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Abstract

Most geneal-purpcse processos provide suppat for
memorypages of large sizes,called supepages Su-
perpagesenable eat entryin the translationlookaside
buffer (TLB)to mapa large physicalmemoryregioninto
a virtual addressspace This dramdically increases
TLB coverage, reducesTLB misses,and promisesper
formanceimprovementsfor many applicaions. How-
ever, supportingsuperpaesposesseveral challergesto
the opefating system,n termsof superpge allocation
and promotiontradedfs, fragmertation cortrol, etc. We
analyze theseissues,and proposethe designof an ef-
fectivesuperp@e managementsystem.\\e implemenit
in FreeBSDon the Alpha CPU, and evaluae it on real
workloadsand bendmarks. We obtan substantia per-
formanceberefits, often exceeding30%; thesebenefits
are sustainedevenunderstressfulworkloadscenarios.

1 Intr oduction

Modemn generalpurpse processors provide virtual
memoy suppot, using pagetablesfor addresdransla-
tion. Most processorscachevirtual-to-physical-addres
mappngs from the pagetablesin a translationlooka-
side buffer (TLB) [10]. TLB coverage is definedasthe
amount of memay accessibléhroud thesecachednap-
pings, i.e., without incurring missesin the TLB. Over
the lastdecade TLB coveragehasincreasedat a muc
lower pacethan main memay size. For mostgeneal-
purposeprocessorsoday TLB coverageis a megabyte
orlessthusrepresentingaverysmallfractionof physical
memoy. Applicationswith largerworking setscanincur
mary TLB missesandsuffer from a significant perfa-
mancepenalty To alleviate this problem, mostmoden
geneal-purpseCPUsprovide suppot for superpaes
A superpage is a memay pageof largersizethanan
ordinary page(herceforthcalleda basepage). They are
usually available in multiple sizes,often up to several
megabytes. Eachsuperageoccupiesonly oneentryin

the TLB, sothe TLB coverage dramaticallyincreases
to cover the working setof mostapgications. This re-
sultsin performane improvemerts of over 30%in mary
casesaswe demastratein Section6.2. Recentesearch
findingsontheTLB perfamanceof modcernapplicatios
statethat TLB missesarebecomimy increasinty perfa-
mancecritical [9].

However, inappopriate use of large superpags can
resultin enlaged application footprints, leadingto in-
creasedphysical memay requrementsand higher pag-
ing traffic. Thesel/O costscaneasilyoutweidh ary per
formanceadwentagesobtaired by avoiding TLB misses.
Therebre the operating systemneedsto usea mixture
of page sizes. The useof multiple pag sizesleadsto
the prablem of physicalmemoy fragmentationandde-
creaseduture opportunitiesfor usinglarge superpags.
To ensuresustainederfamance the opaating system
needsto cortrol fragmentation,without penalizirg sys-
tem perfamance The prodem of effectively manajing
superpgesthusbecoms a comgex, multi-dimensional
optimization task. Most gener&purposeoperatimy sys-
temseitherdo not supprt superagesat all, or provide
limited suppat [6, 19, 2Q].

This paperdevdops a geneal andtranspagent super
pagemang@gementsystem.It balancesarious tradedfs
while allocatingsuperpags, so asto achiere high and
sustainegerformarcefor realworkloadsandnegligible
degradationin pathdogical situations. Whena process
allocatesnemory our systemreseresa larger contigu
ous region of physical memay in anticipationof sub-
sequentllocatiors. Superpgesarethencreatedn in-
creasingsizesas the process touchespagesin this re-
gion. If thesystemlaterrunsout of contiguousphysical
memoy, it may preemp portions of unusedcontiguous
regionsfrom the processego which they wereoriginally
assigned.If theseregions are exhaisted, thenthe sys-
temrestorescontiguity by biasingthe pagereplacemat
schemeo evict contiguaisinactive pages. This system
is implemrentedin FreeBSDon the Alpha architectue,
andis evaluatedon realapplicatiors andberchmarls. It



is shavn to yield substantiabenefitswhen memay is
plentifu andfragmentationis low. Furthemore,it sus-
tainsthesebenefitooverthelongterm, by contrdling the
fragmentationarisingfrom compex workloadscenarios.

The contrikutions of this work are four-fold. It ex-
tendsa previously proposedresenation-basedappioach
to work with multiple, potentially very large superpag
sizes,anddemastrateghe benefitsof doingso; it is, to
our knowledge, thefirst to investigae the effect of frag-
mentatioron superges;t proposesanavel contiguity-
aware pagereplacenment algorithmto contrd fragmen-
tation; andit tacklesissuesthat have to datebeenover-
lookedbut arerequiral to make asolutionpractical,such
assuperpgedemotia andeviction of dirty superpages.

Section2 motivates the prablem and establishests
constraits andcompleities. Section3 examineshere-
latedwork on superpags. Section4 and5 describeour
designandimplenentation,and Section6 presentghe
resultsof anexperimentalevaluation. Finally, Section7
concludes.

2 The supempageproblem

This sectiondiscusseshe motivation hardvare con-
straints,ssuesandtradeofsin operatimg systemsuppat
for supepages.

2.1 Motivation

Main memay hasgrown exponentially in size over at
leastthe last decadeand, as causeor consequece, the
memoy requiementsof applicatioxs have proportion
ally increased2Q]. In contrastTLB coveragehaslaggel
behird. TheTLB is usuallyfully associatie andits ac-
cesstime must be kept low, sinceit is in the critical
path of evety memay accesq13]. Hence, TLB size
hasremaired relatively small, usually 128 or fewer en-
tries, correspondig to a megabyte or lessof TLB cov-
erage.Figurel depictsthe TLB coverageachieved asa
percemage of main memorysize, for a numter of Sun
andSGlworkstationmodelsavailablebetweerl 986and
2001 Relatve TLB coverageis seento be decreasig
by roughly a factor of 100 over ten years. As a con-
sequene, mary mocernapplicatiors have working sets
larger thanthe TLB coverage. Section6.3 shaws that
for mary real applicatiors, TLB missesdegradeperfa-
manceby asmuchas30%to 60%,contrastingo the4%
to 5%repatedin the1980s][2, 24] orthe5%to 10%re-
portedin the1990s[17, 23]. Anothertrendthathascon-
tributedto this perfaomancedegradationis thatmachines
are now usually shippedwith on-loard, physically ad-
dresseatacheghatarelargerthanthe TLB coverage As
aresult,mary TLB missegequireaccesso thememoy

banis to find a translationfor datathatis alread in the
cachemakingmissegelatively moreexpensve.
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Figure 1: TLB coverage as percentage of main memory for
workstations, 1986-2001 (data collected from various websites).
(A) Sun 3/50; (B) Sun 3/180; (C) Sun 3/280; (D) Personal Iris;
(E) SPARCstation-5; (F) Iris Indigo; (G) SPARCstation-10; (H)
Indy; (1) Indigo2; (J) SPARCstation-20; (K) Ultra-1; (L) Ultra-2;
(M) O2; (N) Ultra-5; (O) Ultra-10; (P) Ultra-60; (Q) Ultra-450;
(R) Octane2.

We therdore seeka methodof increasinglLB cover-
agewithout propationally enlaging the TLB size. One
optionis to alwaysusebasepagesof a larger size, say
64KB or 4MB. However, this apgoachwould causen-
creasednternal fragmentationdueto partly usedpages,
andtherefae induce prematue onsetof memoy pres-
sure[22]. Also, thel/O demandsbecane higher dueto
increasegbaginggranuarity.

In contrastthe useof multiple pagesizesenaltes an
increasein TLB coveragewhile keepinginternal frag-
mentationanddisk traffic low. Thistechnige, however,
imposesseveral challerges upa the operding system
designerwhich arediscussedn therestof this section.

2.2 Hardware-imposedconstraints

Thedesignof TLB hardware in mostprocess@imposes
a seriesof constrainton supepages.Firstly, the super
pagesize mustbe amonga setof page sizessupprted
by the proessor For example the Alpha processorpro-
vides8KB basepagesand64KB, 51KB and4MB su-
perpaes;the i386 processofamily supprts 4KB and
4MB pagesandthe new Itanium CPU providestendif-
ferentpagesizesfrom 4KB to 256 MVB.

Secondy, asuperpagis requred to be contigwousin
physical andvirtual addessspace. Thirdly, its starting
address in the physical and virtual addres spacemust
beamultiple of its size;for exampge, a 64KB superpag
mustbealignedon a 64KB addressboundary

Finally, the TLB entryfor a supergeprovidesonly
a singlerefererte bit, dirty bit, andsetof pratectionat-



tributes.Thelatterimpliesthatall basepageghatforma
superpgemusthave thesamepratectionattributes(read
write, execute) Also, dueto thecoarsegranuarity of ref-
erenceanddirty bits, the operatiry systemcandetermire
whethersomepartof thesuperpaghasbeenaccessedr
written to, but cannotdistingush betweerbasepagesn
thisregard.

2.3 Issuesand tradeoffs

The task of managng superpgescan be concgtually
broken down into a seriesof steps,eachgovernedby a
different set of tradeofs. The forthcaming analysis of
theseissuesis independentof ary particularproessor
architectue or opeatingsystem.

We assumehatthe virtual addessspaceof eachpro-
cessconsistof asetof virtual memay objects.A mem-
ory objed occupiesa contiguousregion of the virtual
address spaceand contairs applicatim-specificdata,as
shavnin Figure2. Exampesof memoy objedsinclude
memoy mappedfiles, andthecode data,stackandheap
segmerts of processes.Physical memay for theseob-
jectsis allocatedas and when their pagesare first ac-
cessed.

Allocation: Whena pagein a memay objectis first
touched by the applicdion, the OS allocatesa physical
pageframe, and mapsit into the applicaion’s address
spaceln prindple, ary availablepage framecanbeused
for this pumpose,just asin a systemwithout superpag
suppot. However, shouldthe OS later wish to create
a superpge for the object,alreadyallocatedpage may
requie relocation(i.e., physical copying) to satisfythe
contiguty andalignmen constraintof superages.The
copying costsassociatealith this relocationbasedallo-
cationapprachcanbedifficult to recover, especiallyon
abusysystem.

An alternatve is reservation-Bsedallocation. Here,
the OS tries to allocatea pageframe thatis part of an
available,contigwousrange of pageframesequal in size
and alignmen to the maximal desiredsuperpge size,
andtentatvely reseres the entiresetfor useby the pro-
cess.Subseqantly, whenthe processfirst touchesother
pageghatfall within thebourdsof aresenation, thecor
respomling basepageframesareallocatedandmapped
Shouldthe OSlaterdecideto createa supepagefor this
object,theallocatedhageframesalreadysatisfythe con-
tiguity andalignmernt constraits. Figure?2 depictsthis
apprach.

Reserationbased allocation requires the a priori
choiceof asuperpgesizeto resene, without foreknowl-
edgeof memay accesse® neighlouring pagesTheOS
may optimistically chosethe desiredsupermgesizeas
the largestsuppated sizethatis smalleror equal to the

sizeof thememay object,but it mayalsobiasthis deci-
sionon the availability of contiguousphysical memay.
The OS musttradeoff the perfomancegainsof usinga
large superpgeagainstthe option of retainirg the con-
tiguous regionfor later, possiblymore critical use.

Object
mapping /mapped pages
Virtual
address ‘ t] ] >
space 7 1
- ~ superpage
- ==>= alignment
Physical i 0 boundary
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allocated unused --reservation
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Figure 2: Reservation-based allocation.

Fragmentation control:  Whencontigiousmemoy is
plentifu, the OS succeedsn using superpgesof the
desiredsizes,and achie/es the maximum perfomance
dueto superpges.In practice resenaion-basedlloca-
tion, useof different pagesizesandfile cacheaccesses
have the combired effect of rapidy fragmenting avail-
able physical memory To sustainthe benefitsof super
pagestheOSmayproadively releaseontigwouschurks
of inactive memoryfrom previousallocationsatthe pos-
sible experse of having to perfam disk I/O later The
OSmayalsopreenpt anexisting, partially usedresena
tion, given the possibility thatthe reserationmay never
becone a supepage. The OS musttherebre treatcon-
tiguity asa potertially cortendedresourceandtradeoff
the impact of variows contiglty restorationtechniaies
agairstthe bendits of usinglarge supepages.

Promation: Once a certain numbe& of base pages
within apoterial superpge have beenallocatedassum-
ing thatthe setof page satisfythe aforementiord con-
straintson size,contiglity, alignmentandprotectia, the
OS maydecideto promotetheminto a supepage. This
usuallyinvolves updatingthe pagetableentriesfor each
of the constituentbasepagesof the supepageto reflect
the new superpgesize. Oncethe supepagehasbeen
createdasingleTLB entrystoringthetranslatiorfor ary
address within the superpag suficesto mapthe entire
superpge.

Promdion can also be perfamed incremetally.
When a certainnumler of basepageshave beenallo-
catedin acontiguous,alignedsubsebf aresenation, the
OSmaydecick to pronotethe subseinto a smallsuper
page.Thesesuperggesmay be progessvely promoted



to large superpags,up to the size of the original reser
vation

In choosingwhen to promde a partially allocated
resenation, the OS musttradeoff the bendits of early
pronotion in termsof rediced TLB missesaganst the
increasednemoryconsunptionthatresultsf notall con-
stituentpagesof the superpgeareused.

Demotion: Superpage demotion is the process of

markirng pagetable entriesto reducethe size of a su-
perpae, eitherto basepagesor to smallersuperpags.
Demotionis appopriate when a processis no longer

actively usingall pottions of a superpge,and memoy

pressurealls for the eviction of the unusedbasepages.
Oneprdblemis thatthe hardwareonly maintainsa single
referercebit for thesuperpag, makirg it difficult for the

Osto efficiently detectwhich portionsof asuperjageare
actively used.

Eviction: Evictionof supepagess similarto theevic-
tion of basepages. When memay pressuredemauals
it, aninactive superpgemay be evicted from physical
memoy, causingall of its constituentasepageframes
to becomeavailable. When an evicted pageis later
faultedin, memoy is allocatedanda superpgemay be
createdn thesameway asdescriledearlier

One complication ariseswhen a dirty super@ge is
pagedout. Sincethe hardvare maintainsonly a single
dirty bit, the superpge mayhave to beflushedoutin its
entirety eventhowgh someof its constitueh basepages
maybeclean.

Managirg super@agesthusinvolves a compgex set of
tradedfs; otherresearchrshave alsoalluded to someof
thesdssueq12, 13]. Thenext sectiondescribeprevious
apprachego the prodem, andSection4 describediow
our designeffectively tacklesall theseissues.

3 Relatedapproaches

Many operding systemsusesuperpgesfor kerrel sey-
mentsand frame buffers. This sectiondiscussesxist-
ing supepagesolutiors for applicaion memory which
is thefocusof this work. Theseappoachesanbeclas-
sified by how they managethe contiguity required for
super@ges: resenation-basedschemedry to presere
contiguty; relocationbasedapgoachescreatecontigu
ity; andhardvare-basetheclanismseduceor eliminate
thecontiguty requrementfor superpges.

3.1 Resewations

Reserationbasedschemesnake superjage-avare allo-
cationdecisionsat pagefault time. On eachallocation
they usesomepolicy to decidethe preferredsize of the
allocationandattemptto find a contigwousregion of free
physicalmemoy of thatsize.

Talluri andHill proposea resenationbasedscheme,
in which aregionis resenedat page-faulttime andpro-
motedwhenthe numter of framesin usereaches pro-
motionthreshdd. Undermemay pressureresenations
canbe preemptedto regain free space[20]. The main
goal of Talluri and Hill’ s designis to provide a sim-
ple, best-efort mechanisntailoredto the useof partial-
subblak TLBs, which aredescribedn Section3.3.

In contrast,super@gesin both the HP-UX [19] and
IRIX [6] operting systemsareeagerlycreatedat page-
faulttime. Whena pageis faultedin, the systemmayal-
locateseveral contiguais framesto faultin surraindirg
pagesandimmedately promde theminto a supepage,
regadlessof whether the surrainding pagesare likely
to be accessed.Although pages are never actually re-
sened this eagempromotion mectanismis equialentto
aresenationbasedpprachwith apromotionthreshdd
of oneframe.

In IRIX andHP-UX, the prefered superpgesizeis
basedon memoy availability at allocatian time, andon
a userspedfied persggment pagesize hint. This hint
is associatedvith an application binarys text and data
sgmeris; IRIX also allows the hint to be specifiedat
runtime.

The maindrawback of IRIX andHP-UX's eagerpro-
motion is thatit is not transparet. It requies expei-
mentationto deternine the optimumsuperpag sizefor
the various segmerts of a givenapplication A subopi-
malsettingwill resultin lowerperformarce,dueto either
insufficient TLB coverageif superpagsaretoosmall,or
unneessarypagirg andpage popuation costsif super
pagesaretoolarge.

3.2 Pagerelocation

Relocationbasedschemesreatesuperggesby physi-
cally copying allocatedpageframes to contiguousre-
gionswhenthey determire thatsuperpgesarelikely to
be beneficial. Relocation-lsedappoachescan be en-
tirely and trans@rently implemerned in the hardware-
depermlentlayer of the opeating system,but they need
to relocatemostof the allocatedbasepagesof a super
pageprior to pronmotion, even whenthereare plenty of
contigwusavailableregions.

Romeretal. proppseacompetitive algoithm thatuses
online cost-bentt analysisto determire whenthe ben-
efits of superpgesoutweidh the overheadof superpag



pronotionthroughrelocdion[16]. Theirdesignrequres

a software-maagedTLB, sinceit associatesvith each
potertial super@ge a counterthat must be updated by

the TLB misshander. In the absene of memay con-

tention, this apprach hasa strictly lower perfomance
thana resenation-basedappioach,becase, in additin

to the relocdion costs,(1) thereare more TLB misses,
sincerelocation is perfomedasa reactionto an exces-
sive numter of TLB misses,and (2) TLB missesare
moreexpersive — by afactorof four or more,accoding

to Romeretal. — dueto amorecomplex TLB misshan-
dler. On the otherhand,a relocationapprachis more
robustto fragmentation.

Resenrations and page relocation can comgement
eachotherin a hybrid appoach. One way would be
to userelocation wherever resenations fail to provide
enough contiglity and a large numter of TLB misses
is obsered. Alternatively, page relocationcanbe per
formedasabackgoundtaskto do off-line memorycom-
paction The god is to memge fragnentedchurks and
gradwally restorecontiguity in thesystem.TheIRIX co-
alescingdaema does this andis describedn [6], but no
evaluatian is preseted.

3.3 Hardware support

The contiguity requiementfor superpags can be re-
ducedor eliminatedby meansof additional hardware
suppat.

Talluri and Hill study different TLB organizatias.
They adwocatepartial-sibblok TLBs, which essentially
contain superage TLB entriesthat allow “holes” for
missingbasepages.They claim thatwith this appioach
most of the benefitsfrom supepagescan be obtainel
with minimal modificatiors to theopertingsysten{20].
Partial-suliblock TLBs yield only modeatelylargerTLB
coveragethanthebasesystemandit is not clearhow to
extendthe partial-sublbck TLBs to multiple superpag
sizes.

Fangetal. describea hardvare-basedhechaism that
comgetely eliminatesthe contigtity requrementof su-
perpaes. They introduce an additioral level of address
translationin the memay contrdler, sothatthe opeat-
ing systencanpromotenonadjacenphysicalpagesnto
asuperpag. This greatlysimplifiesthetaskof the oper
atingsystentor suppeting supepaged3].

To the bestof ourknowledge, neitherpartial-sublock
TLBs nor addess-remappim memay controlles are
suppotedon commecial, generalpurpsemachires.

Our appoachgenealizes Talluri and Hill' s resena
tion mecharsm to multiple superagesizes. To regan
contiguty on fragmentedphysical memoy without re-
locating pagesijt biasesthe pagereplacemst policy to

selectthosepageshatcontritute the mostto contiguity.
It alsotacklesthe issuesof demotian andeviction (de-
scribedin Section2.3) not addessedy previous work,
anddoesnotrequirespecialhardvaresuppot.

4 Design

Ourdesignadofis theresenationbasedsuperjageman-
agemenhparadgm introdwcedin [20]. It exterdsthe ba-
sic designalongseveraldimersions,suchassuppot for
multiple superpgessizes,scalabilityto vely large supef
pages,demdion of sparselyrefersmcedsuperpges,ef-
fective preseretion of contiguty without the needfor
compaction,andefficient disk I/O for partially modfied
superpges. As shavn in Section6, this combnation
of techniqesis geneal enoudn to work efficiertly for
arangeof realisticworkloads,andis believed to be suit-
ablefor deploymentin moden operatimg systems.

A high-level sketchof the designcortainsthe follow-
ing compaments.Availablephysicalmemay is classified
into contigwous regions of different sizes,and is man-
agedusing a buddy allocator[14]. A multi-list reser
vation schemeis usedto track partially usedmemoy
resenations,andto helpin choasingresenationsfor pre-
emption asdescriledin Section4.8. A popuation map
keepstrack of memay allocatiors in eachmemoy ob-
ject, asdescribedn Section4.9. The systemusesthese
datastructurego implementallocation preemgion, pro-
motionanddemoationpolicies. Finally, it contiols exter
nal memay fragmentationby perfaming pagereplae-
mentsin acontiguity-awaremannerasdescritedin Sec-
tion 4.4. The following subsection®laboate on these
conceps.

4.1 Resewation-basedallocation

Mostopeatingsystemallocatephysicalmemay onap-
plication deman. Whena virtual memoy pageis ac-
cessedy a proglam andno mappng existsin the page
table theOS’s pagefaulthandlelis invoked. Thehander
attemptgo locatethe associateghagein main memoy;
if it is notresidentan available pageframeis allocated
andthecontens areeitherzero-filledor fetchedfrom the
pagirg device. Finally, the apprgriate mappng is en-
teredinto thepagetable.

Insteadof allocatingphysical memay oneframe ata
time, our systemdeternines a prefered super@agesize
for theregion encompassinghebasepagewhoseaccess
causedhe pagefault. The choiceof a sizeis madeac-
cordirg to a policy describedn Section4.2. At page-
faulttime, the systemobtainsfrom the buddyallocatora
setof contiguouspage framescorrespondig to the cho-
sensupergesize. The frame with the sameaddres



alignment asthefaultedpageis usedto faultin thepage,
andamappirg is enterednto the page tablefor this page
only. Theentiresetof framesis tentatively reservedor

potertial future useasa superage,andaddedo areser

vation list. In the event of a pagefault on a pagefor

which a framehasalreadybeenresened a mappng is

enterednto the pagetablefor the basepage.

4.2 Preferred supemagesizepolicy

Next, we describethe policy usedto chaosethe desired
superpgesizeduring allocation Sincethis decisionis
usuallymadeearly in a processs execution, whenit is
hardto predictits futurebehaiour, our policy looksonly
at attributesof the memay objectto which the faulting
pagebelorgs. If thechosersizeturnsoutto betoolarge,
thenthedecisionwill belateroverriddenby preenpting
theinitial reseration. However, if thechosersizeis too
small,thenthe decisioncanna be reverted withou relo-
catingpages For thatreasonthe policy tendsto choose
themaximum superpgesizethatcanbeeffectively used
in anobject.

For memoryobjectsthatarefixedin size,suchascode
segmeris andmemay-mappedfiles, thedesiredesena
tion sizeis the largest, alignedsuperpag that contains
thefaultingpage doesnot overlap with existingresene-
tions or allocatedpagesanddoesnot reachbeyondthe
endof theobject.

Dynanically sizedmemay objectssuchasstacksand
heapscan grow one pageat a time. Underthe policy
for fixed size objects,they would not be ableto usesu-
perpaes, becausesachtime the policy would set the
prefered sizeto onebasepage. Thus a slightly differ-
entpolicy is requred. As befae, the desiredsizeis the
largest, alignedsuperpgethatcontainghefaultingpage
anddoesnotoveldapwith existingresenationsor alloca-
tions. However, therestrictionthatthe resenation must
not reachbeyond the endof the objectis droppedto al-
low for growth. To avoid wastageof contiguityfor small
objectsthat may never grow large, the size of this su-
perpaeis limited to the currentsizeof the object. This
policy thususeslarge resenations only for objectsthat
have alreaq reacteda sufficiently largesize.

4.3 Preempting resenvations

When free physical memay become scarceor exces-
sively fragmented,the systemcan preenpt frames that
areresened but not yet used. Whenanallocationis re-
guestedandno extentof frameswith the desiredsizeis
available,the systemhasto choosebetween(1) refusirg
theallocationandthusreservingasmallerextert thande-
sired,or (2) preemping an existing resenationthathas

enowgh unallocatedramesto yield an extent of the de-
siredsize.

Our policy is that,whenerer possible the systempre-
emptsexisting reserationsratherthanrefusirg an allo-
cationof thedesiredsize. Whenmore thanoneresena
tion canyield an extent of the desiredsize,the resena
tion is preenptedwhosemostrecentpageallocationoc-
curredleastrecently amoryg all candidde resenations.
This policy is basedbnthe obserationthatusefulreser
vatiors areoftenpopuatedquickly, andthatresenations
thathave not expetiencedary recet allocationsareless
likely to befully allocatedn the nearfuture.

4.4 Fragmentation control

Allocating physical memay in contiguous extents of
multiple sizesleadsto fragmentationof main memay.
Over time, extentsof large sizesmay becomeincreas-
ingly scarcethus preventing the effective useof super
pages.

To contol fragmentation, our buddy allocator per
forms coalescingf availablememay regions wherever
possible. However, coalescig by itself is only effec-
tive if the systemperiodially reachs a statewhereall
or mostof main memoy is available. To contiol frag-
mentationunder persistentmemory pressue, the page
replacementdaemonis modfied to perform contiguity-
aware pagereplacemnt. Section5.1 discusseghis in
greatedetail.

4.5 Incremertal promotions

A superpge is createdas soonasary superpge-sized
and alignedextert within a reseration getsfully pop

ulated. Promdion, therdore, is incremetal: if, for in-

stancepagesof a memay objed arefaultedin sequen
tially, a promotionoccus to the smallestsuperpge size
assoonasthe populationcountcorrespondgo thatsize.
Then,whenthe populationcountreacheghe next larger
superpge size, anotherpronotion occus to the next

size,andsoon.

It is possibleto promde to thenext sizewhenthe pop
ulationcowntreachsacertainfractionof thatsize. How-
ever, befae perfoming the pronotion the systemneeds
to popuate the entireregion, which couldartificially in-
flate the memoy footprint of applicatins. We promde
only regionsthatarefully popuatedby the application
sincewe obsenre that mostapplicatiors populate their
addresspacalenselyandrelatively earlyin theirexecu
tion.



4.6 Specuative demotions

Demotionoccursas a side-efed of pagereplacement.
Whenthe pagedaemonselectsa basepagefor eviction
thatis partof a superpag, the eviction causesa demeo
tion of thatsuperpge. This demotim is alsoincremen
tal, sinceit is notnecessaryo demde alarge superpag
all the way to basepagesjust becauseone of its con-
stituentbasepagess evicted. Instead the superpgeis
first demdedto the next smallersuperpagesize,thenthe
processis appliedrecusively for the smallersuperpag
thatencanpasseshe victim page, andso on. Demotian
is alsonecessarywheneer the protectian attributesare
chang@don partof asuperage.Thisis requiedbecause
thehardwareprovidesonly a singlesetof protectionbits
for eachsuperpag.

Thesystenmayalsoperiodicdly demoteactive super
pagesspeculativly in orde to determingf thesuperpag
is still beirg actively usedin its entirety Recallthatthe
hardwareonly providesa singlerefeencebit with each
superpge. Therdore, the operatimg systemhasno way
to distingush a super@agein which all the constituat
basepagesarebeingaccessedrom onein whichonly a
subsebfthebasegpagesare.In thelattercasejt wouldbe
desirableto demotethe superpag undermemoy pres-
sure,suchthatthe unusedbasepage canbe discovered
andevicted

To addresghis prodem, whenthe pagedaemonre-
setsthe refeencebit of a superpges basepage,andif
thereis memay pressurethenit recusively demdesthe
superpgethatcontainghe choserbasepage with acer
tain probability p. In our currentimplementation,p is 1.
Increnentalrepranotiors occurwhenall thebasepages
of adenvotedsuperpgesarebeingrefererced.

4.7 Pagingout dirty supempages

Whena dirty superpgeneed to be written to disk, the
operding systemdoes not possesslirty bit information
for individual basepages.It musttherebre considerall
the constituenbasepagedirty, andwrite outthe super
pagein its entirety even thowgh only a few of its base
pagesmay have actuallybeenmodified For large, par
tially dirty supepagesthe performane degradationdue
to this superfluais1/O cancorsiderablyexceedary ben-
efitsfrom superpges.

To prevent this problem,we denote cleansuperpges
wheneer a process attemptsto write into them,andre-
pronotelaterif all thebasepagesaredirtied. Thischoice
is evaluatedn Section6.7.

Inferring dirty basepagesusing hashdigests: Asan
alternatie, we consicred a technigie that retainsthe
benefitof superpgesevenwhenthey arepartially dirty,

while avoiding superfluais I/0. When a cleanmemoy
pageis readfrom disk, a cryptogaphichashdigestof its
conterntsis conmputedandrecorced. If apartiallydirty set
of basegpageds promotedto asuper@ge orif acleansu-
perp@ebecanesdirty, thenall its constituehbasepages
areconsideeddirty. However, whenthe pageis flushed
out, the hashof eachbasepageis recomputedandcom-
paredto determire if it wasactuallymodifiedandmust
bewrittento disk.

A 160hit SHA-1 hash has a collision probability
of aboutonein 289 [4], which is mud smaller than
the prokability of a hardvare failure. Hencethis tech-
niquecanbe consideed safe.However, preliminary mi-
crobenxchmaksusingSHA-1revealsignificart ovethead,
upto 15%,ondisk-intersive appications. Thepathdog-
ical caseof alargesequentiateadwhenthe CPUis satu-
ratedincursaworst-casealegradationof 60%. Therebre,
we did not usethistechniqe in ourimplenmentation.

However, theseoverheadscanbe reducel usinga va-
riety of optimizations. First, the hashcomputationcan
be postpomd until thereis a partially dirty superpge,
so that fully-clean or fully-dirty superpgesandunpro-
motedbasepagsneednot be hashedSecondthe hash-
ing costcanbe eliminatedfrom the critical pathby per
forming it entirely from the idle loop, sincethe CPU
may frequently beidle for disk-intensive workloads. An
evaluatian of theseoptimizationsis the subjectof future
work.

4.8 Multi-list resewation scheme

Resenration lists keeptrack of resered pageframe ex-
tentsthatarenot fully populated. There is oneresene
tion list for eachpagesize suppated by the hardware,
excep for the largest supepagesize. Eachresenation
appeas in thelist correspadingto thesizeof thelargest
free extentthatcanbe obtairedif theresenation is pre-
empted Becausea resenation hasat leastone of its
framesallocated the largestextentsit canyield if pre-
emptedareonepagesizesmallerthanits own size. For
instancepn animplemetation for the Alpha processaqr
whichsuppats 4MB, 51KB, 64KB and8KB pagesthe
64KB resenation list may containresenations of size
512KB and4MB.

Resenrationsin eachlist are kept sortedby the time
of their mostrecentpageframeallocations. Whenthe
systendecideto preamptaresenation of agivensize,it
chosesthereserationattheheadof thelist for thatsize.
This satisfiesour policy of preemping the extentwhose
mostrecentallocationoccured leastrecenly amang all
resenationsin thatlist.

Preemptig a chosenresenation occus as follows.
Ratherthanbrealing the resenation into basepagesit
is broken to smallerexterts. Unpopulated exterts are



transferedto thebuddy allocatorandpartially populated
onesarereinsertednto the apprgriatelists. For exam

ple, when preenpting a 51KB resenation taken from

headof the64KB list, theresenation is brokeninto eight
64KB extents.Theoneswith noallocationsarefreedand
the onesthat are partially populatedare insertedat the
headof the8KB resenation list. Fully populatedextents
arenotreinsertednto theresenationlists.

When the systemneed a contigwous region of free
memoy, it canobtainit from the buddy allocatoror by
preenpting a resenation. The meclanismis bestde-
scribedwith anexanmple. Still in thecontext of theAlpha
CPU, suppaethatan application faultsin a given page
for which thereis no resened frame. Furtherassume
thatthe prefered supepagesizefor the faulting pageis
64KB. Thenthe systenfirst asksthe buddyallocatorfor
a 64KB extent. If thatfails, it preamptsthe first reser
vationin the 64KB resenation list, which shoud yield
atleastone64KB extent. If the 64KB list is empty the
systemwill try the 512KB list. If thatlist is alsoempty
thenthe systemhasto resortto basepages:the buddy
allocatoris tried first, andthenthe 8KB resenation list
asthelastresource

4.9 Population map

Populatim maps keep track of allocatedbase pages
within eachmemaoryobject. They senefour distinctpur-
posesi(1) on eachpagefault,they enablethe OSto map
the virtual addresdo a page framethat may alreadybe
resened for this address)(2) while allocatingcontigu
ousregions in physical addessspace they enatbe the
OSto detectandavoid overlappirg regions; (3) they as-
sistin makingpagepronmotion decisions;and(4) while
preenpting a resenation, they helpin identifying unal-
locatedregions.

A popuation mapneedgo supprt efficient lookups,
sinceit is queied oneverypagefault. We usearadixtree
in which eachlevel correspondgo a pagesize. Theroot
correspndsto the maximum supepagesize supprted
by the hardvare, eachsubsequenlevel correspond to
the next smaller superpge size, and the leaves corre-
spondto the basepages.f thevirtual pagesepresente
by anodehave areseredextert of frames,thenthenode
hasa pointerto thereserationandtheresenation hasa
backpointerto thenode

Eachnonleaf noce keepsa countof the nunber of
superge-sizedvirtual regions at the next lower level
that have a population of at leastone (the sonmepop
courter), and that are fully populated (the f ul | pop
courter), respectrely. This court rangesfrom 0 through
R, whereR is theratio betweenconsecutie superpag
sizes(8 on the Alpha processor). Thetreeis lazily up-
datedasthe objects page are populated. The absence

of a child nodeis equivalentto having a child with both
courters zero. Sincecourtersreferto superpge-sized
regions, upward propagationof the countes occursonly
whensonepop transitiors between0 and 1, or when
ful | pop transitionsbetweenk — 1 and R. Figure3
shovsonesuchtree.
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Figure 3: A population map. At the base page level, the actual
allocation of pages is shown.

A hashtableis usedto locatepopuation maps. For
each populdion map, thereis an entry associatinga
memoryobject, page_index tuple with the map, where
page.index is the offset of the startingpageof the map
within theobject. Thepopuation mapis usedasfollows:

Resewred frame lookup: On a pagefault, the virtual
addresof thefaulting pageis rounded down to a multi-
ple of thelargestpagesize,corvertedto the correspad-
ing memoryobject,page_index tuple, andhashedo de-
terminethe root of the population map. Fromtheroot,
thetreeis traversedo locatetheresered page frame if
thereis one.

Overlap avoidance: If the above procedureyields no
resened frame, thenwe attemptto make a resenation
The maxmum size that doesnot ovedap with previous
resenations or allocationsis given by the first noce in
thepathfrom therootwhosesonepop counte is zero.

Promation decisions: After a pagefault is serviced
a pronotion is attemptedat the first node on the path
from theroat to the faulting pagethatis fully populated
and has an associatedesenation The pronotion at-
temptsucceedonly if thefaultingprocesshasthe pages
mappedwith uniform protection attributesanddirty bits.

Preemptin assistance: When a resenration is pre-
emptedit is broken into smallerchurks that needto be
freedor reinsertedn the resenationlists, depenéhg on
their allocationstatus,as descrited in Section4.8. The
allocationstatuscorrespondgo the popuation cowntsin
thesuperpge mapnodeto whichthereserationrefers.



5 Implementation notes

This sectiondescribe someimplemenation specificis-
suesof our design.While the discussiorof our solution
is necessarilyDS-specifictheissuesaregeneal.

5.1 Contiguity-aware pagedaemon

FreeBSDs pagedaema keepsthreelists of pagesgach
in appoximateLRU (A-LRU) order:active,inactiveand
cache. Pagesin the cachelist are cleanandunmayped
and hencecan be easily freed under memay pressue.
Inactive pagesarethosemapyped into the addresspace
of someproess,andhave notbeenrefeirencedor along
time. Active pagesare thosethat have beenaccessed
recently but may or may not have their reference bit
set. Under memoy pressue, the daenon moves clean
inactive pagesto the cache, pagesout dirty inactive
pages,and also deactvates some unrderencedpages
from the active list. We madethe following chargesto
factor contiguity restorationinto the pagereplacemast

policy.

(1) We corsidercachepagesasavailablefor reserations.
The buddy allocata keepsthemcoalescedvith the free
pagesijncreasinghe available contiguity of the system.
Thesecoalescedegions areplacedat thetail of theirre-
spectve lists, so that subsequat allocatiors tendto re-
spectthe A-LRU order.

The conterts of a cachepageareretainedaslong as
possiblewhethe it is in abuddy list or in aresenation
If a cachepageis referered, thenit is removed from
the buddy list or the reseration; in the latter case,the
resenation is preenpted. The cachepageis reactvated
andits contens arereused.

(2) The pagedaema is activatednot only on memoy

pressurebut alsowhenavailablecortiguity falls low. In

our implemantation, the criterion for low contiguity is

thefailureto allocatea contigwusregion of thepreferred
size. Thegoalof thedaema is to restorethe contiglty

that would have beennecessaryo servicethe reqiests
that failed sincethe last time the daema was woken

Thedaema thentraversegheinactive list andmoves to

thecacheonly thosepageghatcontrituteto this goal. If

it reachesheendof thelist befaefulfilling its goal,then
it goesto sleepagan.

(3) Sincethe chanceof restoringcontiglty arehigher
if therearemore inactive pagego choosdrom, all clean
pagesbacled by a file aremoved to the inactive list as
soonasthefile is closedby all proesses.This differs
from the current behaiour of FreeBSD,wherea page
doesnot chang its statuson file closing or process
termination, and actve page from closed files may

never be deactvated if thereis no memay pressue.
In termsof overall perfamance,our systemthusfinds
it worthwhile to favor the likelihood of recovering the
contiguity from thesefile-bacled pages,than to keep
them for a longer time for the chane that the file is
accessedgain.

Controlling fragmentationcomesat a price. Themore
aggresiely the systemrecovers contiguity, the greder
is thepossibilityandthe extert of a perfamanceperalty
induced by the modfied page daemam, dueto its devi-
ationfrom A-LRU. Our modfied pagedaemonaims at
balancimy this tradedf. Moreover, by judiciouwsly select-
ing pages for repla@ment,t attemptgo restoreasmuch
contiguity aspossibleby affecting asfew pagesaspossi-
ble. Section6.5demorstrateghe benefitsof this design.

5.2 Wired pageclustering

Memoly pageghatareusedby FreeBSDfor its internal
datastructuesarewired, thatis, markedasnonpageake
sincethey canna be evicted. At systemboa time these
pagesare clusteredogethe in physical memay, but as
the kerrel allocatesmemoy while other processesre
running, they tendto get scattered. Our systemwith
512MB of mainmemay is foundto rapidy reachapoint
wheremost4MB churks of physicalmemorycontainat
leastonewired page. At this point, contiglity for large
pagesbeconesirrecoverable

To avoid this fragmentation problemy we identify
pagesthat are aboutto be wired for the kernels inter-
nal use.We clusterthemin poolsof cortiguousphysical
memoy, sothatthey do notfragmentmemoy ary more
thannecessary

5.3 Multiple mappings

Two processesan mapa file into different virtual ad-
dresses.If the addressesliffer by, say onebasepage,
thenit is impossibleto build supepagesfor thatfile in
the pagetablesof both processes.At mostone of the
processescanhave alignment that matcheghe physical
address of the pagesconstitutingthe file; only this pro-
cesss capableof usingsuperpages.

Our solution to this problemleverags the fact that
applications mostoften do not specifyan addressvhen
mappng afile. This givesthekerrel theflexibility to as-
signa virtua addresdor the mappng in eachprocess.
Our systemthenchosesaddesseghat are compdible
with superageallocation.Whenmappirg afile, thesys-
tem usesa virtud addresthat alignsto the largestsu-
perpa@ethatis smallerthanthesizeof themappng, thus
retainingtheability to createsuperjagesin eachprocess.



6 Evaluation

This sectionreportsresultsof experimentsthat exercise
the systemon several classesof bencimarksand real
applicatios. We evaluate the best-caséenefitsof su-
perpaesin situationswhensystemmemoy is plentifu.
Then,we demorstratethe effectivenesof our design by
shaving how theseberefits are sustainedlespitediffer-
entkinds of stresson the system.Resultsshow the effi-
cieng/ of ourdesigrnby measuing its overheadn several
pathdogical casesandjustify the designchoicesin the
previoussectionusingappr@riatemeasurerants.

6.1 Platform

We implemerted our designin the FreeBSD-4.Xernel
as a loadatke module, alongwith hodks in the opeat-
ing systemto call modulefunctions at specific points.
Thesepoints are pagefaults, pageallocationand deal-
location the pagedaema, andat the physical layer of
the VM system(to demotewhen changimg protectios
andto keeptrack of dirty/modified bits of superpges).
We were also able to seamlesslyintegrae this modue
into thekernd. Theimplementationcomprise®f arourd
3500linesof C code.

We useda CompagXP-1000machne with thefollow-
ing charateristics:

e Alpha21264 processorat 500MHz;

o four pagesizes: 8KB basepages,64KB, 512KB
and4MB superpges;

o fully associatie TLB with 128entriesfor dataand
128for instructiors;

e software page tables, with firmware-lased TLB
loader;

e 512MB RAM;

e 64KB dataand64KB instructionL1 cachesyirtu-
ally indexed and2-way associatie;

¢ 4MB unified,directmappedxterral L2 cache.

TheAlphafirmwareimplementssuperpagsby means
of page table entry (PTE) replication The pagetable
storesan entryfor every basepage,whetter or notit is
partof a superpge. EachPTE contairs the translation
informationfor abasepage, alongwith apage sizefield.
In this PTE replication schemethe promdion of a4MB
region involvesthe settingof the pagesizefield of eath
of the 512 page table entriesthatmaptheregion [18].

6.2 Workloads

We usedthe following bencimarksand applications to
evaluateour system.

CINT2000: SPEC CPU2000 integer benctmark
suite[7].

CFP2000: SPECCPU2000floating-pint benchmark
suite[7].

Web: The thttpd web sener [15] servicing500® re-
questsselectedrom anaccesdsog of the CS depatmen-
tal web sener at Rice University. The working setsize
of thistraceis 238VIB, while its datasetis 3.6GB.
Image: 90-cegreerotatian of a800x600pixel imageus-
ing the popuar opensourcelmageévagick tools[8].
Povray: Raytracingof asimpleimage.

Linker: Link of the FreeBSDkerrel with the GNU
linker.

C4: An alphabetasearchsolver for a 12-gdy position
of the connet-4 gane, also known as the fhourstones
bencmark.

Tree: A synthetidoenchmarkthatcaptursthebehaiour
of pracesseshatusedynanic allocation for alarge num
berof smallobjects,leadingto poa locality of referene.
The bencimark consistsof four opeations perfamed
randamly on a 50000-nale redblack tree: 50% of the
operdions arelookups, 24% insertions,24% deletions,
and 2% traversals. Nodeson the tree contan a pointer
to a128byterecod. Oninsertionsa new recordis allo-
catedandinitialized; on lookups andtraversals,half of
therecordis read.

SP: Thesequentiaversionof a scalarpentadagonalun-
couged equatiam systemsolver, from the NAS Parallel
Benchmak suite[1]. Theinput sizecorrespndsto the
“workstationclass”in NAS’s nomerclature.

FFTW: The FastestFourig Trarsformin the West[5]
with a 200X200X200matrix asinput.

Matrix: A nonblocked matrix transpaition of a
100x100 matrix.

6.3 Best-casebenefis dueto supempages

This first setof expeimentsshows that severd classes
of real workloadsyield large benefitswith superages
whenfree memoryis plentifu andnonfragnmented.Ta-
ble 1 presentghesebest-casespeedupsbtaned when
the benchmarks are given the contiguous memay re-
gionsthey need sothatevery attemptto allocateregions
of thepreferredsuperpgesize(asdefinedn Sectiord.2)
succeedsandresenationsarenever preenpted.

The speedup are compued agairst the unnodified
systemusing the meanelapsedruntime of three runs
after an initial warm-uprun. For both the CINT2000
and CFP2000entries in the table, the speedps re-
flect, respectiely, theimprovementin SPECint200&nd
SPECfp200 (definedby SPECasthe geonetric mean
of thenormalizedthroughputratios).

Thetablealsopresets the supepagerequiementsof
eachof theseapplicdions (as a snapshoimeasuredht
peakmemay usage)andthe percemagedataTLB miss
redudion achievzed with superjages. In mostcaseshe



dataTLB missesarevirtually eliminatedby superpags,
asindicatedby a missredudion closeto 100%. Thecon-
tribution of instruction TLB missesto the total numter
of missesawvasfound to be negligible in all of thebench
marks.

Supempageusage Miss
Bendch- 8 64 512 4 reduc || Speed-
mark KB KB KB | MB (%) up
CINT2000 1.112
gzip 204 22 21| 42 80.00| 1.007
vpr 253 29 27 9| 99.96| 1.383
gcc 1209 1 17| 35| 70.79| 1.013
mcf 206 7 10| 46| 99.97| 1.676
crafty 147 13 2 0| 99.33|| 1.036
parser 168 5 14 8| 99.92| 1.078
eon 297 6 0 0 0.00|| 1.000
perl 340 9 17 | 34| 96.53| 1.019
gap 267 8 7| 47 | 99.49| 1.017
vortex 280 4 15| 17| 99.75| 1.112
bzip2 196 21| 30| 42| 99.90| 1.140
twolf 238 13 7 0|l 99.87| 1.032
CFP2000 1.110
wupw 219 14 6| 43| 96.77| 1.009
swim 226 16 11| 46| 98.97| 1.034
mgrid 282 15 5 13 || 98.39|| 1.000
applu 1927 | 1647 | 90 5| 93.53| 1.020
mesa 246 13 8 1] 99.14| 0.985
galgel 957 | 172 | 68 2| 99.80| 1.289
art 163 4 7 0|l 99.55| 1.122
equale 236 2 19 9| 97.56| 1.015
facerec|| 376 8| 13 2 || 98.65| 1.062
ammp 237 7 21 7 || 98.53| 1.080
lucas 314 4 36| 31 99.90| 1.280
fma3d 500 17 27| 22| 96.77| 1.000
sixtr 793 81| 29 1| 87.50| 1.043
apsi 333 5 5| 47| 99.98| 1.827
Web 30623 5| 143 1]l 16.67| 1.019
Image 163 1 17 7| 75.00| 1.228
Povray 136 6 17 | 14 || 97.44|| 1.042
Linker 6317 12 29 7 || 85.71| 1.326
C4 76 2 9 0|l 95.65| 1.360
Tree 207 6 14 1| 97.14| 1.503
SP 151 | 103 | 15 0|l 99.55| 1.193
FFTW 160 5 7| 60| 99.59| 1.549
Matrix 198 12 5 3| 99.47 | 7.546

Table 1: Speedups and superpage requirements when plenty of
memory is available.

Nearly all the workloadsin the tabledisplay bendits
dueto superpges;someof theseare substantial. Out
of our 35 berchmarls, 18 shav improvementsover 5%
(speedp of 1.05, and10 shav over 25%. The only ap-
plication that slows down is mesa,which degradesby
a ngyligible fraction Matrix, with a speedp of 7.5, is
closeto the maximum potertial benefitsthat canpossi-

bly be gairedwith superpags,becausef its accespat-
ternthatproducesone TLB missfor evely two memoy
accesses.

Several commaplace desktop applicdions like
Linker (gnuld), gcc, and bzip2 obsenre significantper
formanceimprovemerts. If sufiicient cortiguousmem-
ory is available,thentheseapplicatiors standto benefit
from a superpge managmentsystem.In contrast, Web
gainslittle, becasethe systemcanna createenoudn su-
perpa@esin spite of its large 315MB footprint. This is
becaus&Vebaccessea large numter of smallfiles, and
thesystendoesnotattempto build supepagegshatspan
multiple memoryobjects.Extrgpolatingfrom theresults,
a systemwithout suchlimitation (which is technially
feasible,but likely at a high costin compleity) would
bring Web’s speeduloserto a moreattractive 15%, if
it achieved a missredudion closeto 100%.

Someapplicatiors createa significantnunberof large
superpges. FFTW, in particular standsout with 60
superpgesof size 4MB. The next sectionshaws that
FFTW makesgooduseof large superpages,asthereis
almostno speedp if 4MB page arenot suppoted.

Mesashavsasmallperfamancedegradationof 1.5%.
Thiswasdeterninedto benotdueto theoveheadof our
implemenation, but becase our allocatordoesnot dif-
ferentiatezeroedout pagesrom otherfree pagesWhen
the OS allocatesa pagethat need to be subsequety
zeroedout, it requeststhe memay allocatorto preferen-
tially allocateanalreadyzeroedoutpagef possible Our
implemenation of the buddy allocatorignoresthis hint;
we estimatedhecostof thisomissionby comparingbase
systemperformancewith and without the zeroedpage
feature We obtainedan averagepenaltyof 0.9%,anda
maximum of 1.7%.

A side effect of using superpags is that it sub-
sumegpagecoloiing [11], atechniqe thatFreeBSDand
other operating systemsuse to redwce cacheconflicts
in physically-addessedandespeciallyin direct-majped
caches By carefily selectingamongfree frameswhen
mappng a page,the OS keepsvirtual-to-physical map-
pingsin a way suchthat pagesthat are consective in
virtual spacemapto consective locatiors in the cache.
Sincewith superpgesvirtually cortiguouspagesnapto
physically contigwousframes, they autonatically mapto
consective locatiorsin aphysically-mapedcache Our
speedupesultsfactorouttheeffect of pageeoloring, be-
causethe bencimarkswererun with enaugh free mem-
ory for the unmadlified systemto always succeedn its
pagecoloring attempts. Thus, both the unmdlified and
the modifiedsystemeffectively benefitfrom pagecolor-

ing.



6.4 Benefis from multiple supempagesizes

We repeatedthe above experiments, but chamged the
systemto suppot only one superpag size, for eachof
64KB, 512KB and 4MB, and compared the resulting
perfamanceagairst our multi-sizeimplementation. Ta-
bles2 and3 respectrdy presehthe speedp andTLB
missreductionfor the bencimarks,excluding thosethat
have the samespeedugwithin 5%)in all four cases.

Benchmark || 64KB [ 512KB | 4MB || All |

CINT2000 1.05 1.09| 1.05( 1.11
vpr 1.28 1.38| 1.13| 1.38
mcf 1.24 1.31| 1.22| 1.68
vortex 1.01 1.07| 1.08( 1.11
bzip2 1.14 112 1.08( 1.14

CFP2000 1.02 1.08| 1.06 1.12
galgel 1.28 1.28| 1.01| 1.29
lucas 1.04 1.28| 1.24| 1.28
apsi 1.04 1.79| 1.83| 1.83
Image 1.19 1.19| 1.16|| 1.23
Linker 1.16 1.26| 119 1.32
Cc4 1.30 1.34| 0.98| 1.36
SP 1.19 1.17| 098 1.19
FFTW 1.01 1.00| 155]| 1.55
Matrix 3.83 7.17 | 6.86| 7.54

Table 2: Speedups with different superpage sizes.

Theresultsshav thatthe bestsuperpag sizedepenls
on the applicatiom. For instance,it is 64KB for SP
512KB for vpr, and4MB for FFTW. The reasonis that
while someapplicatiors only benefitfrom large super
pagespthersaretoo smallto fully popuatelarge super
pages.To uselarge superpagswith small applicatias,
thepopuationthresholdor promotioncouldbelowered
assuggesteth Sectior4.5. However, theOSwouldhave
to popuateregions thatareonly partially mapgedby the
application. Thiswouldenlage theapplicatiorfootprint,
and alsoslightly changethe OS semanticssincesome
invalid accessewould not be caught.

The tablesalsodemastratethat allowing the system
to choosebetweermultiple pagesizesyieldshigherper
formance, becase the systemdynanically selectsthe
bestsizefor evely region of memay. An extremecaseis
mcf, for which the percentag speedp whenthe system
getsto chooseamongseveralsizesmorethandouliesthe
speedupvith ary singlesize.

Someappaentanoméies, lik e differentspeedupwith
thesameTLB missreduction (e.g.,Linker)arelikely due
to the coarsegrarularity of the Alpha processors TLB
miss courter (512K misses). For shortfunning bench
marks,512K missescorrespondgo a two-dgit percet-
ageof thetotal numbe of misses.

| Benchmark || 64KB | 512KB [ 4mB || Al |
CINT2000
vpr 82.49| 98.66 | 45.16 || 99.96
mcf 55.21| 84.18| 53.22| 99.97
vortex 46.38| 92.76| 80.86| 99.75
bzip2 99.80| 99.09| 49.54 || 99.90
CFP2000
galgel 9851 98.71] 0.00] 99.80
lucas 12.79 | 96.98| 87.61 99.90
apsi 9.69 | 98.70| 99.98| 99.98
Image 50.00| 50.00| 50.00 || 75.00
Linker 57.14| 85.71| 57.14 || 85.71
C4 95.65| 95.65| 0.00| 95.65
SP 99.11| 93.75| 0.00 || 99.55
FFTW 7.41 7.41| 99.59 | 99.59
Matrix 90.43 | 99.47| 99.47| 99.47

Table 3: TLB miss reduction percentage with different superpage
sizes.

6.5 Sustainedbendits in the long term

The perfamancebenefitsof superpagscanbe substan-
tial, providedcontigwusregions of physicalmemoryare
available.However, corventioral systemsanbe subject
to memay fragmentationeven undermoderatelycom-
plex workloads. For exanple, we raninstancef grep
emacs,netscapeand a kernel complation on a freshly
bootal system;within about15 minutes,we obseved
severe fragmentation The systemhad completelyex-
hausteall contiglousmemay regionslargerthan64KB
thatwere candidtesfor larger superpges,eventhoud
asmuchas360MB of the512MB werefree.

Our systemseeksto presere the performane of su-
perp@esover time, soit actively restorecontiguty us-
ingtechniqeesdescriledin Sectiongt.4and5.1 To eval-
uatethesamethod, wefirst fragment thesystemmemoy
by runnng awebsenerandfeedingit with requestérom
the sameaccesdog ashefore. The file-baclked memoy
pagesaccessetly thewebsener persistin memay and
redue availablecontiguity to aminimum Moreover, the
accesgatternof thewebsener resultsin aninterleased
distribution of active, inactive and cachepages,which
increase$ragmentation.

We presentwo expeiimentsusingthis websener.

Sequential execution: After the requets from the
tracehave beenserviced we run the FFTW bencimark
four timesin sequene. The god is to seehow quicky
the systemrecoversjust enowgh contiggousmemoy to
build superpgesandperfam efficiently.

Figure 4 comparesthe perfomanceof two contigu
ity restoréion techniqes. The cache schemetreatsall
cachedpagesas available, and coalescesheminto the



buddy allocator The gragh depictsno appeciableper

formanceimprovementsof FFTW over thebasesystem.

We obsened thatthe systemis unableto provide evena
single4MB superpgefor FFTW. This is becausenem-
ory is available (47MB in the first run and 290vVB in
theothers) but is fragmenteddueto active, inactive and
wired pages.

The otherschemecalleddaemonis our implemen
tation of contiguity-aware pagereplacenentandwired
pageclustering Thefirst time FFTW runs afterthe web
sener, the pagedaenon is activateddue to contiguty
shortag, andis ableto recover 20 out of the reqiested
60 contigwusregions of 4MB size.Subsequet runsget
a progressiely larger nunber of 4MB supepages,viz.
35,38 and40. Thus,FFTW perfamancereachesear
optimum within two runs,i.e.,a speedupf 55%.
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Figure 4: Two techniques for fragmentation control.

The web sener closesits files on exit, and our page
daema treatsthis file memay asinactive, asdescribe
in Section5.1. We now measurgheimpactof this effect
in conjurction with the pagedaemots drive to restore
contiguty, onthewebsener’s subseqgantperformane.
We run the web sener againafter FFTW, and replay
the sametrace. We obsere only a 1.6% perfomance
degradation over the basesystem,indicating that the
penaltyonthewebsener performarceis small.

We further analyz this experimentby monitaing the
availablecontiguity in the systemover time. We define
an empirical contiguty metric asfollows. We assignl,
2 or 3 pointsto eachbasepagethatbelong to a 64KB,
512KB, or 4AMB memay region respectiely, assuming
thattheregion is contiglous,alignedandfully available.
We compue the sumof theseperpagepoints,andnor-
malizeit to the correspadingvalue if every pagein the
systemwereto befree. Figure5 shavs aplot of thiscon-
tiguity metric aganst expetimentaltime. Note thatthis
metricis unfavorableto thedaemorschemesinceit does
not considerasavailablethe extra contigtity thatcanbe
reganedby moving inactive pagego thecache.

At the startof the experiment, neitherschemehasall
of thesystems 512MB available;in particulay thecache
schemehaslost 5% morecontiguty dueto unclusterd
wired pages. For aboutfive minutes, the web sener
consunesmemoy anddecreaesavailablecontiguty to
zero.Theredter, thecacheschemeaecoversonly 8.8%o0f
the systems contiguity, which canbe seenin the gragh
asshort,transitoy burstsbetweerFFTW executims. In
contrat, the daenon schemeecorersasmuchas42 4%
of the contiguity, which is consuned by FFTW while it
execues,andreleasecachtimeit exits. TheFFTW exe-
cutionsthusfinish earlier at 8.5 minutesfor thedaemam
schemegompaedto 9.8 minutesfor the cachescheme.
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Figure 5: Contiguity as a function of time.

To estimatethe maximun contiguity that can be
poterially gaired backafterthe FFTW runs comgete,
we run a syntheticapplicationthat usesenowgh anory-
mousmemoy to maximizethe numker of free pagesn
the systemwhenit exits. At this point, the amount of
contiglity lostis 54%in the cacheschememostly due
to scatteredvired pagesin contrat, thedaemorscheme
in unable to recover 13% of the origind cortiguity. The
reasonis that the few active and inactive page that
remain at the end of the expeiment are scatteredin
physical memay over as mary as 54 4MB churks.
Sincethe experinment startson a freshly boaed system,
active and inactive page were physically close at that
time, occupying only 22 suchchunls. Part of the lost
13% is due to inactive pagesthat are not courted in
the contiguity metric, but canbe recoreredby the page
daemam. Therebre,thereallossin thelong termfor the
daema schemas boundedonly by thenumter of active
pages.

Concurrent execution:  The next experimentrunsthe
websenerconcurentlywith a contiguity-seekimg appli-
cation. Thegoalis to measurehe effect of the pagere-
placemenpolicy onthewebsenerduiing asingle,con-



tinuowsrun. Weisolatetheeffectof thepage replacemat
policy by disablingsuperpge pronotionsin this expeii-
ment.

We warm up the web sener footptint by playing
100000 requestsrom the trace,and then measurethe
time takento servicethenext 100000reqLests.We wish
to avoid interfeirenceof the CPU-intensie FFTW appli-
cation with the web sener, so we substituteit with a
dumny applicdion thatonly exercisesthe needfor con-
tiguity. Thisapplicatiormapstouchesandunmas1MB
of memoy, five timesa secongandforcesthe pagedae-
monto recover contiguity ratherthanjust memoy.

The web sener keepsits active files openwhile it
is running, so our pagedaemoncanna indiscrimindely
treatthis memoy asinactive. The web sener’s active
memoy pagesget scatteredandonly a limited amount
of contiguity canbe restorel without compating mem-
ory. Over the courseof the expeliment, the dumny ap-
plicationneedsabait 3000contigwouschurks of 512KB
size. The original pagedaemam only satisfied3.3% of
theserequestswhereasour contiguity-aware page dae-
mon fulfills 29.9%of the reqiests. This shovs how the
chang in the replacerent policy succeedsn restorirg
significantly more contiguty thanbefore, with negligi-
ble ovetheadandessentiallyno perfomancependty.

The overheadof the contiglity restoréion operatios
of thepagedaema is found to beonly 0.8%,andtheweb
sener suffersanadditioral 3% of periormane degrada-
tion, asa consegenceof the deviation of the page re-
placemenpolicy from A-LRU.

6.6 Adversary applications

This section exercisesthe systemon three synthetic
pathdogical workloads,and concludeswith a measue-
mentof realisticovetead.

Incremental promotion overhead: We syntheized
an adwersary applicdion that makesthe systempay all
the costsof increnmental pronotion without gainirg ary
benefit. It allocatesmemoy, accessesnebytein each
page, and deallocateghe memory which rendes the
TLB uselesssinceevely translationis usedonly once.
This adwersaryshows a slowdown of 8.9%with ourim-
plemenation, but as much as 7.2% of this overhead
is dueto the following hardvare-specificeason PTE
replication asdescriledin Section6.1,forces eachpage
tableentryto betraversedsix times: oncepereachof the
threeincrememal promotions,andonceper eachof the
threeincrememal denotions. Theremainng 1.7%of the
overheadis mainly dueto maintermnceof the population
maps.

Sequential accessoverhead: Accessing pages se-
quertially asin our adwersaryis actuallya comman be-
haviour, but usuallyevery byte of eachpageis accessed,
which dilutesthe overhead We testedthe cnp utility,
which compaestwo files by mappirg themin memay,
usingtwo identicalL00MB files asinput,andobsereda
negligible performarce degradationof lessthan0.1%.

Preemptin overhead: To measue the overhead of
preenpting resenatiors, we set up a situation where
thereis only 4MB of memory available and contigu
ous,andruna processthattouctesmemorywith a4MB
stride. In this situation,thereis a patternof onereser
vation preenption every seven allocations. Every pre-
emptionsplits a reseration into 8 smallerchurks. One
remainsresered with the pagethat madethe original
resenation; andheris takenfor thepagebeingallocated
and6 arereturredto thefreelist. We measureé perfa-
mancedegradationof 1.1%for this process.

Overheadin practice: Finally, we measurehe total
overheadof our implemertation in real scenarios. We
usethe samebencimarksof Section6.2, perform all the
contigwous memoryallocationand fragmentationman-
agemenh as before but factor out the benefitof super
pagesby simply not promoting them. We presere the
pronotion overheadby writing the new supepagesize
into someunuwsedportion of the pagetable entries. We
obsenre perfamancedegradatiors of up to 2%, with an
averag of abou 1%. This shawvs how our systemonly
imposegyligible overheadn pradice, sothepathdog-
ical situationsdescrited above arerarely obseved.

6.7 Dirty supempages

To evaluate our decisionof demotingcleansuperages
uponwriting, as discussedn Section4.7, we codeda
progamthatmapsa 100MB file, readsevery pagethus
triggeling superpag pronotion, thenwrites into every

512" page flushesthefile andexits. We compaed the
runring time of theproces$othwith andwithoutdemd-

ing onwriting. As expectedsincethel/O volumeis 512
timeslarger, the perfamanceperalty of notdemading is

huge afactorof morethan20.

Our designdecisionmay dery the benefitsof super
pagesto proesseshat do not write to all of the base
pagesof a potentialsuperpag. However, accordirgy to
our policy, we chooseto paythatpricein order to keep
thedegradationin pathdogical casedow.

6.8 Scalability

If the historicaltendentes of decreasingelative TLB
coverageandincreasingvorking setsizescortinue,then



to keepTLB missoverheadlow, suppat for superpges
muchlargerthan4MB will beneeadin thefuture. Some
processorslike the Itanium andthe Sparc@-IIl provide

128MB andlargersupepagesandoursuperpagsystem
is designedo scaleto suchsizes.However, architectual

peculiaities mayposesomeobstacles.

Most opeamtions in our implemenation are either
O(1); or O(S), whereS is the nurmber of distinct su-
perpaesizes;or in thecaseof preenpting aresenation
O(S*R), whereR istheratiobetweercorsecutve sizes,
whichis never morethan8 on modern proessors.The
excepions arefour routineswith runring time linearin
the size(in basepage) of the superpag thatthey oper
ateon. Oneis the pagedaemonthat scanspages;since
it runs asa baclgrourd process,it is notin the critical
pathof memoryaccessesThe otherthreeroutinesare
pronmotion, demotia, anddirty/referene bit emulation
They operateon eachpagetableentryin the supepage,
andowe theirunscalabity to the hardware-definedPTE
replicationschemedescritedin Section6.1

Promations and demotions: Often, unde no mem-
ory pressurepagesareincrenentally promotedearlyin
a proeesss life and only demotedat progam exit. In
suchcase the costamotized over all pagesusedby the
processis O(S), whichis negligible in all of ourbench
marks.Theonly exceptionto thisis theadwersaryexpe-
imentof Section6.6,which paysa 7.2%ovetheaddueto
incremental promotiors anddemdions. However, when
thereis memay pressue, demotios andrepranotions
mayhapenseveraltimesin aprocesslife (asdescribe
in Sectionst.6and4.7). Thecostof suchopeationsmay
becone significantfor very large superages,given the
linearcostof PTEreplicdion.

Dirty/r eference bit emulation: In mary processors,
including the Alpha, dirty andreferencebits mustbeem-
ulatedby the operatig system. This emulatio is dore
by proteding the pagesothatthefirst write or refererce
triggers a softwaretrap. Thetraphandlerregistersin the
OS structuresthat the pageis dirty or referered, and
resetsthe page protection For large superpges,setting
andresettingprotection canbe expensive if PTE repli-
cationis regured, asit mustbedonefor every basepage.

These prodems motivate the need for more
superpge-frimdly page table structurs, whether
they aredefinedby the hardware or the OS, in order to
scalablysuppot very large superpges. Clusteed page
tablesproppsedby Talluri et al. [21] represehone step
in this direction

7 Conclusions

This paperprovidesa transparenand effective solution
to the prodem of superpge mangementin operatimy
systems. Superpags are physical pagesof large size,
which may be usedto increaseTLB coverage,redwce
TLB missesandthusimprove applicationperformane.
We describea practicaldesignand demastratethat it
canbe integratedinto an existing geneal-purpseoper
ating system.We evaluatethe systemon a range of real
workloadsandbenchnarks,obseve perfamancebere-
fits of 30%to 60% in several casesandshow thatthe
systemis robust evenin pathdogical cases.Theseben-
efits are sustainedunder compex workload condtions
andmemay pressureandthe overheadsaresmall.
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