
1

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 1

Illusions of Security

Paul Kocher
President & Chief Scientist,
Cryptography Research, Inc.
www.cryptography.com

607 Market St., 5th Floor, San Francisco, CA 94105

© 2002 Cryptography Research, Inc. All rights reserved. The Cryptography Research logo is a trademark
of Cryptography Research, Inc. All trademarks are the property of their respective owners. The
information contained in this presentation is provided without any guarantee or warrantee whatsoever.

An invited talk at the 11th USENIX Security Workshop

“For: Rheumatism,
Neuralgia, Sciatica,

Lame Back, Lumbago,
Contracted Cords,

Toothache, Sprains,
Swellings, Etc.”

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 2

About Cryptography Research
Specialize in high-risk commercial systems

Highly technical; Hands-on + theoretical expertise
Crypto, risk management, hardware, networking…

Industries: Financial, content, networking, wireless

Consulting, licensing & research
Consulting: Evaluation, implementation, design
Licensing: Tamper-resistance/DPA technologies
Research: Real attacks & countermeasures

Emphasis on applied work
Practical, reliable solutions to real problems
Systems designed by CRI engineers protected >$40B in 2001
Most of our revenue from big companies with real losses

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 3

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1970 1975 1980 1985 1990 1995 2000

Tr
an

si
st

or
s

in
 In

te
l C

PU
s

1E-06

1E-04

1E-02

1E+00

1E+02

1E+04

1E+06

1E+08

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

CPU data courtesy Intel Corp.

St
re

ng
th

 o
f 1

00
m

s
RS

A
 o

pe
ra

tio
n

(C
PU

-y
ea

rs
 to

 fa
ct

or
)

Moore’s Law & Security

Human intelligence (constant)

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 4

Security vs. Functionality
Non-security software
tolerates bugs in proportion
to complexity

Example: Microsoft Word

Most security systems have
zero-tolerance for flaws

Example: Buffer overflows in rarely-
used functions

Observation: # of security
flaws is proportional to
complexity squared
[# interactions = complexity2]

As complexity [e.g., LOC] increases,
the effort to maintain a given level of
assurance [e.g., defect count] rises
exponentially.

Security ≠ Functionality.
Moore’s Law drives functionality… but security requires
demonstrating the absence of undesirable functionality.

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 5

© 2002 by Paul Kocher

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 6

Measuring Security

Most commercial products: Negligible probability
of being very secure against creative attackers.

Microsoft Windows XP, Linux, X.509 cert parsers, JavaScript,
sendmail, garage crypto, web browsers…

Effort (cost) for attack

Pr
ob

ab
ili

ty
 o

f
co

m
pr

om
is

e 1

0 256 2168

Brute Force

Upper bound?
Expected/mean?
Risk curve?
Against who?

Initial vs. repeat attack?
Creative adversaries or
Uncreative adversaries?

2

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 7

Characteristics of Most Flaws
SPFs that bypass the crypto algorithms

Buffer overflows, alg negotiation, scripting, RNGs…

Interactions between components
Incorrect assumptions
memcmp timing, bignum limits, system()…

Inexperienced engineers
Use of abstraction without understanding
Laziness, overconfidence…
Poor practices (obscurity, poor docs, no reviews)

Complexity without constraints
Lack of sandboxing, isolation…

All are m
ajor problem

s in
com

m
ercial security products.

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 8

Evaluation Goals
Possible results from security tests:

[A] Security is provably bad, or
[B] Inconclusive

Typical CRI evaluation goals:
Prove that security is bad.
Assess the likelihood of additional serious problems.
Advise whether a product is worth deploying.

Attacking is much easier than designing or verifying.
Preventing / Testing for single problems is easy.
Preventing / Testing for all known problems is hard.
Preventing / Testing for all possible problems is impossible.

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 9

Evaluation Constraints
CRI median eval: ~80 person-hours / ~$32K

(Mean time/cost is much higher due to a few huge projects)

Many constraints on the process:
Time
Budget
Technical information
Evaluator capabilities / experience
Knowledge of threat model

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 10

Homework
Define target’s security objectives

Comparative analysis
Compare with similar or sketch a design
Anything missing? extraneous? confusing?
How have similar systems failed?

Risk management or impenetrability?
Implementation details

Product architecture
Design compromises, unsolvable problems?

Underlying technologies
Understand all layers of abstraction / layers

Perimeters, trust boundaries
What is trusted? What crosses boundaries?

Algorithms & state machines

Business
Network
Protocol
Crypto
Software
OS
CPU
Microcode
Logic cell
Transistor

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 11

Single Points of Failure

Manufacturing /
distribution

Master keys &
passwords

Software update
procedures

Tamper resistancePasswords & login
procedures

Input validation
routines

Hardware features
(buses, etc.)

Non-sandboxed
codeSandboxing

CPU execution
correctnessCompilersExecutable

program storage

Operating
systems & Drivers

Engineering
processes

Error handling /
attack detection

Crypto algorithms
& protocols

Revocation
systems

Key storage &
metadata

Data backup &
disaster recovery

Hard disk
controllers

ROM/E2/BIOS
contents

Ex
am

pl
es

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 12

Collecting Information
Published specifications
Open literature

What is known
about the target?

3

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 13

Collecting Information
Published specifications
Open literature
Network & bus I/O

Recording traffic using a SCSI bus analyzer.

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 14

Collecting Information
Published specifications
Open literature
Network & bus I/O
Timing
Power consumption

Hardware for monitoring I/O,
timing, and power data from
smart cards & other crypto chips

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 15

Collecting Information
Published specifications
Open literature
Network & bus I/O
Timing
Power consumption
Defective computations

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 16

Collecting Information
Published specifications
Open literature
Network & bus I/O
Timing
Power consumption
Defective computations
Error messages
Failure modes

Given a valid RSA signature:
S = M d mod n, where n = p · q

and a defective signature S' that is
correct mod p and incorrect mod q,
then:

p = GCD(n, S – S')
q = p / n.

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 17

Collecting Information
Published specifications
Open literature
Network & bus I/O
Timing
Power consumption
Defective computations
Error messages
Failure modes
Disk/memory contents
Swap files

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 18

Collecting Information
Published specifications
Open literature
Network & bus I/O
Timing
Power consumption
Defective computations
Error messages
Failure modes
Disk/memory contents
Swap files
Chip imaging/probing

4

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 19

Collecting Information
Published specifications
Open literature
Network & bus I/O
Timing
Power consumption
Defective computations
Error messages
Failure modes
Disk/memory contents
Swap files
Chip imaging
RNG seed data

RNG_CreateContext()
(seconds, microseconds) = time of day;

/* Time elapsed since 1970 */
pid = process ID;
ppid = parent process ID;
a = mklcpr(microseconds);
b = mklcpr(pid + seconds + (ppid << 12));
seed = MD5(a, b);
mklcpr(x) /* not cryptographically significant;

shown for completeness */
return ((0xDEECE66D*x+0x2BBB62DC)>>1);

Netscape 1.1 seeding process (pseudocode)
From: Goldberg, Ian and Wagner, David, “Randomness and the
Netscape Browser”, Dr. Dobbs Journal, Jan. 1996

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 20

Collecting Information
Published specifications
Open literature
Network & bus I/O
Timing
Power consumption
Defective computations
Error messages
Failure modes
Disk/memory contents
Swap files
Chip imaging
RNG seed data
Backup / restore
Illegal / questionable activities

Dumpster diving
Inside jobs
Social engineering
Physical / network attacks

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 21

Collecting Information
Published specifications
Open literature
Network & bus I/O
Timing
Power consumption
Defective computations
Error messages
Failure modes
Disk/memory contents
Swap files
Chip imaging
RNG seed data
Backup / restore
Illegal / questionable activities
Code reviews

Very hard to do in volume
Code can be unreviewable

CryptoLib bug: Error if src=dest and
incoming carry (borrow) causes borrow.

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 22

Algorithms & Usage
Proprietary/new algorithms: Guilty until proven innocent…

Designers often inexperienced, paranoid, overconfident
Security based on a “hard” problem: Are you sure?
Cryptanalysis is tedious – other attacks may be easier…

Good algorithms are often used badly
Marginal key sizes (e.g., DES)

Insecure at ½ key length? t/m trade-off…
Multiple use of secrets?
Keys storage & management

Key lifecycle: Generation, Revocation, Deletion
Secret sharing is good, but definitely no cure-all

Incorrect computations
Bugs, buffer overflows, glitches…
Is the correct value used as the key?
DES S tables, PGPDisk CAST bug…

Stream cipher key reuse
CBC adapt. chosen plaintext attacks
DES MACs, 3DES with internal CBC…
ECB

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 23

Protocol Analysis
Many approaches (intuitive to formal).
Example:

Describe what is supposed to happen
E.g.: Client & server negotiate a strong shared key or fail.

On three (big) pieces of paper:
Chart the protocol flow

Include every message that can be sent
Error messages, optional messages, etc.

List what can be discovered about each cryptographic value.
Each crypto step generally reveals something new.
List everything (helps catch unintended interactions)

Diagram the state machine of each participant
Include negotiated options, failure states, crypto, etc.

Reconcile possible end states against objectives.
Check for missing “free” functionality, excessive complexity…

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 24

Common Protocol Weak Spots
Algorithm negotiation
Version negotiation (backward + forward)
Man-in-the-middle
Message replay (within a session, multiple sessions)
Message forwarding & impersonation

E.g.: A connects to B, who connects to C pretending to be A.
Certificate handling & validation (or lack thereof)
Out-of-sequence messages
Error handling reveals information
Denial of service
Timing attacks
Excessive complexity or lack of defined state machine
Improper or inadequate use of hash functions
Inefficiencies (round trips…)
Redundant information
Management/debug functions (code upgrades, etc.)

5

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 25

Designing for Security
(Quite Different from Attacking…)

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 26

Challenges to address
Increasing connectedness & complexity
Exponential growth in transaction volumes
Continuously changing engineering environments
Theorists & engineers don’t (can’t?) talk
Users enamored with new features
Inadequate security budgets
Deeper layers of abstraction
Attacks are unpredictable
Shrinking ratio of good engineers to problems

Fraction of data that is well understood is plummeting

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 27

10
 T

hi
ng

s
to

 D
o

Design for testability
Verification can be >10X design + implement cost
Challenge: Testing the “glue”
Goal: Make problems easy to detect

Elegant design security problems visible

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 28

10
 T

hi
ng

s
to

 D
o

Design for testability
Avoid complexity

Excessive complexity is a security flaw
All parts should exist for a reason
80/20 rule

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 29

10
 T

hi
ng

s
to

 D
o

Design for testability
Avoid complexity
Isolate complex components

Sandboxing
Component isolation
Firewalls, verifiers…

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 30

10
 T

hi
ng

s
to

 D
o

Design for testability
Avoid complexity
Isolate complex components
Check your assumptions

Goal: Rational paranoia
Check for:

Thorough, clear documentation
Third-party verification, if appropriate
Solid understanding of your requirements

Example:
Assume that users are lazy and stupid.

6

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 31

10
 T

hi
ng

s
to

 D
o

Design for testability
Avoid complexity
Isolate complex components
Check your assumptions
Spend money rationally

Don’t under- or over-spend on security
Spend early
Hire experienced people

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 32

10
 T

hi
ng

s
to

 D
o

Design for testability
Avoid complexity
Isolate complex components
Check your assumptions
Spend money rationally
Focus on interfaces

Most problems are due to unexpected interactions
between components designed by different people

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 33

10
 T

hi
ng

s
to

 D
o

Design for testability
Avoid complexity
Isolate complex components
Check your assumptions
Spend money rationally
Focus on interfaces
Be humble

Don’t trust yourself – have your work checked
It isn’t secure just because you can’t break it.
Have general approaches + specifics reviewed.
Use outside resources & technology.

Don’t expect (or force) others to trust you.

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 34

10
 T

hi
ng

s
to

 D
o

Design for testability
Avoid complexity
Isolate complex components
Check your assumptions
Spend money rationally
Focus on interfaces
Be humble
Don’t re-invent the wheel

Use tried & true designs
… but also beware of interface complexity

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 35

10
 T

hi
ng

s
to

 D
o

Design for testability
Avoid complexity
Isolate complex components
Check your assumptions
Spend money rationally
Focus on interfaces
Be humble
Don’t re-invent the wheel
Avoid single points of failure

Redundancy increases the odds of survival…

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 36

10
 T

hi
ng

s
to

 D
o

Design for testability
Avoid complexity
Isolate complex components
Check your assumptions
Spend money rationally
Focus on interfaces
Be humble
Don’t re-invent the wheel
Avoid single points of failure
Study all layers of the system

Transistors up to business objectives

7

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 37

What doesn’t work
Designs by committee

Conflicting objectives, no responsibility
Obscurity

Increases cost for initial attack, but not repeat attacks
Not useful if design is public (i.e., in most commercial products)

Reduces relying party’s ability to gain assurance
Fixed certification standards

Standardized evaluations catch standardized attacks…
Re-use of components with complex interfaces

SHABlock(data,len) = good, system(“cmd”) = bad
Requirements that push the limits

Security: ↓ speed, ↓ features, ↑ cost, ↑ dev. time
Iterative / evolutionary testing

Need security by design: Feedback is often unavailable

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 38

Example: Untrusted browsing
Traditional model

BrowserBrowser
Internet

Co
nv

en
tio

na
l

FI
RE

W
AL

L

LANLAN

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 39

Example: Untrusted browsing
Better model

Internet

Co
nv

en
tio

na
l

FI
RE

W
AL

L

LANLAN

VNC
Client
VNC
Client

FI
RE

W
AL

L
(O

nl
y

al
lo

w
s

VN
C)

Untrusted
browser
(Remote
control)

Could also use compartments
Needs HW support (e.g., B1-level access control)

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 40

Ex: Tamper Resistant Chip

Software bugs

Protocol attacks Glitching Power Analysis

Probing attacks

Pr
ot

oc
ol

 /
 C

ry
pt

o
at

ta
ck

s

Staining/imagingIrradiation

ROM/RAM E2

I/O Math
Accelerator CPU Core/µP

Countermeasures must protect the entire chip

If anything fails, the whole chip fails…

Software Keys
(E2)Crypto +

Module with private E2: implements minimal protocol & protects itself.
(Eliminates most SPF’s.)

Untrusted
I/F

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 41

The Future…
Ongoing challenges:

Convincing vendors to spend on prevention
Profits from fraud lead to more crime
Evangelizing.

CRI: Consulting , anti-piracy, licensing/DPA…

Moral hazard: Little vendor incentive for security

People: Training, Education, Hiring
Few understand theory & practice…
Few understand multiple levels

HW, SW, network, business, transistor, OS, RF…

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 42

"The problems that exist in the
world today cannot be solved by
the level of thinking that created
them.”

8

C r y p t o g r a p h y R e s e a r c h , I n c : L e a d e r I n A d v a n c e d C r y p t o s y s t e m s ™ 43

Contact Information
For more information, or to discuss how Cryptography
Research, Inc. can help with a security problem, contact
myself or Carter Laren:

Paul Kocher
paul@cryptography.com

OR

Carter Laren
carter@cryptography.com

www.cryptography.com
Tel: 415-397-0123

