wireless home routers. Sim-
ilar to our study, the threat is amplified by dense wifi
deployment, as attackers can take over hosts at a higher
rate. However, the attack depends on vulnerable access
points, and requires the physical presence of the attacker
for driving around to find vulnerable routers. The attacks
we discuss in this paper can all be launched remotely,
and therefore easier and less risky for the attacker.

Anderson et al. [14] analyzed the speed of worm con-
tagion over campus-wide wireless networks. They de-
veloped a worm simulation using real data from Craw-
dad, e.g. user distribution, AP distribution and user mo-
bility, to realistically study the dynamics of a mobile
worm. However their results are constrained to dynam-
ics of mobile worm at relatively small scale of a univer-
sity campus with mobility as the major factor for worm
spread. In contrast, our work has investigated big cities
and metropolitan areas at much larger scale with wardriv-
ing data around. We have identified a much larger threat
e.g. infection completion in the order of minutes whereas
Anderson at al. [14] predict a few hours to infect just
the campus. The main difference is that wildfire-like
propagation—not just user mobility, is the key attack
vector in our work. It is also unclear whether their de-
fense proposals could be proven effective given recent
major changes of wifi usage pattern.

Beyah et al. [19] discuss a worm that spreads by in-
fecting users sharing the same hotspot. They use epi-
demic models to simulate its spread and find it can in-
fect a million users worldwide over the course of a year.
Again the main difference is that the simulated worm re-
lies on user mobility, but we show using wardriving data
that mere density is sufficient in metropolitan areas lead-
ing to much faster spread.

Su et al. [52] investigate worm infections in a blue-
tooth environment. They expect Bluetooth to outnumber
wifi devices by a factor of 5 and predict large scale epi-
demics, but the short range of bluetooth again implies
slower, mobility-based spread. Cole et al. [25] use epi-
demic models and simulations to discuss requirements
for worm mitigation in tactical battlefield MANETS.

Stamm et al. [49] discuss remote attacks on routers
that can be used for large-scale pharming and can also
spread viraly. We, too, discuss pharming as one of the
potential abuses of dense, weak wifi deployments – ex-
ploitable in a different way but to a similar extent.

16th USENIX Security SymposiumUSENIX Association 335

Mickens and Noble [43] propose a framework called
probabilistic queuing to model the epidemic spreading in
mobile environment, which aims to treat node mobility
as top priority. Their simulations showed that the proba-
bilistic queuing model could achieve more accurate pre-
diction than standard Kephart-White framework in many
cases. However, this work assumes random waypoint
model for user movement and does not take into account
realistic user mobility patterns.

Henderson et al. [33] analyzed extensive network
traces from mature corporate WLANs and various uni-
versity campuses and observed dramatic changes in wire-
less usage. Indeed, all these changes are favorable for the
spread of a wifi worm. First, users now run a wide vari-
ety of applications such as peer-to-peer, multimedia and
VoIP services, instead of the dominance of web traffic so
there are higher chances of a worm exploitable vulnera-
bility. Local traffic in the WLAN exceeds remote traffic,
i.e. users within the same organization exchange data
more than before. This would help the worm to detect
and probe all wireless neighbors within its reach. The
study also shows that wireless users are also surprisingly
non mobile, half of which remain at home for 98% of
time.

In a similar approach, Hsu and Helmy [34] found that
there exists a preference of wireless user association:
most users only visit a small portion of access points,
i.e. the ratio of visited access points hardly changes
even though popularity of WLANs increases by years –
this is invariant user characteristics. There is a repeti-
tive pattern of user association over days, i.e. there is
a high probability that a user reappears at the same ac-
cess point at a certain time every day. This is quanti-
fied as ”network similarity index”. Therefore a mobile
worm could distinguish itself from traditional internet
worm by self-activating at the time where most mobile
users are active. This is also contrary to the general as-
sumption and over-simplification that users are always
ON with no preference on association patterns; conven-
tional randomly generated synthetic mobility models are
insufficient. Another recent trend is that a mobile node
stays online on average 87.68% of its life (i.e. its exis-
tence in the wireless network). That is to say, people now
tend to use WLAN as a replacement for wired network
and keep their laptops constantly connected (instead of
old style of establishing only when needed). A modern
paradigm shift from WLAN as temporary connection to
always-on permanent connection. Macro mobility: users
have small converage in all environments (campus + cor-
porate): typically only associate with 1.1% to 4.52% of
total APs in their corporation. Each user has very few
APs where it spends most of its online time.

Blinn et al. [21] monitored five weeks of Verizon wifi
hotspot network in Manhattan. They observed that far

more cards associated to the network than logged into it.
Most clients used the network infrequently and visited
only few APs. Therefore hotspot are ”locations visited
occasionally” rather than ”primary places of work”.

Kim et al. [37] extracted a mobility model from real
user traces. Speed and pause time follow log-normal dis-
tribution and direction of movements closely related to
road directions. Again, most of laptop clients are NOT
very mobile, so this paper relied on VoIP users to extract
mobility model. The type of mobile device being used
can influence its user’s mobility: a laptop would tend to
tie its user to his workplace whereas a PDA/VoIP user
would move as he would normally. The reasons could
be due to weight, size and nature of use of the device.
A mobility model for laptop users should reflect relative
weightage of immobility and mobility.

Staniford et al. [51] describe the risk to the Internet
due to the ability of attackers to quickly gain control of
vast numbers of hosts. They argue that controlling a mil-
lion hosts can have catastrophic results because of the po-
tential to launch distributed denial of service (DDoS) at-
tacks and access any sensitive information that is present
on those hosts. Their analysis shows how quickly attack-
ers can compromise hosts using “dumb” worms and how
“better” worms can spread even faster. In subsequent
work [50], the same authors show how a worm using pre-
compiled lists of IP addresses known to be vulnerable
can infect one million hosts in half a second. They also
envision a Cyber “Center for Disease Control” (CCDC)
for identifying outbreaks, rapidly analyzing pathogens,
fighting the infection, and proactively devising methods
of detecting and resisting future attacks. The metropoli-
tan wifi environment offers another opportunity for at-
tacks to occur that may not be covered by defenses built
for Internet worms. Our work also provides estimates of
propagation speed similar to the above studies.

The issue of location privacy in a wireless setting has
been examined in literature [35, 16, 31]. These system
focus attention on protecting physical location privacy
based against signal triangulation techniques and pro-
tecting against source location in sensor networks. More
closely related to our work, is the work by Gruteser et al
[32]. The authors introduce the idea of short-lived dis-
posable MAC addresses as a technique for the reduction
of the effectiveness of location tracking. Our work shows
that even in the presence of such techniques, user profil-
ing can effectively track users in dense urban environ-
ments. Saponas et al. [47] describe a prototype surveil-
lance system that can track people wearing the widely
available Nike+iPod sensors. Tracknets could be ex-
ploited in similar scenarios to track people carrying any
type of device whose traffic can be observed by wifi re-
ceivers, such as wifi-enabled smart-phones.

16th USENIX Security Symposium USENIX Association336

7 Concluding remarks
The increasing use of wireless technology and particu-
larly wifi is likely to soon attract the attention of attack-
ers, as attackers evolve and explore ways to exploit new
technology to their advantage. This paper discusses a
range of “modern” threats specifically tailored to metro-
area wireless networks: wildfire worms that spread topo-
logically due to infected hosts being able to carry the
worm from one wireless LAN to another; large-scale
wireless spoofing attacks that can be highly effective for
phishing and spam campaigns; and malicious Tracknets
that profile and track the whereabouts of wifi users. Such
threats are greatly amplified by the increasingly dense
deployment of wifi Access Points, and by the limited use
of wireless security mechanisms such as 802.11i. Our re-
sults suggest that the density of large metropolitan areas
has a profound impact on the severity of the threat.

Some specific contributions of this work include the
modeling of fast, proximity-based worm propagation in
metropolitan areas using real data from wardriving maps,
wifi worm propagation using browser vulnerabilities,
retrofitting of reactive mechanisms for wireless worm
detection, spoofing defenses that are easy to implement,
discussion of the whisper attack and defenses, and using
RSS feeds to track users.

Our primary intention with this study is to raise aware-
ness on the threats of wireless networks, specifically in
densely populated areas, and to explore possible counter-
measures. Much of the problem lies in the limited use of
802.11i. The wider deployment of 802.11i would reduce
the risks significantly, but it would not completely elim-
inate them. More specifically, it would counter several
instances of the spoofing threat; but it would only slow
down, rather than mitigate wildfire worms; and it would
not by itself eliminate the Tracknet threat, as MAC ad-
dresses remain unencrypted in 802.11i and other means
of profiling may be possible.

Perhaps one of the main reasons behind the limited
adoption of 802.11i is poor usability, as it involves con-
figuration, and, once again, burdening users with yet
another set of passwords or keys. Wider adoption re-
quires convincing users that the extra trouble is worth
it, by raising awareness on the risks of keeping wireless
LANs open and unencrypted. We hope that our study
contributes to this cause.

Improving usability of wireless security standards, if
feasible, is another path to improving adoption, but until
such adoption is achieved and to counter the remaining
threats, we have also suggested a variety of countermea-
sures, which we have implemented and evaluated exper-
imentally. Users may want to guard themselves against
threats such as those described here, without having to
take the cost of closing down their network using 802.11i
or WEP.

Acknowledgments
We thank S.P.T. Krishnan for assisting with the vulner-
ability exposure analysis, and K. Xinidis for his imple-
mentation of the basic OpenWRT-based defense infras-
tructure. We also thank Jonathan M. Smith, Pat Lincoln,
Phil Porras, Angelos Keromytis, Michalis Polychron-
akis, Michael Nguyen and Lee Han Boon for extremely
valuable discussions and feedback on this effort.

References
[1] Aircrack: a set of tools for auditing wireless networks. http:

//freshmeat.net/projects/aircrack/.
[2] DShield.org, Distributed Intrusion Detection System. http://

www.dshield.org.
[3] Honeynet project. http://www.honeynet.org.
[4] National vulnerability database, united states. http://nvd.

nist.gov.
[5] OpenWRT Project. http://openwrt.org/.
[6] Securityfocus.com, vulnerabilities. http://www.

securityfocus.com/vulnerabilities.
[7] UMich wireless usage. http://www.itcom.itd.umich.

edu/wireless/stats/yr2006/02/campus.html.
[8] WEP: Dead Again. http://www.securityfocus.com/

infocus/1814#aircrack.
[9] Wifitap: proof of concept for communication over WiFi networks

using traffic injection. http://sid.rstack.org/index.
php/Wifitap_EN.

[10] Wireless Geographic Logging Engine. http://www.wigle.
net/.

[11] A year of bugs. http://bcheck.scanit.be/bcheck/
page.php?name=STATS2004&page=3.

[12] The Spread of the Sapphire/Slammer Worm. http:
//www.caida.org/publications/papers/2003/
sapphire/sapphire.html, February 2003.

[13] WMF exploitation. http://www.f-secure.com/
weblog/archives/archive-122005.html, Dec. 2005.

[14] E. Anderson, K. Eustice, S. Markstrum, M. Hanson, and P. Rei-
her. Mobile contagions: Simulation of infection and disease. In
Symposium on Measurement, Modeling, and Simulation of Mal-
ware, June 2005.

[15] W. A. Arbaugh, N. Shankar, and Y. J. Wan. Your 802.11 wireless
network has no clothes. In IEEE Wireless Communications, 2001.

[16] P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-
based user location and tracking system. In Proceedings of the
19th Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM), pages 775–784, 2000.

[17] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson.
The Internet Motion Sensor: A Distributed Blackhole Monitor-
ing System. In Proceedings of the 12

th ISOC Symposium on
Network and Distributed Systems Security (SNDSS), pages 167–
179, February 2005.

[18] R. Beverly and S. Bauer. The spoofer project: Inferring the ex-
tent of source address filtering on the internet. In Proceedings
of USENIX Steps to Reducing Unwanted Traffic on the Internet
(SRUTI) Workshop, pages 53–59, July 2005.

[19] R. A. Beyah, C. L. Corbett, and J. A. Copeland. The case for
collaborative distributed wireless intrusion detection systems. In
IEEE International Conference on Granular Computing, May
2006.

16th USENIX Security SymposiumUSENIX Association 337

[20] A. Bittau, M. Handley, and J. Lackey. The final nail in wep’s
coffin. In SP ’06: Proceedings of the 2006 IEEE Symposium
on Security and Privacy (S&P’06), pages 386–400, Washington,
DC, USA, 2006. IEEE Computer Society.

[21] D. P. Blinn, T. Henderson, and D. Kotz. Analysis of a Wi-Fi
hotspot network. In Proceedings of the International Workshop
on Wireless Traffic Measurements and Modeling, June 2005.

[22] N. Borisov, I. Goldberg, and D.Wagner. Intercepting mobile com-
munications: The insecurity of 802.11. In Proceedings of ACM
Mobicom, Rome, Italy, July 2001.

[23] S. Byers, L. F. Cranor, D. P. Kormann, and P. D. McDaniel.
Searching for privacy: Design and implementation of a P2P-
enabled search engine. In D. Martin and A. Serjantov, editors,
Privacy Enhancing Technologies, volume 3424 of Lecture Notes
in Computer Science, pages 314–328. Springer, 2004.

[24] J. Cache and D. Maynor. Device drivers. Presentation at Blackhat
USA 2006, August 2006.

[25] R. G. Cole, N. Phamdo, M. A. Rajab, and A. Terzis. Require-
ments on worm mitigation technologies in MANETS. In PADS
’05: Proceedings of the 19th Workshop on Principles of Ad-
vanced and Distributed Simulation, pages 207–214, Washington,
DC, USA, 2005. IEEE Computer Society.

[26] T. Espiner. Does Wi-Fi security matter? http://news.com.
com/2100-1029_3-6088741.html.

[27] F-Secure. Cabir worm description. http://www.
f-secure.com/v-descs/cabir.shtml, June 2004.

[28] F-Secure. Data Security Summary - January to June
2005. http://www.f-secure.com/2005/1/
data-security-summary-2005_1.pdf, 2005.

[29] F-Secure. Inqtana.A worm information. http:
//www.f-secure.com/v-descs/inqtana_a.shtml,
Feb. 2006.

[30] S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key
scheduling algorithm of RC4. In Lecture Notes in Computer Sci-
ence, 2259:124, 2001.

[31] B. Gedik and L. Liu. Location privacy in mobile systems: A per-
sonalized anonymization model. In ICDCS ’05: Proceedings of
the 25th IEEE International Conference on Distributed Comput-
ing Systems (ICDCS’05), pages 620–629, Washington, DC, USA,
2005. IEEE Computer Society.

[32] M. Gruteser and D. Grunwald. Enhancing location privacy in
wireless LAN through disposable interface identifiers: a quanti-
tative analysis. Mob. Netw. Appl., 10(3):315–325, 2005.

[33] T. Henderson, D. Kotz, and I. Abyzov. The changing usage
of a mature campus-wide wireless network. In Proceedings of
the Tenth Annual International Conference on Mobile Comput-
ing and Networking (MobiCom), Sept. 2004.

[34] W.-J. Hsu and A. Helmy. On modeling user associations in wire-
less LAN traces on university campuses. In Proceedings of the
Second Workshop on Wireless Network Measurements (WiNMee
2006), Apr. 2006.

[35] Hu and Wang. Framework for location privacy in wireless net-
works. In ACM SIGCOMM Asia Workshop, 2005.

[36] M. Hypponen. WLAN viruses, anyone? F-Secure weblog.
http://www.f-secure.com/weblog/archives/
archive-082006.html, August 2006.

[37] M. Kim, D. Kotz, and S. Kim. Extracting a mobility model from
real user traces. In Proceedings of the 25th Annual Joint Confer-
ence of the IEEE Computer and Communications Societies (IN-
FOCOM), Apr. 2006.

[38] B. Krebs. 2005 patch times for Firefox and In-
ternet Explorer. Washington Post weblog. http:
//blog.washingtonpost.com/securityfix/2006/
02/2005_patch_times_for%_firefox_a.html, Feb.
2006.

[39] B. Krebs. Internet Explorer unsafe for 284 days in 2006. Wash-
ington Post weblog. http://blog.washingtonpost.
com/securityfix/2007/01/internet_explorer_
un%safe_for_2.html, Jan. 2007.

[40] N. Leavitt. Mobile Phones: The Next Frontier for Hackers? IEEE
Computer, 38(4), April 2005.

[41] C. Martel and V. Nguyen. Analyzing Kleinberg’s (and other)
small-world models. In PODC ’04: Proceedings of the twenty-
third annual ACM symposium on Principles of distributed com-
puting, pages 179–188, New York, NY, USA, 2004. ACM Press.

[42] R. McMillan. Researchers hack wi-fi driver to breach laptop. In-
foWorld. http://www.infoworld.com/article/06/
06/21/79536_HNwifibreach_1.html, June 2006. Ac-
cessed on September 15th, 2006.

[43] J. Mickens and B. Noble. Modeling epidemic spreading in mobile
environments. In Proceedings of the ACM Workshop on Wireless
Security, pages 77–96, 2005.

[44] S. Milgram. The small world problem. In Psychology Today,
1967.

[45] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emula-
tor for fingerprinting zero-day attacks. In Proc. ACM SIGOPS
EUROSYS’2006, Leuven, Belgium, April 2006.

[46] M. Roesch. Snort: Lightweight intrusion detection for networks.
In Proceedings of USENIX LISA, November 1999. (software
available from http://www.snort.org/).

[47] T. S. Saponas, J. Lester, C. Hartung, and T. Kohno. Devices That
Tell On You: The Nike+iPod Sport Kit. Technical report, Depart-
ment of Computer Science and Engineering, University of Wash-
ington, 2007.

[48] C. Shannon and D. Moore. The Spread of the Witty Worm. IEEE
Security & Privacy, 2(4):46–50, July/August 2004.

[49] S. Stamm, Z. Ramzan, and M. Jakobsson. Drive-By Pharming.
Technical report, Indiana University, Dec. 2006.

[50] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The Top Speed
of Flash Worms. In Proceedings of the ACM Workshop on Rapid
Malcode (WORM), pages 33–42, October 2004.

[51] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Inter-
net in Your Spare Time. In Proceedings of the USENIX Security
Symposium, pages 149–167, August 2002.

[52] J. Su, K. K. W. Chan, A. G. Miklas, K. Po, A. Akhavan, S. Saroiu,
E. de Lara, and A. Goel. A preliminary investigation of worm in-
fections in a bluetooth environment. In WORM ’06: Proceedings
of the 4th ACM workshop on Recurring malcode, pages 9–16,
New York, NY, USA, 2006. ACM Press.

[53] Symantec. Symantec Internet Security Threat Re-
port. http://www.symantec.com/enterprise/
threatreport/index.jsp, Sept. 2006.

[54] Trend Micro. Botnet threats and solutions: Phishing - Whitepa-
per, Nov. 2006.

[55] A. Tsow, M. Jakobsson, L. Yang, and S. Wetzel. Warkitting: the
drive-by subversion of wireless home routers. Anti-Phishing and
Online Fraud, Part II Journal of Digital Forensic Practice, 1(3),
Nov. 2006.

16th USENIX Security Symposium USENIX Association338

