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Abstract

Programs written in C are inherently vulnerable to buffer
overflow attacks. Functions are frequently passed point-
ers as parameters without any hint of their sizes. Since
their sizes are unknown, most run time buffer overflow
detection techniques instead rely on signatures of known
attacks or loosely estimate the range of the referenced
buffers. Although they are effective in detecting most
attacks, they are not infallible. In this paper we present
a buffer overflow detection technique that range checks
the referenced buffers at run time. Our solution is a small
extension to a generic C compiler that augments exe-
cutable files with type information of automatic buffers
(local variables and parameters of functions) and static
buffers (global variables in data / bss section) in order to
detect the actual occurrence of buffer overflow. It also
maintains the sizes of allocated heap buffers. A simple
implementation is described, with which we currently
protect vulnerable copy functions in the C library.

1 Introduction

Programs written in C are inherently vulnerable to buffer
overflow attacks. C allows primitive pointer manipu-
lation, which is usually necessary for array operation
because C has no first-class array type. For example,
functions are passed the pointers as array parameters.
To ensure that buffers are not overflowed, it is the pro-
grammers’ responsibility to explicitly bounds check the
buffers. In practice, bounds checking is often neglected
or cannot be done since arrays are often passed without
any hint of their sizes. Many copy functions in the C
library such as strcpy(dest, src) are vulnerable this way,
making them a popular point of attack.

Various types of buffer overflow attacks have been dis-
covered. The simplest and the most popular among them
is the stack smashing attack [1]. The stack smashing at-

tack overflows a buffer to overwrite the return address
of a function, so that the return address points to the at-
tack code that is injected into the stack by the attacker,
rather than the legitimate call point. The control flow
is directed to the attack code when the function returns.
The stack smashing attack exploits the stack configura-
tion and the function call mechanism. There are other
types of buffer overflow attacks that exploit data struc-
tures in the heap as well as in the stack. A survey on
various types of attacks is found in [7].

There are several run time solutions that are highly ef-
fective without much run time overhead. However, most
of them rely on the signatures of known attacks (or the
loosely estimated range of the referenced buffers) rather
than the detection of actual occurrence of buffer over-
flow, since sizes of buffers are unknown at run time.
As a result, buffers can still be overflowed and they are
vulnerable to attacks that do not show such signatures.
Moreover, they are mostly built to defend against the
stack smashing attack and focus only on its signatures.
Buffer overflow techniques that can bypass those run
time solutions are found in [4, 15, 5, 11, 21, 16, 18],
and are discussed in Section 3.

Our goal is to increase the level of security in comput-
ing systems by devising a run time solution that is less
dependent on attack signatures. We propose a solution
that range checks the buffers at run time. Our solu-
tion is a small extension to the GNU C compiler that
augments executable files with type information of au-
tomatic buffers (local variables and parameters of func-
tions) and static buffers (global variables in data / bss
section) in order to detect the actual occurrence of buffer
overflow. It also maintains the sizes of allocated heap
buffers. Currently we use it to perform range checking
within the vulnerable copy functions in the C library.



2 Related work

2.1 StackGuard

The stack smashing attack overwrites the buffer, the re-
turn address and everything in between. StackGuard [6]
is a GNU C compiler extension that inserts a canary
word between the return address and the buffer so that an
attempt to alter the return address is detected by inspect-
ing the canary word before returning from a function1.
Programs needs to be recompiled with StackGuard to be
protected.

2.2 StackShield

StackShield [19] is also a GNU C compiler extension
that protects the return address. When a function is
called StackShield copies away the return address to a
non-overflowable area, and restores the return address
upon returning from a function. Even if the return ad-
dress on the stack is altered, it has no effect since the
original return address is remembered. As with Stack-
Guard, programs needs to be recompiled.

2.3 Libsafe

Libsafe [3] is an implementation of vulnerable copy
functions in C library such as strcpy(). In addition to
the original functionality of those functions, it imposes
a limit on the involved copy operations such that they do
not overwrite the return address. The limit is determined
based on the notion that the buffer cannot extend beyond
its stack frame. Thus the maximum size of a buffer is
the distance between the address of the buffer and the
corresponding frame pointer. Libsafe is implemented as
a shared library that is preloaded to intercept C library
function calls. Programs are protected without recompi-
lation unless they are statically linked with the C library.
Libsafe protects only those C library functions whereas
StackGuard and StackShield protect all functions.

1The name is derived from the coal mining practice of taking a
canary down with the workers. The canary was more sensitive to poi-
sonous gas than humans, so examining the state of the canary could
reveal a dangerous buildup of poison gas.

2.4 Solar Designer’s non-executable stack
patch

The stack smashing attack injects an attack code in the
stack, which is executed when the function returns. One
of the core features of the Solar Designer’s Linux kernel
patch [17] is to make the stack segment non-executable.
This patch does not impose any performance penalty nor
does it require program recompilation (except for the op-
erating system kernel).

2.5 PaX

PaX [14] is a page-based protection mechanism that
marks data pages non-executable. Unlike Solar De-
signer’s stack patch, PaX protects heap as well as stack.
Since there is no execution permission bit on pages in
x86 processor, PaX overloads the supervisor/user bit on
pages and augments the page fault handler to distinguish
the page faults due to the attempts to execute code in data
pages. As a result, it imposes a run time overhead due
to the extra page faults. PaX is also available as a Linux
kernel patch.

2.6 Runtime array bounds checking

The pointer and array access checking technique by
Austin et al. [2] is a source-to-source translator that
transforms C pointers into the extended pointer repre-
sentation called safe pointer, and inserts access checks
before pointer or array dereferences. The safe pointer
contains fields such as the base address, its size and the
scope of the pointer. Those fields are used by the access
check to determine whether the pointer is valid and is
within the range. Since it changes the pointer represen-
tation, it is not compatible with existing programs.

The array bounds and pointer checking technique by
Jones and Kelly [10] is an extension to the GNU C com-
piler that imposes the access check on C pointers and
arrays. Instead of changing the pointer representation,
it maintains a table of all the valid storage objects that
holds such informations as the base address and size
etc. The heap variables are entered into the table via
a modified malloc() function and deleted from the table
via a modified free() function. Stack variables are en-
tered into / deleted from the table by the constructor /
destructor function, which is inserted inside a function
definition at the point a stack variable enters / goes out



of the scope. The access check is done by substituting
the pointer and array operations with the functions that
perform bounds check using the table in addition to the
original operation. Since native C pointers are used, this
technique is compatible with existing programs.

The obvious advantage of array bounds checking ap-
proaches are that they completely eliminate buffer over-
flow vulnerabilities. However, these are also the most
expensive solution, particularly for pointer- and array-
intensive programs since every pointer and array oper-
ation must be checked. This may not be suitable for a
production system.

2.7 Static analysis of array bounds checking

The integer range analysis by Wagner et al. [20] is a
technique that detects possible buffer overflow in the
vulnerable C library functions. A string buffer is mod-
eled as a pair of integer ranges (lower bound, upper
bound) for its allocated size and its current length. A
set of integer constraints is predefined for a set of string
operations (e.g. character array declaration, vulnerable
C library functions and assignment statements involving
them). Using those integer constraint, the technique an-
alyzes the source code by checking each string buffer to
see whether its inferred allocated size is at least as large
as its inferred maximum length.

The annotation-assisted static analysis technique by
Larochelle and Evans [12] based on LCLint [8] uses se-
mantic comments, called annotations, provided by pro-
grammers to detect possible buffer overflow. For exam-
ple, annotations for strcpy() contain an assertion that
the destination buffer has been allocated to hold at least
as many characters as are readable in the source buffer.
This technique protects any annotated functions whereas
the integer range analysis only protects C library func-
tions.

Generally, a pure compile-time analysis like the above
can produce many false alarms due to the lack of run
time information. For example, gets() reads its input
string from stdin so the size of the string is not known
at compile time. For such a case a warning is issued
as a possible buffer overflow. In fact, all the legiti-
mate copy operations that accept their strings from un-
known sources (such as a command line argument or
an I/O channel) are flagged as possible buffer overflows
(since they are indeed vulnerable). Without further ac-
tion, those vulnerabilities are identified but still open to
attack.

3 Exploitation techniques

The exploitation techniques presented in this section are
exemplary and they can bypass some of the run-time
defensive techniques. While the stack smashing attack
can exploit just a single vulnerable strcpy(), these tech-
niques usually require more vulnerabilities in the pro-
gram that are less likely to be found in real world.
Nonetheless, they identify different kinds of vulnerabili-
ties that may not be protected by current defensive tech-
niques.

Although we can apply multiple defensive techniques
for added protection, these exploitation techniques can
also be used in tandem to produce more sophisticated
attacks that are more difficult to detect. However, none
of these exploits are possible if buffer overflow is pre-
vented. If programmers rely on C library functions to
overflow buffers, then our current implementation can
detect and prevent such attacks.

3.1 Return-into-libc

The return-into-libc exploit [18, 13] overflows a buffer
to overwrite the return address as the stack smashing at-
tack does. However it overwrites the return address with
the address of C library function such as system(). Since
it uses an existing code rather than a shellcode, Solar De-
signer’s non-executable stack patch or PaX cannot detect
this 2.

3.2 Other code pointers

Code pointers other than the return address can also be
overwritten, such as a function pointer variable [5], a
pointer to a shared library function in the global offset
table [21], the table of pointers to destructor functions
[15], or a C++ virtual function pointer [16]. Exploits
that alter those code pointers and not the return address
can bypass StackGuard, StackShield and Libsafe.

2They both provide guards against return-into-libc attacks, but they
can still be exploited. For example, we can use the procedure linkage
table entry of system() instead of the address of system() to bypass the
stack patch (where the address of system() can contain zero bytes) or
PaX (where the address of system() are unknown in advance due to the
random mapping of shared libraries).



3.3 Malloc() overflow

The malloc() overflow [11] exploits the heap memory
objects allocated via the memory allocator in the GNU
C library. The memory allocated by malloc() not only
includes the user requested block but also the data used
to manage the heap (size of the block, pointer to other
blocks and the like). The vulnerability is that a heap vari-
able can be overflowed to overwrite those management
data. Exploits based on this technique can bypass stack-
based defensive techniques such as StackGuard, Stack-
Shield, Libsafe and Solar Designer’s stack patch.

3.4 Indirect overflow via pointer

The indirect overflow via pointers [4] overflows a buffer
to overwrite a pointer, which is used subsequently to
overwrite a code pointer. With this technique it is pos-
sible to overwrite the return address without altering the
StackGuard canary word. It is also possible to overwrite
a memory area that is far from the overflowed buffer.
Bulba and Kil3r [4] gives examples that bypass Stack-
Guard, StackShield and Solar Designer’s stack patch.

4 Overview of Our Approach

Array bounds checking is a direct way to detect buffer
overflows, but it is difficult to do because the type in-
formation (hence the size) of buffers are not available in
binary files except as optional debugging information in
the symbol table. To enable range checking on buffers at
run time, introduce an intermediary step in the compila-
tion that emits an additional data structure into the binary
file. This data structure describes the types of automatic
buffers and static buffers. These types are known at com-
pile time, so our data structure is complete for describing
automatic and static buffers (there are two exceptions in
which size of an automatic buffer cannot be determined
at compile time, which are discussed in Section 6.). For
example, buffers in a struct variable are safe from each
other as depicted in Figure 1.

For dynamically allocated (heap) objects, we maintain
a table that tracks those objects and their sizes. Range
checking is then done by looking up those data struc-
tures at run time. We use those data structures to perform
range checking of arguments to the vulnerable string
functions in the C library.

struct mybuf f
char buf1[32];
void (*fptr)();
char buf2[32];

g;

Figure 1: A struct containing two string buffers and a
function pointer.

Regardless of which of these types of attack is at-
tempted, buffers have to be overflowed in some way
for the attacks to succeed. Since our approach prevents
buffers from being overflowed it is insensitive to which
attack was chosen. To truly protect from all the possi-
ble buffer overflow attacks in the most efficient way, we
need to identify all and only those vulnerable points in
the program. However it cannot be done without exten-
sive source code analysis. For the current implementa-
tion we protect only C library functions. We believe that
it is useful as a stand-alone protection system and can
be easily extended with compile time analysis to remove
bounds checking on “known-safe” function calls.

Our data structure for describing buffers is similar to the
type table in the Process Introspection Library [9], which
describes data types of savable memory blocks in order
to checkpoint and restart processes in a distributed, het-
erogeneous environment. The Process Introspection Li-
brary also deduces the type of a heap allocated memory
block, a capability that we currently lack, but which can
be similarly added.

5 Implementation

We implemented a prototype by extending the GNU C
compiler on Linux. We augment each object file with
type information of automatic and static buffers, leaving
the source code intact. Specifically, we intercept the out-
put of the gcc preprocessor and append to it a data struc-
ture describing the type information. The augmented file
is then piped into the next stage to complete the compi-
lation.

The type information of buffers are read by precompil-
ing the (preprocessed) source file with debugging op-
tion turned on, and parsing the resulting stabs debug-
ging statements. From the stabs debugging statements
we generate a type table, a data structure that associates
the address of each function with the information of the
function’s automatic buffers (their sizes and offsets to



the stack frame). The type table also contains the ad-
dresses of static buffers declared in the source file and
their sizes. This way, each object file carries informa-
tion of its automatic / static buffers independently. The
type table is kept under a static variable so objects can
be linked without any conflict. To make those type tables
visible at run time, each object file is also given a con-
structor function3. The constructor function associates
its type table with a global symbol. This process is illus-
trated in Figure 2.

Our implementation is transparent in the sense that
source files are unmodified, and programs are compiled
normally using the supplied makefile in the source dis-
tribution. It is also highly portable because the augmen-
tation is done in the source level. Because type tables in
the object files are assembled at run time, objects can be
linked both statically and dynamically.

The range checking is done by a function in a shared
library. The range checking function accepts a pointer
to the buffer as the parameter, and finds the size of the
buffer according to the following algorithm (for an auto-
matic buffer; locating a static buffer is straightforward).
Figure 3 illustrates this.

1. Locate the stack frame of the buffer by chasing
down the saved frame pointer,

2. Retrieve the return address of the next stack frame
to find out who allocated the stack frame,

3. Locate the function who allocated the stack frame
by comparing the return address with function ad-
dresses in the type table,

4. Locate the buffer of the function by comparing the
buffer address with offsets in the table + frame
pointer value,

5. The size of the buffer (or the size of a field if it is a
struct variable) is returned

The shared library also maintains a table of currently al-
located heap buffers by intercepting malloc(), realloc()
and free() functions (a feature of the dynamic memory
allocator in GNU C library). For the heap buffers, the
size of the referenced buffer is determined as the size
of the allocated memory block. Without type informa-
tion it is currently unable to determine the exact size,
which may be significant as evident in Figure 1. We im-
plemented a shared library that is preloaded to intercept

3This is a gcc feature; constructor functions run before main()
does.

vulnerable copy functions in C library to perform range
checking.

6 Limitations

There are two cases in which we cannot determine the
size of automatic buffers; stack buffers dynamically al-
located with alloca(), and variable-length automatic ar-
rays (a GNU C compiler extension). They are limitations
inherent in our solution.

The current implementation is also unable to determine
the type of function scope static variables since they are
not visible outside the declared function. For the same
reason, we cannot protect buffers declared in a function
scope functions (nested functions, another GNU C com-
piler extension). Although those symbols are not visible
in the source file, they are visible in the compiled file.
Thus, this problem is not inherent in our solution. In or-
der to fix the problem, we need to express the type table
in assembly language and append it to the compiled file.
The current prototype is done at the source level, aug-
menting the type table written in C at the (preprocessed)
source file.

7 Experiments

To estimate the run time overhead incurred by the range
checking for each C library function, we ran a small pro-
gram that calls each C library function in a tight loop
(loop count is 100,000,000).

The range checking (done in C library wrapper func-
tions) involves the following steps.

1. Intercept a C library function

2. Retrieve the buffer size by type table lookup

3. Compare the buffer size with the source string
length

4. Call the C library function

The overhead is thus mostly attributed to 1) the time
taken for type table lookup (in order to find the size of
the buffer), and 2) the time taken for calling strlen()
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Figure 2: Compilation process, the executable file and the process

main(int argc, char **argv)
{
   char buf[32];
   func(buf, argv[1]);
}

func(char *dst, char *src)
{
   strcpy(dst, src);
}

buf[32]

...

src (argv[1])

...

buf

frame pointer of main

frame pointer of func

frame pointer of strcpy
frame ptr of func

ret addr (addr in func)

dst (buf)

frame ptr of main

ret addr (addr in main)

buf

argv[1]

argc

argv

Figure 3: The stack frame of the buffer is found by comparing the address of the referenced buffer and saved frame
pointers in the stack (address of the buf should be less than its frame pointer since it is a local variable). The first
frame (in dashed box) is the frame for the buffer. The return address of the next frame is used to locate the entry in
the type table (address of main), which is used subsequently to find the size of the buffer. It is assumed that the stack
grows down, and the address of the buffer is that of its least significant byte (little endian architecture).
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Figure 5: Macro test with enscript, tar and java. Enscript printed a text file of size 100Mbytes (to /dev/null). Tar
zipped the linux kernel source directory twice. Java ran antlr to parse the GNU C grammar. The run time is the
average of ten runs.



(in order to check whether the buffer size is enough)
if needed. According to these two criteria, the C li-
brary wrapper functions are roughly partitioned into
three classes; 1) functions such as strcpy() require the
call to strlen() in addition to type table lookup, 2) func-
tions such as memcpy() needs only type table lookup,
and 3) functions such as strncpy() may or may not re-
quire strlen() depending on whether the buffer size is
greater or equal to the size parameter or not.

Each function was tested 8 times with varying string
length (8, 16, 32, 64, 128, 256, 512 and 1024). Our
test were performed on a pc with AMD Duron 700MHz
running Redhat Linux 6.2. Figure 4 shows the result.

The table lookup is done by binary search, so the over-
head incurred by the table lookup will increase logarith-
mically as the number of functions and variables in the
executable file increases. In sum, the micro test shows
the worst case scenario and we expect better perfor-
mance in real programs (which will, after all, do some
useful work besides just calling C-library string func-
tions). Figure 5 is the result of testing three programs
(enscript 1.6.1, tar 1.13 and java 1.3.0), and shows the
increase in size of executable files due to the augmented
type table, the number of calls to C library functions
that those program made during the test run, and the run
time. Overhead in the macro test is in the range of 4-5%
for substantial runtimes, with the short java test showing
a 20% overhead (note that the absolute runtime overhead
is minimal).

8 Conclusions and future work

Although many solutions have been proposed, buffer
overflow vulnerabilities remain a serious security threat.
Pure static analysis techniques can identify the vulnera-
ble points in a program before the program is deployed,
but cannot eliminate all vulnerabilities. We proposed a
run-time buffer overflow detection mechanism that is ef-
ficient, portable, and compatible enough with existing
programs to be practical. The value of our work is that
it can catch some of the attacks that other run-time solu-
tions cannot. We believe that our work is not only useful
as a stand-alone protection system but also can be com-
plementary to other solutions. We plan to extend our
work to include static analysis technique in order to be
able to selectively perform the range checking.
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