
August 3, 2006

Turing Around the Security 
Problem
Why Does Security Still Suck?

Crispin Cowan, PhD
Director of Software 
Engineering,
Security Architect, SUSE 
Linux



©  Novell Inc, Confidential & Proprietary

 

2

 

Security Sucks

Much more than other aspects of 
computing

• Word processors process the words
• Music players play the music
• Web browsers browse the web
• etc.

But when you get a security 
system, you still aren't secure
Computing is 65 years old

• Ready for Medicaid but not ready for prime 
time?!

• Why can't we get it right after all this time?

“The reason 
why you have 

people 
breaking into 
your software 

is because 
your software 

sucks.”

Richard Clarke



©  Novell Inc, Confidential & Proprietary

 

3

 

Because it is Hard

For all other kinds of computing, being correct 
for normal inputs is sufficient

• Reliable software does what it is supposed to do

But that is not enough for security
• Secure software does what it is supposed to do, and nothing 

else

Security is really simple: only use perfect 
software

• ... but there is a supply side problem



©  Novell Inc, Confidential & Proprietary

 

4

 

Why Is Correctness More Important
to Security?

Other fields are mission critical
• Aircraft fly-by-wire
• Nuclear reactor controllers, etc.

What makes security special?
Intelligent attackers:

• Other mission critical applications do not have to worry about 
improbable events

– They are unlikely to happen :-)

• Security: attacker looks for poorly handled conditions and 
causes them to happen

The improbable becomes probable



©  Novell Inc, Confidential & Proprietary

 

5

 

So Correctness Matters a Lot:
Throw Money at the Problem

This doesn't happen in practice because:
• Developers are lazy, don't like to check return codes, etc.
• Languages are unsafe: Java and C# are the first really 

popular languages that are type safe since PL/1

Customers (and magazine product reviewers) 
react to shiny buttons more than quality:

• You can see shiny buttons
• Therefore managers won't give developers the time and tools 

to do software right

Features. Quality. Ship date. Choose 2
• Guess which two are the popular choices



©  Novell Inc, Confidential & Proprietary

 

6

 

So Really Good Vendors Should Be 
Delivering Secure Products ... ?

Kinda :-( Diligence helps ...
• Good coding practices
• Peer review (especially open source :-)
• QA, penetration testing, fuzz testing ...

.. but benefits are limited
• You can test for what should happen
• You cannot test for what shouldn't happen in the presence of 

arbitrary input



Meet Alan Turing
(CS grads can read some mail for a bit :-)



©  Novell Inc, Confidential & Proprietary

 

8

 

Alan Turing's Cute Theorem

Goedel, 1931
• A mathematical system complex enough to represent itself 

cannot be both consistent and complete
• Consistent: all theorems are true
• Complete: all true statements are provable

Turing's lame corollary 1932
• Imagine a machine that can compute states based on input
• Give it an infinite tape drive
• You cannot write a program that will analyze any other 

program + input and decide if it will halt or not

Minor side effect: invented computers :-)



©  Novell Inc, Confidential & Proprietary

 

9

 

Proving Turing's Halting Problem:
Diagonalization

Consider some hypothetical 
program X that can solve 
Turing's Halting problem

• Ask X to analyze program 1, 2, 3, ...
• When you ask X to analyze itself, 

program it to loop if X halts
• So if it halts, it loops, and if it loops, it 

halts
• Contradiction! -> X cannot exist

Simplest form:
“This is a lie.”

If this
program
halts?

Halt

Yes

No



©  Novell Inc, Confidential & Proprietary

 

10

 

The Halting Problem Applied

If you can't write an analyzer to determine 
halting, then you can't decide

• If a program will or won't write to a given memory location
• Will or won't overflow a buffer
• Will or won't grant unintended access

Is or is not secure



©  Novell Inc, Confidential & Proprietary

 

11

 

What About Static Analyzers?

Heuristics:
• You can't analyze arbitrary programs, but you can prove that a 

specific program will halt ... or is secure
• You can encode this into provers that can say “safe”, 

“vulnerable”, or “don't know”
• Or be wrong :-)

What about type safe languages?
• “Type safe” is the subset of program behavior that can be 

statically proven
• Note: type safe languages quite often reject programs that 

actually are safe, they just can't be proven safe by the compiler



©  Novell Inc, Confidential & Proprietary

 

12

 

So We're Doomed?

Not doomed ...
• Security professionals have lifetime employment :-)

What to do?
• Building secure programs is undecidable
• Must instead build belt&suspenders protection layers that 

defend the system against vulnerable components
• We used to call this “secure architecture”
• Now we call it Intrusion Prevention



Meet John Boyd
(CS grads can wake up again :-)



©  Novell Inc, Confidential & Proprietary

 

14

 

Boyd's OODA Loop

Boyd was an air force fighter pilot
Invended OODA: a new way to think about air 
combat:

Observe your surroundings
Orient yourself to your context
Decide what to do
Act on that decision

Air combat winners are those with the fastest 
accurate OODA loop
Turns out this applies to computer security too



©  Novell Inc, Confidential & Proprietary

 

15

 

OODA and Intrusion Prevention

Use OODA to classify IPS according to
When: Time in the software life cycle where IPS is inserted

– Earlier is faster
– Later is more precise
– Design time, implementation time, run time

Where: Place in the network architecture where IPS is inserted
– Closer to the incident is more precise
– Farther out has broader impact, easier to deploy
– Network or Host

What: Kind of mediation applied
– Detection is easier if you don't have precision, but doesn't protect
– Prevention requires precision to be tolerable



When



©  Novell Inc, Confidential & Proprietary

 

17

 

Design Time: Saltzer&Schroeder's 8 
Principles of Secure Design

1. Economy of mechanism: designs and implementations should be as 

small and simple as possible, to minimize opportunities for security 

faults, i.e. avoid bloat.
2. Fail-safe defaults: access decisions should default to deny unless 

explicitly specified, to prevent faults due to unanticipated cases.

3. Complete mediation: design such that all possible means of access to 
an object are mediated by security mechanisms.

4. Open design: the design should not be secret, and in particular, the 

design should not depend on secrecy for its security, i.e. no security 

through obscurity.



©  Novell Inc, Confidential & Proprietary

 

18

 

Design Time: Saltzer&Schroeder's 8 
Principles of Secure Design

5. Separation of privilege: if human security decisions require more than 

one human to make them, then faults due to malfeasance are less likely.

6. Least privilege: each operation should be performed with the least 
amount of privilege necessary to do that operation, minimizing potential 

failures due to faults in that privileged process, i.e. don t do everything 

as root or administrator.
7. Least common mechanism: minimize the amount of mechanism 

common across components.

8. Psychological acceptability: security mechanisms must be 

comprehensible and acceptable to users, or they will be ignored and 
bypassed.



©  Novell Inc, Confidential & Proprietary

 

19

 

Design Time: Saltzer&Schroeder's 8 
Principles of Secure Design

These principles have held up well over time, 
but some more than others

• Least privilege is a spectacular success
• Least common mechanism not much used, with common 

mechanism that is carefully constructed fares better

Unfortunately, these principles also turn out to 
be too expensive to apply

• Easier to just ship crap :-)



©  Novell Inc, Confidential & Proprietary

 

20

 

Implementation Time: Static Analysis

... that thing I said you couldn't do :-)
Syntax checkers: grep for bad stuff

• gets, strcpy
• printf(str, ...) instead of printf(“format %s \n”, str)
• etc.

Semantic checkers:
• Do deeper analysis of program to look for problems
• Type checking: use all your data consistently
• Taint analysis: detect whether you filtered user input before 

depending on it



©  Novell Inc, Confidential & Proprietary

 

21

 

Implementation Time:
Better Static Languages

Safer language variants: e.g. Cyclone, CCured
• Produce a type-safe subset of C
• Then add back some stuff to make it usable

Static type safe languages: Java, C#
• Previously known as ML, Pascal, PL/1
• Instead of an exploitable buffer overflow, you get “type error, 

program rejected” at compile time



©  Novell Inc, Confidential & Proprietary

 

22

 

Implementation Time:
Dynamic Language Techniques 

Compiler Defenses:
• StackGuard (USENIX Security 1998)

– Became GCC ProPolice and Microsoft /gs

• FormatGuard

Dynamic type safe languages: Python, Ruby
• Previously known as SmallTalk
• Instead of an exploitable buffer overflow, you get “uncaught 

exception”
• but in the mean time, it lets you ship the broken code

What about C++?
• No: not type safe, because it still supports pointer arithmetic
• C++: the safety of C, and the performance of SmallTalk :-)



©  Novell Inc, Confidential & Proprietary

 

23

 

Run Time:
Library and Kernel Enhancements

Libsafe: libc with smarter big-7 string functions
• strcpy & friends introspect arguments, barf if the target is 

plausibly in the caller's stack frame

Open Wall Linux: non-executable stack
• Standard on classic CPUs, problematic on x86
• Prevents instant shell code injection

PaX: non-executable heap
• Standard on classic CPUs, very problematic on x86
• Solution: fun with TLBs

NX: x86 finally gets non-executable pages
RaceGuard: blocks temp file race attacks



Where



©  Novell Inc, Confidential & Proprietary

 

25

 

Where: Network or Host

Host: e.g. OS features
• Up close
• Gives you precise information on the intrusion, so your OODA 

loop is more accurate
• Can respond quickly, so your OODA loop is tighter
• Boyd would like this

Network: e.g. firewalls
• Farther out
• Gives you a more global perspective, for better event 

correlation
• Gives you more global impact for stronger mediation
• Generals IT Managers like this



What



©  Novell Inc, Confidential & Proprietary

 

27

 

Detection or Prevention

“Intrusion detection” is what you call it when 
your detector is too lame to prevent the attack

• Too slow to prevent attack before it happens
• Too inaccurate to allow it to automatically block

Prevention (automatic blocking) requires speed 
and precision

• Limits you to detection techniques that are fast and precise
• Complex detection methods will come too late
• Heuristics can be wrong, so can't let them automatically block



©  Novell Inc, Confidential & Proprietary

 

28

 

Presumed Innocent?
Or Presumed Guilty?

All those things block bad behavior, and allow 
everything else

• Misuse prevention
• Default allow
• Signature-driven security: AV, network IDS
• What happens when attackers invent a new “bad” thing?

Anomaly prevention:
• Specify what is allowed, and block all else
• Policy-driven security

Which to use?
• Misuse prevention easier to live with
• Anomaly prevention more secure



©  Novell Inc, Confidential & Proprietary

 

29

 

Statistical Anomaly Detection

Forrest et al: “Sense of Self” IEEE S&P 1996
• Inspired by biological immune systems to distinguish “self” 

from “other”
• Approach: “self” is applications whose syscall sequences 

match a pattern
• Implementation: several MB of stats on rolling n-gram 

sequences of syscalls
• Result: if you train it hard enough, it can detect intrusion and 

not disrupt legitimate actions



©  Novell Inc, Confidential & Proprietary

 

30

 

Statistical Anomaly Detection and 
Mimicry Attacks

Problem: Mimicry attacks
• Attacker crafts attack so that its sequence of syscalls mimic 

the legitimate patterns
• Use NOP syscalls to pad the attack sequence, e.g. open() on 

non-existent files or files that don't matter

Improvement: measure more factors
• Syscall parameters, address called from, time, etc.

Response: more detailed mimicry
Result: Arms race



©  Novell Inc, Confidential & Proprietary

 

31

 

Access Controls

Instead of judging activities as “good” or “bad”, 
just decide definitively who can access what 
and how
Design issues:

• How to specify “who”
• How to specify “what”
• How to specify “how”
• How to abstract all this because controlling every bit is too 

much



©  Novell Inc, Confidential & Proprietary

 

32

 

Network Access Controls

Firewall: mediates access between networks
• Based on source and destination IP address, port number, and 

protocol, i.e. stuff up to Layer 4
• Rules are absolute: stuff gets through, or it doesn't
• Default deny: everything blocked except what you allow

Network Intrusion Detection and Prevention: 
also mediates access between networks

• Based on packet content and context
• Rules might be heuristic: gets through if it smells ok
• Rules might be signature-based, i.e. default allow



©  Novell Inc, Confidential & Proprietary

 

33

 

So a NIDS is Just a Flaky Firewall?

Well ... yes
Network traffic is very regular up to layer 4

• Can use strict, regular rules to regulate flow

Network traffic is very irregular above layer 4
• I.e. application content
• Zillions of applications, new ones come along all the time
• You can build a default-deny NIDS, but you will hate it as it 

blocks everything it doesn't understand



©  Novell Inc, Confidential & Proprietary

 

34

 

Why Would I Want a Flaky Firewall?

Signature-based NIDS can only block known 
vulnerabilities

• NIDS is a kludge that you use when you can't patch your bugs

Why would I want that?
• Because sometimes you can't patch your bugs

– Machine is in a mission-critical production mode and cannot be halted
– Vendor hasn't issued a patch
– Patch hasn't been QA'd yet
– Patch just sucks

Use NIDS to mitigate weakness in your 
patching strategy



©  Novell Inc, Confidential & Proprietary

 

35

 

Host Access Controls

OS features to let you specify who can access 
what on the local machine
Discretionary access control: he who creates 
the data can grant access to anyone else
Mandatory access control: he who owns the 
system decides who can access a given 
resource, no matter who you are

• Allows system manager to strive for the principle of least 
privilege



©  Novell Inc, Confidential & Proprietary

 

36

 

Lampson's Access Control Matrix

•Enumerate 
every single 
subject (user) 
and object (file) 
in the system
•Populate a 
matrix with 
access modes

Alice
(sysadmin)

Bob
(accounting)

Carol
(engineering)

/var/spool/mail/alice RW

/usr/bin/login RWX X X

/etc/motd RW R R

/local/personnel/payroll RW

/local/eng/secret-plans RW



©  Novell Inc, Confidential & Proprietary

 

37

 

Access Control Abstraction

Lampson's matrix lets you specify exactly least 
privilege
But the matrix is huge, so:

• Errors in the matrix are likely to occur
• Such a pain that most users unlikely to use it

Need more convenient abstractions to make 
specifying approximate least privilege feasible



©  Novell Inc, Confidential & Proprietary

 

38

 

Access Control Lists vs. Capabilities

Access Control Lists: security rules are 
associated with the object (file)
Capabilities: security rules are associated with 
the subject (user or process)
Classic UNIX mode bits are a crude ACL

• List of length 1 for user mode and group mode access



©  Novell Inc, Confidential & Proprietary

 

39

 

Access Control Lists vs. Capabilities

Hard to compute least privilege for a user or 
process with ACLs

• Need to scan all objects in the system to determine what the 
subject can access

To achieve approximate least privilege for 
intrusion prevention, want a Capability system

First Class capability system makes Capabilities be objects that 
programs can manipulate

Ambient capability system makes the capabilities external to the 
process

Ambient better for confining legacy software



©  Novell Inc, Confidential & Proprietary

 

40

 

Least Privilege for Programs

1980s: most systems are 
timeshare

• Need least privilege for users & groups

21st Century: most systems are
• 1 user workstations
• 0 user network servers

Need least privilege for 
programs

• Enforce that program does what it is 
supposed to do, and nothing else

Per - Application
Security

DNS

Print

Web 

CGI

Mail

File



Danger! Product Pimping Ahead
(But it is all Open Source :-)



©  Novell Inc, Confidential & Proprietary

 

42

 

Application Least Privilege for Linux

SELinux
Type Enforcement

• Assign users or programs to 
Domains

• Label files with Types
• Write policy in terms of 

which Domains can access 
which Types

AppArmor
Pathnames

• Name a program by path
• When it runs, it can only 

access the files specified by 
pathname

• Generalize pathnames with 
shell syntax wild cards



©  Novell Inc, Confidential & Proprietary

 

43

 

Labels vs. Pathnames:
Static vs. Dynamic

SELinux label scheme
• Half your policy is in the labeling scheme: labels applied to files
• Enables strong analyzability of your policy
• Forces you to specify label scheme ahead of time
• Re-labeling is expensive

AppArmor pathname scheme
• All of your policy is in the policy
• Enables late binding of policy to file names at the time they are 

accessed
• Trades away analyzability for flexibility in the presence of 

changing system configurations



©  Novell Inc, Confidential & Proprietary

 

44

 

Labels vs. Pathnames: Ambiguity

Pathnames
• A pathname is not the only name a file 

can have
• But a pathname does lead to only a 

single file, for a given namespace

Labels
• A file can only have a single label
• But a label refers to many files

Which kind of ambiguity do you 
prefer?

AA

path
path

path

file

SELinux

file
file

file

label



©  Novell Inc, Confidential & Proprietary

 

45

 

Compare Policy: wuftp daemon

Immunix profile for 
the same program is 
about 4x smaller

SELinux
#################################
#
# Rules for the ftpd_t domain 
#
type ftp_port_t, port_type;
type ftp_data_port_t, port_type;
daemon_domain(ftpd, `, auth_chkpwd')
type etc_ftpd_t, file_type, sysadmfile;

can_network(ftpd_t)
can_ypbind(ftpd_t)
allow ftpd_t self:unix_dgram_socket create_socket_perms;
allow ftpd_t self:unix_stream_socket create_socket_perms;
allow ftpd_t self:process {getcap setcap};
allow ftpd_t self:fifo_file rw_file_perms;

allow ftpd_t bin_t:dir search;
can_exec(ftpd_t, bin_t)
allow ftpd_t { sysctl_t sysctl_kernel_t }:dir search;
allow ftpd_t sysctl_kernel_t:file { getattr read };
allow ftpd_t urandom_device_t:chr_file { getattr read };

ifdef(`crond.te', `
system_crond_entry(ftpd_exec_t, ftpd_t)
can_exec(ftpd_t, { sbin_t shell_exec_t })
')

allow ftpd_t ftp_data_port_t:tcp_socket name_bind;

ifdef(`ftpd_daemon', `
define(`ftpd_is_daemon', `')
') dnl end ftpd_daemon
ifdef(`ftpd_is_daemon', `
rw_dir_create_file(ftpd_t, var_lock_t)
allow ftpd_t ftp_port_t:tcp_socket name_bind;
allow ftpd_t self:unix_dgram_socket { sendto };
can_tcp_connect(userdomain, ftpd_t)
', `
ifdef(`inetd.te', `
domain_auto_trans(inetd_t, ftpd_exec_t, ftpd_t)
ifdef(`tcpd.te', `domain_auto_trans(tcpd_t, ftpd_exec_t, ftpd_t)')

# Use sockets inherited from inetd.
allow ftpd_t inetd_t:fd use;
allow ftpd_t inetd_t:tcp_socket rw_stream_socket_perms;

# Send SIGCHLD to inetd on death.
allow ftpd_t inetd_t:process sigchld;
') dnl end inetd.te
')dnl end (else) ftp_is_daemon
ifdef(`ftp_shm', `
allow ftpd_t tmpfs_t:file { read write };
allow ftpd_t { tmpfs_t initrc_t }:shm { read write unix_read unix_write associate };
')

# Use capabilities.
allow ftpd_t ftpd_t:capability { net_bind_service setuid setgid fowner fsetid chown sys_resource sys_chroot };

# Append to /var/log/wtmp.
allow ftpd_t wtmp_t:file { getattr append };

# allow access to /home
allow ftpd_t home_root_t:dir { getattr search };

# Create and modify /var/log/xferlog.
type xferlog_t, file_type, sysadmfile, logfile;
file_type_auto_trans(ftpd_t, var_log_t, xferlog_t, file)
# Execute /bin/ls (can comment this out for proftpd)
# also may need rules to allow tar etc...
can_exec(ftpd_t, ls_exec_t)

allow { ftpd_t initrc_t } etc_ftpd_t:file r_file_perms;
allow ftpd_t { etc_t resolv_conf_t etc_runtime_t }:file { getattr read };
allow ftpd_t proc_t:file { getattr read };

')dnl end if ftp_home_dir

SELinux uses a custom programming 
language to specify hard-to-manage rules

.
ifdef(`ftpd_daemon', `
define(`ftpd_is_daemon', `')
') dnl end ftpd_daemon
ifdef(`ftpd_is_daemon', `
rw_dir_create_file(ftpd_t, var_lock_t)
allow ftpd_t ftp_port_t:tcp_socket name_bind;
allow ftpd_t self:unix_dgram_socket { sendto };
can_tcp_connect(userdomain, ftpd_t)
', `
ifdef(`inetd.te', `
domain_auto_trans(inetd_t, ftpd_exec_t, ftpd_t)
ifdef(`tcpd.te', `domain_auto_trans(tcpd_t, 

ftpd_exec_t, ftpd_t)')

# Use sockets inherited from inetd.
allow ftpd_t inetd_t:fd use;
allow ftpd_t inetd_t:tcp_socket 

rw_stream_socket_perms;

# Send SIGCHLD to inetd on death.
allow ftpd_t inetd_t:process sigchld;
') dnl end inetd.te
')dnl end (else) ftp_is_daemon
ifdef(`ftp_shm', `
allow ftpd_t tmpfs_t:file { read write };
allow ftpd_t { tmpfs_t initrc_t }:shm { read write 

unix_read unix_write associate };
')
.
.

AppArmor
/usr/sbin/in.ftpd {

  #include <immunix-standard/base>

  #include <immunix-standard/nameservice>

  #include <immunix-standard/authentication>

  #include <user-custom/ftpd>

  /                                 r,

  /dev/urandom                      r,

  /etc/fstab                        r,

  /etc/ftpaccess                    r,

  /etc/ftpconversions               r,

  /etc/ftphosts                     r,

  /etc/ftpusers                     r,

  /etc/shells                       r,

  /usr/sbin/in.ftpd                 r,

  /usr/share/ssl/certs/ca-bundle.crt        r,

  /usr/share/ssl/certs/ftpd-rsa.pem         r,

  /usr/share/ssl/private/ftpd-rsa-key.pem   r,

  /usr/share/ssl/.rnd               w,

  /var/log/xferlog                  w,

  /var/run                          wr,

  /var/run/ftp.{pids,rips}-all      wr,

}

Classical Linux syntax with 
read/write/execute permissions:

No new jargon

/usr/sbin/in.ftpd {

  #include <immunix-standard/base>

  #include <immunix-standard/nameservice>

  #include <immunix-standard/authentication>

  #include <user-custom/ftpd>

  /                                 r,

  /dev/urandom                      r,

  /etc/fstab                        r,

  /etc/ftpaccess                    r,

  /etc/ftpconversions               r,

  /etc/ftphosts                     r,

  /etc/ftpusers                     r,

  /etc/shells                       r,

  /usr/sbin/in.ftpd                 r,

  /usr/share/ssl/certs/ca-bundle.crt        r,

  /usr/share/ssl/certs/ftpd-rsa.pem         r,

  /usr/share/ssl/private/ftpd-rsa-key.pem   r,

  /usr/share/ssl/.rnd               w,

  /var/log/xferlog                  w,

  /var/run                          wr,

  /var/run/ftp.{pids,rips}-all      wr,

}



Summary



©  Novell Inc, Confidential & Proprietary

 

47

 

Summary:
Security is Harder Than it Looks

Making a system secure is very hard
• “Is it secure?” is undecidable

Therefore securing systems is a continuing 
process, not a condition

• Supply belt and suspenders to defend your system against its 
inevitable latent vulnerabilities

• We call this Intrusion Prevention



©  Novell Inc, Confidential & Proprietary

 

48

 

Summary: Intrusion Prevention

When: Design time, Implementation time, Run 
time
Where: network or host
What:

• Detect or Prevent
• Misuse or Anomaly
• Statistical or Access Control

I'd draw a picture, but that is two nested 3-D 
cubes



©  Novell Inc, Confidential & Proprietary

 

49

 

Summary: The Art of Info War
by Sun Tzu John Boyd

OODA:
• Observe, Orient, Decide, Act

Winner:
• The one with the tightest accurate OODA Loop

Intrusion Prevention choices
• Close to intrusion site will work better
• Farther out will cover more ground with a single tool ... at the 

cost of speed and accuracy

As always, whether or not you get what you pay 
for, you definitely pay for what you get



©  Novell Inc, Confidential & Proprietary

 

50

 

Plug: NDSS Conference

Network and Distributed System Security
• Pragmatic security conference, similar to USENIX Security
• Papers due September 10
• Notification October 23
• Conference February 28-March 2 in San Diego
• PC Chairs: Me, and Bill Arbaugh

http://www.cs.umd.edu/~waa/ndss07.htmld





Unpublished Work of Novell, Inc. All Rights Reserved.

This work is an unpublished work and contains confidential, proprietary, and trade secret information of Novell, 
Inc.  Access to this work is restricted to Novell employees who have a need to know to perform tasks within the 
scope of their assignments.  No part of this work may be practiced, performed, copied, distributed, revised, 
modified, translated, abridged, condensed, expanded, collected, or adapted without the prior written consent of 
Novell, Inc.  Any use or exploitation of this work without authorization could subject the perpetrator to criminal and 
civil liability.

General Disclaimer

This document is not to be construed as a promise by any participating company to develop, deliver, or market a 
product.  Novell, Inc., makes no representations or warranties with respect to the contents of this document, and 
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.  
Further, Novell, Inc., reserves the right to revise this document and to make changes to its content, at any time, 
without obligation to notify any person or entity of such revisions or changes. All Novell marks referenced in this 
presentation are trademarks or registered trademarks of Novell, Inc. in the United States and other countries.  All 
third-party trademarks are the property of their respective owners.


