
USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 15

Everest: Scaling down peak loads through I/O off-loading

Dushyanth Narayanan Austin Donnelly Eno Thereska Sameh Elnikety
Antony Rowstron

Microsoft Research Cambridge, United Kingdom
{dnarayan,austind,etheres,samehe,antr}@microsoft.com

Abstract
Bursts in data center workloads are a real problem for
storage subsystems. Data volumes can experience peak
I/O request rates that are over an order of magnitude
higher than average load. This requires significant over-
provisioning, and often still results in significant I/O re-
quest latency during peaks.

In order to address this problem we propose Everest,
which allows data written to an overloaded volume to
be temporarily off-loaded into a short-term virtual store.
Everest creates the short-term store by opportunistically
pooling underutilized storage resources either on a server
or across servers within the data center. Writes are tem-
porarily off-loaded from overloaded volumes to lightly
loaded volumes, thereby reducing the I/O load on the for-
mer. Everest is transparent to and usable by unmodified
applications, and does not change the persistence or con-
sistency of the storage system. We evaluate Everest using
traces from a production Exchange mail server as well as
other benchmarks: our results show a 1.4–70 times re-
duction in mean response times during peaks.

1 Introduction

Many server I/O workloads are bursty, characterized as
having peak I/O loads significantly higher than the av-
erage load. If the storage subsystem is not provisioned
for its peak load, its performance during peaks degrades
significantly, resulting in I/O operations having signifi-
cant latency. We observe that workloads are usually un-
balanced across servers in a data center, and often even
across the data volumes associated with a single server.
We propose Everest, a system that improves the perfor-
mance of overloaded volumes by transparently exploit-
ing statistical multiplexing across the storage bandwidth
resources in the data center.

Everest monitors the performance of a data volume,
and if the load on the volume increases beyond a pre-
defined threshold, it utilizes spare bandwidth on other

storage volumes to absorb writes performed to the over-
loaded volume. It does this by maintaining a virtual
short-term persistent store, into which data is temporar-
ily written, or off-loaded. The store is virtual in the
sense that storage resources are not explicitly allocated
to it; rather it is created by pooling idle bandwidth and
spare capacity on existing data volumes either on a sin-
gle server or across a set of servers in the same data cen-
ter. In the common case, this can remove the majority of
writes from the peak load, allowing the data volume un-
der stress to serve mostly reads. When the peak subsides,
the off-loaded data is lazily reclaimed back to the original
volume, freeing the space in the Everest store. Everest
handles short-term peaks and is not designed to handle
long-term changes in load: these must be addressed by
reprovisioning the storage subsystem and changing the
data layout to match the new workload patterns.

Everest thus provides a short-term, low-latency per-
sistent store without the requirements for explicitly pro-
visioned resources. Everest is interposed at the block I/O
interface level, and is transparent to the applications and
services running above it. It does not alter the persis-
tence or consistency semantics of the storage subsystem,
and unmodified applications can use Everest.

Two recent developments make storage pooling for
peak I/O loads increasingly important. First, gigabit
networking is ubiquitous in today’s data centers, with
servers configured with multiple high bandwidth NICs,
and soon 10-gigabit networks will be common. This
increase in network bandwidth relative to storage band-
width is exploited by many storage technologies, such as
Network Attached Storage (NAS) and Storage Area Net-
works (SAN). Everest also exploits it by allowing I/O
off-loading across the network.

Second, as disk bandwidth increases more slowly than
capacity, bandwidth rather than capacity increasingly de-
termines the number of disks provisioned for an applica-
tion. Peak off-loading avoids the need to provision each
data volume individually for its peak load, which is often

16 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Request rate (log scale)

(b) Response time (log scale)

Figure 1: Exchange request rate and response time over
a 24-hour period, 12–13 December 2007.

impossible (since peaks are unpredictable) and always
expensive. Instead the volumes can be configured for
the expected mean or 95th percentile I/O rate, and peak
off-loading used to improve performance during periods
when the I/O rate is higher than expected.

We evaluate the increase in performance Everest
achieves using real world traces gathered from a produc-
tion Exchange mail server, as well as database bench-
marks and micro-benchmarks. The results show that
Everest provides significant benefit. For example, for
the mail server the mean response time during the worst
peak is reduced by a factor of 70. In tests of database
OLTP throughput, off-loading from a loaded machine to
one idle machine increased throughput by a factor of 3,
scaling up to a factor of 6 with 3 idle machines.

The rest of the paper is organized as follows. Sec-
tion 2 provides further background, then Section 3 de-
scribes the design and implementation of Everest. Sec-
tion 4 presents evaluation results, Section 5 related work,
and Section 6 concludes the paper.

Figure 2: % of writes in Exchange: CDF over 1 minute
intervals having mean response times above 1 second.

2 Background

In order to understand the impact of peak I/O loads, we
examined a trace of a production Exchange e-mail server
running inside Microsoft [26]. Employee e-mail at Mi-
crosoft is supported by a number of such servers, which
are provisioned and maintained by the corporate IT de-
partment. The trace records the I/Os issued by one such
server, which supports 5000 users. The trace covers 8
data volumes with a total capacity of 7.2 TB, for a 24-
hour period starting at 14:39 on the 12th December 2007.

For each minute in the trace, we measured the mean
request rate for each of the volumes, and Figure 1(a)
shows for each minute the maximum and minimum re-
quest rates across all volumes, as well as the request rate
for the median volume. It should be noted that due to
the large variations in rates a log scale is used. The load
is extremely bursty, and also unevenly distributed across
volumes during peak bursts. Across the entire trace the
peak-to-mean ratio in the I/O load is 13.5, and during the
highest peak 90% of the load is on a single volume.

To understand the impact this load has on response
times, we calculated the mean response time over 1
minute intervals for each data volume. Figure 1(b) shows
the maximum, median, and minimum response times
across volumes, again using a log scale. As expected, the
response times vary widely, from under a second in the
common case to above 10 seconds during the peaks. Fur-
ther, there is substantial variation across volumes when at
peak. This implies that, even on a single server, there is
scope for statistical multiplexing of disk bandwidth dur-
ing peak load episodes.

For Everest to be able to provide benefit, the I/O peaks
must contain writes as well as reads. We believe peaks
in server workloads are likely to have a significant frac-
tion of writes. Storage subsystems are typically well-
equipped to handle large streaming read workloads, and
small random-access reads will benefit from caching at

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 17

various levels of the system. Figure 2 shows the fraction
of write requests for every 1 minute interval in the Ex-
change traces in which the mean response time exceeded
1 second, as a cumulative distribution. Fewer than 5% of
these intervals have less than 10% writes.

Battery-backed non-volatile RAM (NVRAM) is
sometimes used in storage systems to improve I/O per-
formance, although its use is often limited due to the cost
and the need for maintenance of the batteries. NVRAM
can only provide benefit when the I/O peak’s footprint
is smaller than the NVRAM size. The Exchange mail
server that we traced is configured with 512 MB of
NVRAM shared across all volumes. Figure 1 clearly
shows that the response times are high despite the use of
NVRAM. In general, it is not cost-effective to provision
sufficient NVRAM to handle worst-case peak loads.

3 Design

Off-loading in Everest is configured on a per-volume ba-
sis. Here by volume we mean any block storage device:
e.g., a single disk, array of disks, or solid-state storage
device (SSD). An Everest client can be associated with
any volume, which we then call the base volume for that
client. The client is interposed on all read and write re-
quests to the base volume. When the base volume is
overloaded, the client off-loads writes into a virtual store.
This allows more of the base volume’s bandwidth to be
used for servicing reads. When the load peak subsides,
the client reclaims the data in the background from the
virtual store to the base volume.

The virtual store is formed by pooling many individ-
ual physical stores, referred to simply as stores in this
paper. Each store has an underlying base volume and
uses a small partition or file on this volume. Thus stores
are not explicitly provisioned with resources but export
spare capacity and idle bandwidth on existing volumes.
When a store’s base volume is idle, it is used opportunis-
tically by clients whose base volume is heavily loaded.

Each Everest client is configured to use some set of
stores, called its store set. The stores can be on different
volumes on the same server as the client, or on different
servers in the data center. A single volume can host a
client, a store, or both. In general a client can use any
store, and a store can be used by multiple clients. How-
ever, a client would not be configured to use a store hav-
ing the same base volume as itself, since this does not
contribute any additional disk bandwidth.

Figure 3 shows an example of a server in a data cen-
ter using Everest. The server has two volumes, each of
which is an array of many disks. Both volumes are con-
figured with Everest clients, which interpose between the
volumes and the file system and appear as standard block
devices to the file system. Client 1 is configured to use

Figure 3: Example server running Everest.

Everest stores on other servers in the data center; client
2 is configured to use the store on volume 1 as well as
stores on other servers.

The key challenges for Everest are to retain the con-
sistency and persistence guarantees of the base volume
while providing low latency and high throughput for
off-loaded writes. This is challenging because Everest
needs to maintain a consistent view of the data logically
stored on each data volume, even though it may be physi-
cally distributed across several other volumes and servers
when off-loaded. While data is being off-loaded there
can be no synchronous writes of meta-data to the origi-
nal volume, as this would increase its I/O load when al-
ready overloaded. Further, different versions of the same
data could be off-loaded to multiple different locations
during the same I/O peak, and a read request might span
data that is off-loaded to different locations. The system
must always return the latest version of the data in all
cases. The persistent state of the system must also be
recoverable after a failure.

Everest meets these goals through the combination of
techniques described in the rest of this section. Much
of the complexity in the Everest design is in the client,
which is responsible for deciding when to off-load,
where to off-load, and when to reclaim off-loaded data.
The client is also responsible for consistency and fault-
tolerance. We first describe the simpler Everest store and
then the more complex client.

3.1 Everest store
An Everest store provides short-term write-optimized
storage. It exports four operations: write, read,
read any, and delete. Clients call write when off-
loading write requests. read is invoked on a store when
a client receives a read request for data off-loaded to that
store. This happens rarely since blocks are only off-
loaded for short periods, and are likely to remain in appli-
cation and file system buffer caches during these periods.
read any and delete are background operations used by
clients to reclaim off-loaded data from the store.

18 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The Everest store is optimized for low latency and
high throughput of the frequently called foreground op-
eration: write. The store uses a circular log layout to
achieve sequential performance on writes. Each write
request results in a single write to the log head of a record
containing both data and meta-data. The meta-data is
also cached in memory for fast lookup. Background
delete requests also cause records to be written to the
log head; deletion records contain only meta-data and no
data. If there are multiple concurrent write requests, the
store issues them concurrently to the disk to maximize
performance. Write acknowledgements are serialized in
log sequence order: a write is acknowledged only after
all writes preceding it in the log are persistent on disk.
This ensures that there are no holes in the log, and that
all acknowledged writes are recoverable after a crash.

In the common case, the store absorbs a write burst,
causing the head of the log to move forward. Subse-
quently clients reclaim and delete the data; this moves
the tail forward and shrinks the log which eventually be-
comes empty. Thus both the head and the tail of the log
move forward, wrapping around to the beginning when
they reach the end of the file or partition. The head of the
log is never allowed to wrap past the tail. In the common
case the log does not fill up the allocated storage capacity.
If the store does reach its capacity limit, it stops accept-
ing write requests but continues to accept read and delete
requests, which will eventually shrink the log.

The Everest store writes meta-data in each log record
which allows it to correctly recover its state after a crash.
The meta-data contains the ID of the client that issued
the write, the block range written, the version, and a data
checksum. State is recovered after a crash by scanning
the log from tail to head. A pointer to the log tail is stored
at the beginning of the store’s file or partition. A write
or delete record written to the log head might cause older
records in the log to become stale; when the tail record
becomes stale, the tail pointer can be moved forward.
Tail pointer updates are done lazily during idle periods
to avoid contention with other requests on the volume.

The head of the log is the last valid record read dur-
ing the recovery scan. Partially written log records are
detected by verifying the checksum in the record header.
Over time, the log head might cycle repeatedly around
the storage area. Hence, in general, the disk blocks fol-
lowing the log head could contain arbitrary data. To dis-
tinguish arbitrary data from valid log records, the store
uses a 128-bit epoch ID that is randomly generated ev-
ery time the log head wraps around. Each record that is
appended to the log contains both its own epoch ID as
well as that of the previous record. This property is veri-
fied during recovery, ensuring that only valid records are
used to reconstruct the state after a failure.

Figure 4: Example of range map holding versions:
hashed areas represent stale/overwritten subranges.

3.2 Everest client

The Everest client is responsible for
1. off-loading writes to stores in its store set,
2. reclaiming data from the stores, and
3. guaranteeing persistence and consistency.

Achieving these goals is challenging for two reasons.
First, when off-loading writes, the client must maintain
consistency without writing either data or meta-data to
the already overloaded base volume. Second, off-loaded
data could be spread over multiple Everest stores; the
client must correctly redirect read requests to the appro-
priate combination of base volume and/or Everest stores.

Since Everest interposes transparently above a block
device, it provides the same consistency and persistence
semantics as a local block device. The data returned for
any read request is always the result of the last acknowl-
edged write to that block, or of some issued but unac-
knowledged write. This property holds across transient
failures, i.e., after a crash or reboot. Everest does not im-
plement sharing of data across clients: this must be done
in a higher layer if desired. At the Everest level a client
mediates all access to its base volume and hence owns
the namespace of blocks on the volume.

This section describes the key features of the Everest
client: recoverable soft state, load balancing, reclaiming,
and N -way off-loading for fault-tolerance.

3.2.1 Recoverable soft state

To avoid writing meta-data to the base volume when it
is loaded, the client keeps almost all its meta-data as in-
memory soft state. The only persistent state kept on the
base volume is the store set: the list of Everest stores that
the client can off-load to. This set changes infrequently,
and is not changed during load peaks.

The soft state for each client contains an entry for each
range of blocks off-loaded to an Everest store, which
specifies the range, the store holding the latest version,
and the version. The soft state is accessed on each I/O in-
tercepted by the client, and is designed to be compact as
well as efficient to query and update. It is maintained as

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 19

a range map, which contains ordered, non-overlapping
ranges of byte offsets in a logarithmic search tree [20].
This supports fast lookup and update while using mem-
ory linear in the number of distinct block ranges off-
loaded, rather than in the number of blocks. The range
map can be queried to find the ranges that are currently
off-loaded, and the Everest store holding the latest ver-
sion. Range queries and updates can overlap arbitrarily,
for example an update could partially overwrite an exist-
ing range with a newer version: the range map handles
this by splitting ranges appropriately. Figure 4 shows an
example of the in-memory state of a client after multiple
overlapping writes have been completed.

On each read request, the client queries the range map
to find out how to split the read between stores hold-
ing off-loaded blocks (if any), and the base volume. On
each write request, the client queries the range map to
see if the write request overlaps any currently off-loaded
blocks. When an off-loaded write is completed, the client
updates the range map before acknowledging the write
completion to the higher layers.

An Everest client can correctly recover its soft state
after a crash. Each off-loaded write sent to an Ever-
est store is written along with meta-data that identifies
the client, the base volume, the block range written, and
the version. Keeping meta-data on the Everest stores al-
lows the client to quickly and efficiently recover the soft
state. After a failure the client retrieves meta-data in par-
allel from all the stores in its store set. This meta-data is
cached by each store in a per-client range map. The re-
sponses from the stores are then merged to construct the
client’s state. If a store crashes and recovers concurrently
with the client, the client waits for the store to recover by
scanning its log, and then retrieves its meta-data.

3.2.2 Load balancing

In general, when an Everest client receives a write re-
quest, it can choose to send the write to the base volume
or to any store in its store set. In making this choice, the
client has four goals. First, it must always maintain cor-
rectness. Second, it should only off-load when the base
volume is overloaded: unnecessary off-loading wastes
resources and increases the chances of contention be-
tween workloads. Third, it should only off-load to stores
on lightly loaded volumes, to avoid degrading the perfor-
mance of workloads using those volumes. Finally, sub-
ject to these constraints, it should balance load between
the available stores and the base volume.

Correctness requires that reads always go to the lo-
cation holding the latest version of the data: the client
splits read requests as necessary to achieve this. Most
reads will go to the base volume, since reads of recently
off-loaded data are rare. Most writes can be sent either

to the base volume or to any available store in the store
set. However a write that overwrites currently off-loaded
data must also be off-loaded to some store, not written
to the base volume. This is because the stores support
versioning, but the base volume is a standard block de-
vice and hence cannot be assumed to support versioning.
Hence if any version of the data is currently off-loaded,
then the latest version must also be off-loaded to ensure
that the client’s state is correctly recoverable.

While the client generally has no choice on where to
send read requests, it can redirect most write requests
according to load. If a write overlaps a currently off-
loaded range, then it is sent to the least loaded available
store. Otherwise, if the load on the base volume is above
a threshold Tbase, and the least-loaded store has a load
lower than another threshold Tstore, writes are sent to the
least loaded of the base volume and the available stores.
Otherwise, writes are sent to the base volume.

Each Everest store periodically broadcasts load up-
dates on the network and updates are also piggybacked
on response packets sent to clients. The updates contain
several block device level load metrics such as request
rates, response times, and queue lengths. Thus a variety
of load balancing metrics and policies are possible. Cur-
rently we use the simple policy described above, and we
use the queue length — the number of I/O requests in
flight — as the load metric.

3.2.3 Reclaiming

When the base volume load is below the threshold Tbase,
the Everest client reclaims off-loaded data to the base
volume in the background. The client issues low-priority
read any requests to all stores holding valid data for it.
Each lightly-loaded store returns valid data and meta-
data (if any) for some range of blocks off-loaded by the
client to that store. In general a store’s log might contain
many records corresponding to a given client; the store
chooses the record that is closest to the log tail and con-
tains some valid (non-stale) data for the client. The client
writes the data to the base volume, and then sends a dele-
tion request to the store. The client sends such deletion
requests to a store whenever data on it becomes stale,
either due to a reclaim or due to a newer version being
written to a different store.

In some rare cases the reclaim process results in
wasted I/O; however consistency is always maintained
and all off-loaded data is eventually reclaimed. For ex-
ample, while a block is being reclaimed, an application
might issue a new write for the same block: any work
done to reclaim the old version will be wasted. Correct-
ness is maintained through three invariants. First, the
client will send a deletion request for a version v only
if the corresponding data has been written to the base

20 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

volume, or a version v > v has been written to some
store. Second, if a version v of a block is currently off-
loaded, then the client will off-load any new write to that
block, with a higher version v > v. Third, the client
will not send a deletion request for the highest currently
off-loaded version of any block until all older versions of
the block have been deleted from all stores.

The Everest client performs multiple concurrent re-
claim operations for efficient pipelining of disk and net-
work bandwidth. Depending on the support for low-
priority I/O in the underlying system, reclaim I/O could
have some impact on foreground I/O performance. In
Everest this tradeoff is controlled by setting the concur-
rency level of the reclaim process, which limits the num-
ber of outstanding reclaim I/Os per Everest client. This
is currently a fixed value that is configured per-client: it
could also be dynamically regulated using a control pro-
cess such as MS Manners [8].

3.2.4 N -way off-loading for fault tolerance

Off-loading introduces a failure dependency from a
client to the store to which it has off-loaded data. If the
store fails, the off-loaded data will become unavailable.
To maintain the same availability and persistence as the
non off-loading case, Everest masks this failure depen-
dency by adding support for fault-tolerance. Broadly,
there are two classes of failure: transient (crash) fail-
ures causing temporary data unavailability, and perma-
nent disk failures causing data loss. We first discuss tran-
sient failures and then permanent disk failures; this paper
does not consider Byzantine failures.

Everest provides fault-tolerance through N -way off-
loading. Each off-loaded write is sent to N stores on
N different servers, where N is a per-client configurable
parameter. In general the client’s store set will be larger
than N , allowing the client to choose the N least-loaded
stores and minimizing the impact on other workloads.
Since writes are versioned by Everest, each write can be
sent to any N stores independently of previous writes.
Note that the client still maintains a consistent view of
all the data, and all access to the data is mediated through
the client. Hence there is no need for any consensus or
co-ordination protocol between the stores.

N -way off-loading can mask up to N−1 store failures.
If an Everest store fails, the client continues to service
requests using the remaining stores. However data held
on the failed store now has only N−1 copies and is more
vulnerable to subsequent failures. The client reclaims
such vulnerable data before any other data. The amount
of vulnerable data to be reclaimed is bounded by limiting
the amount of data off-loaded to any single store.

When an off-loaded version on a store becomes stale,
the client normally sends a deletion request to that store.

However if the store has failed, the client must ensure
that any stale versions on it are eventually deleted. In this
case the deletion request is queued locally and persistent,
versioned deletion records are written to N other stores
in the store set. These ensure that if the client crashes
it can correctly reconstruct the outstanding deletions.
When the failed store becomes available, the client sends
it the queued deletion requests. When these are acknowl-
edged the client garbage-collects the deletion records.

If a volume hosting a store is permanently decommis-
sioned, Everest clients using the store must delete it from
their store set. The clients then garbage-collect all dele-
tion records pertaining to that store. Deletion of a store
from the clients’ store sets can be done manually by the
administrator when decommissioning a volume, or auto-
matically by clients when a store has been unresponsive
for a certain amount of time.

Permanent disk failures: N -way off-loading also
serves to protect against permanent disk failures on
stores by adding redundant copies. An alternative ap-
proach is to ensure that Everest stores themselves are
resilient to disk failures, for example, if the underlying
storage uses RAID. In this approach, the system admin-
istrator configures each client to use only stores whose
base volumes have at least as much redundancy as the
client’s base volume.

Reading and reclaiming: The Everest client load-
balances reads of N -way off-loaded data by sending each
read to the least loaded store holding the data. However,
read requests for off-loaded data are rare. While reclaim-
ing, low-priority read any operations are issued concur-
rently to multiple stores: the first store to respond sends
a cancellation request to the other stores.

3.3 Implementation

The current Everest prototype is implemented at user
level. The store is implemented as an RPC server ex-
porting the four store operations. The client is imple-
mented as two library layers. The virtual store layer ex-
ports the Everest store operations for the virtual store,
implemented by load-balancing across the Everest stores
in the store set. The policy layer exports a standard block
read/write interface and issues requests to the base vol-
ume and to the virtual store layer as appropriate.

The user-level library is sufficient for testing Everest
with block-level traces and micro-benchmarks. We are
also able to use the user-level prototype with unmodified
binary Windows applications such as SQL Server. To
do this, we intercept the application’s file I/O calls us-
ing DLL redirection [13]; a policy layer then maps these
calls to virtual store operations.

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 21

4 Evaluation

The main aim of the Everest design is to improve I/O per-
formance under peak load. The first part of this section
quantifies this improvement by measuring the impact of
peak off-loading on I/O response times, using block-level
traces of a production Exchange mail server.

While trace replay from a production server gives
us a realistic evaluation of I/O response times, appli-
cation benchmarks let us measure the improvement in
end-to-end application throughput. The second part of
the evaluation is complementary to the first: it uses an
OLTP benchmark with an unmodified SQL Server ap-
plication to measure the performance of off-loading in
various configurations, and identifies the individual per-
formance benefits of off-loading and of using a log-
structured store. Finally it shows how application per-
formance scales as more idle spindles are added to the
network as well as when more load is added.

Finally, this section uses micro-benchmarks to eval-
uate the sensitivity of the base Everest performance to
the read-write ratio of the workload, since Everest is de-
signed to off-load write load but not read load. It also
uses micro-benchmarks to test the scaling of the I/O per-
formance as idle spindles are added, as well as the limits
on efficiency of the reclaim process.

All the results in this evaluation are based on exper-
iments run on a hardware testbed running Everest. The
testbed consists of four HP servers, each with a dual-core
Intel Xeon 3 GHz processor and an HP SmartArray 6400
series RAID controller connected to a rack-mounted disk
enclosure with a SCSI backplane. Each enclosure con-
tained 14 high-end enterprise disks: 15K RPM Seagate
Cheetahs. The servers were connected to each other by
a switched 1 Gbps Ethernet. Communication between
Everest clients and stores uses in-process shared memory
within a single machine; TCP for unicast communication
across machines, and UDP subnet broadcast for periodic
broadcasts of store load metrics. For N -way off-loading
Everest clients use a combination of TCP and UDP to
implement reliable multicast.

4.1 I/O response times: Exchange

In Section 2 we described the I/O traces from a produc-
tion Exchange mail server, which motivated peak off-
loading. Here we evaluate Everest against those traces
by replaying them on our testbed.

We selected three episodes from the 24-hour trace
shown in Figure 1 that covered the three highest peaks in
request rates (measured on a 1 min time scale). The stor-
age capacity of our testbed machines is much lower than
that of the original server, which was 7.2 TB across 8
data volumes. Hence for each episode we selected three

Time Requests Read % Peak rate
1 22:28–22:58 444345 27% 98206 reqs/s
2 03:16–04:01 5072789 91% 95179 reqs/s
3 10:05–10:35 620519 24% 35568 reqs/s

Table 1: Peak episode traces.

Mean 99th percentile
Original Testbed Original Testbed

1 1.17 s 1.53 s 8.8 s 11.2 s
2 2.08 s 0.06 s 20.0 s 0.6 s
3 0.43 s 0.04 s 3.1 s 0.4 s

Table 2: Peak episode response times.

volumes: the volumes having the maximum, median,
and the minimum number of requests during the episode.
This corresponds to a configuration where off-loading is
restricted to the three chosen volumes, i.e. the three vol-
umes do not off-load to, or accept off-loads from, the
other 5 volumes. The three selected volumes were then
mapped onto volumes on one of our testbed servers. To
achieve the required capacity, each testbed volume was
configured as a RAID-0 array with four 146 GB Seagate
Cheetah disks; the original production server uses redun-
dant configurations such as RAID-5.

Table 1 shows the three peak episodes covered. The
original trace files are divided into 15 min segments; each
episode consists of the segment containing the request
rate peak, as well as the following segment, to ensure
that the trace would be long enough to cover any reclaim
activity. Peak episode 2 was extended by an additional
15 min in order to cover all the reclaim activity in all the
experiments. Table 2 shows the response times from the
original trace as well as those measured on our testbed.
The testbed response times are similar to the original
hardware for peak 1, and lower (but still high) for the
other two peaks.

We evaluated three configurations:
• Baseline: no off-load enabled.
• Always off-load: all writes are off-loaded, and data

is never reclaimed.
• Peak off-load: off-load and reclaim are enabled with

the queue length based policy described in Sec-
tion 3.2.2, with Tbase = Tstore = 32.

In the two off-load configurations, each volume was con-
figured with an Everest client. Each volume also hosted
an Everest store on a small partition (less than 3% of the
volume size) at the end of the volume. The off-load con-
figurations used 1-way, single-machine off-loading: for
off-loading between RAID volumes on a single server
we expect this to be the typical configuration.

Response time: Figure 5 shows the mean and 99th
percentile read and write response times achieved by the

22 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Reads (b) Writes

Figure 5: Effect of off-load on mean response time (log scale). Error bars show 99th percentile response times.

1000

1500

2000

2500

3000

D
at

a
of

f-
lo

ad
ed

 (M
B)

0

500

1000

22:26 22:33 22:40 22:48 22:55 23:02

D
at

a
of

f

Time
(a) Peak 1

1000

1500

2000

2500

3000
Always off-load

Peak off-load

0

500

1000

03:07 03:21 03:36 03:50 04:04

Time
(b) Peak 2

1000

1500

2000

2500

3000

0

500

1000

09:57 10:04 10:12 10:19 10:26 10:33 10:40

Time
(c) Peak 3

Figure 6: Amount of off-loaded data over time.

three configurations for all three peaks. Note that the y-
axes are on a log scale. Off-loading improved both read
and write response times by almost two orders of mag-
nitude for the worst peak (peak 1), and significantly for
the other two peaks. Writes benefit by off-loading from
the heavily loaded volume to the lightly loaded ones, and
reads benefit by having fewer writes to contend with.

For the write-dominated peaks 1 and 3, “always off-
load” has better performance than “peak off-load”. This
is because it balances load more aggressively than the
“peak off-load” policy, which only off-loads when the
base volume is heavily loaded and some Everest store is
lightly loaded. The disadvantage of “always off-load” is
that if the Everest store’s underlying disks are busy, then
the resulting contention will hurt performance for both
contending workloads. This effect can be seen clearly
for peak 2, where the write performance of “always off-
load” is worse than “peak off-load”.

Reclaim time: It is important to know how much data
is off-loaded and for how long, since this affects space
usage on Everest stores as well as vulnerability to fail-
ures. Figure 6 shows for each peak episode the amount
of off-loaded data over time, summed across all three
clients, for both the “peak off-load” and the “always
off-load” policy. With “always off-load”, data is off-
loaded more aggressively and never reclaimed. Hence,

the amount of off-loaded data increases at a much higher
rate and never decreases. Interestingly this resulted in
more off-loaded data for peak 2 than for the other two;
although peak 2 only has 9% writes, in absolute terms
it has more writes than the other two peaks. By con-
trast, the “peak off-load” policy off-loads less data and
reclaims it using idle bandwidth: this keeps the amount
of off-loaded data low. For peak 3, reclaiming using idle
bandwidth is so effective that the amount of off-loaded
data is always close to zero. The difference between the
two policies shows the importance of off-loading selec-
tively, and of reclaiming off-loaded data.

Sensitivity to parameters: Figure 7 shows the sensi-
tivity of off-load performance to three parameters: Tbase,
the base volume load below which the client will not off-
load; Tstore, the maximum load on a store beyond which
clients will not off-load to it; and Nreclaim, the max-
imum number of concurrent reclaim I/Os per client. In
each case one parameter was varied while the others were
set to their default values: Tbase = 32, Tstore = 32, and
Nreclaim = 256. The graphs show the mean response
time and the mean amount of off-loaded data, across all
clients and all peaks. Performance is generally insensi-
tive to Tbase and Tstore: when Tstore is high, off-loaded
I/Os begin to contend with non off-loaded I/Os, but this
effect is small compared to the order-of-magnitude re-

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 23

Figure 7: Sensitivity to off-load and reclaim parameters.

100

1000

10000

100000

M
ea

n
re

sp
on

se
 t

im
e

(m
s)

Baseline
Baseline (NVRAM)
Peak off-load
Peak off-load (NVRAM)

0.1

1

10

Peak 1 Peak 2 Peak 3

M
ea

n
re

sp
on

se
 t

im
e

(m
s)

(a) Reads

100

1000

10000

100000

M
ea

n
re

sp
on

se
 t

im
e

(m
s)

Baseline
Baseline (NVRAM)
Peak off-load
Peak off-load (NVRAM)

0.1

1

10

Peak 1 Peak 2 Peak 3

M
ea

n
re

sp
on

se
 t

im
e

(m
s)

(b) Writes

Figure 8: Effect of off-load with NVRAM.

ductions achieved by off-loading. Performance degrades
slightly with higher Nreclaim, due to contention between
reclaim I/Os and foreground I/Os. However, for this par-
ticular workload, increasing Nreclaim from 64 to 256
reduced the fraction of reads that was off-loaded from
0.4% to 0.1%, resulting in a slight decrease in overall
response time. The main effect of Nreclaim is on the
amount of data left off-loaded: decreasing Nreclaim be-
low 256 underutilizes the available idle disk bandwidth
and it takes substantially longer to reclaim data.

NVRAM: Enterprise RAID controllers are of-
ten augmented with battery-backed non-volatile RAM
(NVRAM), which can potentially improve write perfor-
mance by persisting writes temporarily in the NVRAM.
The original traced server had 512 MB of NVRAM
shared across all its volumes and yet had high response
times under peak load. To confirm this, we enabled the
NVRAM on our test server. This was 128 MB shared
across 3 volumes, set to the default configuration of 50%
for read acceleration and 50% for writes. Figure 8 com-
pares the baseline and peak off-load performance with
and without NVRAM. Even with NVRAM, the largest
peak (peak 1) still shows very high read and write re-
sponse times, because the amount of data written ex-
ceeded the capacity of the NVRAM. Peak off-loading by
contrast substantially reduces response times for peak 1.

Max log size 982MB
Max log records 218505
Max valid data 193MB
Max recovery time 14.5 s
Total meta-data (compressed) 247 KB

Table 3: Worst-case recovery statistics.

Overheads: The main CPU overhead of Everest is the
lookup and update of in-memory meta-data, which are
logarithmic in the size of the meta-data. In our exper-
iments these added an average CPU overhead of 56µs
per off-loaded write, which translated to an average CPU
consumption over all 3 peaks of 0.4%. The meta-data
also adds a memory overhead; the high watermark of the
meta-data memory usage was 11.7 MB. With a more op-
timized implementation these overheads could be further
reduced. Since our testbed was limited to four machines
we did not measure the scalability of using subnet broad-
cast for load updates. However we note that the broad-
casts are limited to a subnet, and ethernet multicast could
be used to further limit their scope. The broadcast fre-
quency is also low: at most once every 100 ms.

Recovery times: Off-loading occurs during relatively
infrequent peak load episodes; hence usually the amount
of off-loaded state to be recovered after failure will be

24 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

very small. We measured recovery times for Everest
clients and stores in a worst-case scenario where the Ex-
change server fails when the amount of off-loaded data
is highest. For our traces, this was 10 min into peak
episode 1. Table 3 summarizes the results. Since Ever-
est stores recover concurrently, we show statistics for the
store which was the slowest to recover. The recovery
time is essentially the time to scan the entire log on disk
sequentially. In the single-machine scenario the Everest
client can recover as soon as all stores in its store set have
recovered. In the network off-load case, the stores must
also transfer meta-data over the network to the client;
however, as shown in Table 3, the meta-data is small.

4.2 Application throughput: SQL Server

The previous section showed substantial improvements
in I/O response time from peak off-loading, based on
trace replay. In this section we use a standard bench-
mark to measure the effect of off-loading on the end-
to-end throughput of the application. Our test applica-
tion is Microsoft SQL Server running an OLTP (TPC-
C like) benchmark. The figure of merit is the trans-
action throughput measured as the number of “new or-
der” transactions successfully completed per minute. We
measure the saturation throughput, i.e. we increase the
concurrency level until the server can support no more
connections, and then measure the achieved throughput.

In the OLTP workload 43.5% of the transactions are
updates (“new order” transactions), which results in
about 27–32% writes at the disk I/O level. The disk
workload has poor locality: when the database is larger
than the available buffer cache memory, the performance
is limited by the random-access I/O performance of
the underlying storage. In our experiments we used
a database size of 7.5 GB (corresponding to 100 ware-
houses) and a SQL Server buffer cache size of 256 MB.

The database server used was an unmodified SQL
Server 2005 SP2, and we intercepted the server’s file I/O
using DLL redirection. Following standard practice, the
database file and the transaction log file were stored on
two separate volumes; each of these contained a single
Seagate Cheetah 15K disk. Off-loading was enabled only
for the database file, since it was the bottleneck device:
we measured the utilization of the log disk and found that
it was 7.6% on average and under 20% always. The pol-
icy used was the queue length based policy described in
Section 3, with Tbase = Tstore = 32.

All results shown are the average of 5 runs; error bars
show the minimum and the maximum values observed.
Each experiment was run for 10 min to warm up the
cache, and another 10 min to measure the throughput.

In our first experiment, we measured the benefit of off-
load for OLTP on a single server. We compared the base-

1500

2000

2500

3000

Th
ro

ug
hp

ut
 (t

ra
ns

/m
in

)

0

500

1000

1-disk
baseline

off-load 1-disk log-
structured

2-disk
baseline

2-disk log-
structured

Th
ro

ug
hp

ut
 (t

ra
ns

/m
in

)

Figure 9: Single-server OLTP throughput.

line throughput with no off-loading enabled, to that ob-
tained when off-loading was enabled with a single Ever-
est store on a different disk on the same server. The first
two bars in Figure 9 show that off-loading provides a 3x
increase in throughput over the baseline. We repeated
the same experiment with the Everest store on a different
testbed machine to the client; the results were quantita-
tively the same, indicating that the network was not a
bottleneck for this configuration.

Two factors contribute to this benefit: the additional
spindle provides additional I/O throughput, and random-
access writes are converted to sequential-access writes
on the Everest store’s log. To separate out the contribu-
tions of these two factors, we evaluated two more config-
urations, shown in the third and fourth bars of Figure 9: a
1-disk log-structured configuration, and a 2-disk striped
(RAID-0) array with the default (non-log-structured) lay-
out. Each does roughly 2x better than the baseline case.
This shows that for this workload, the benefit of log-
structured writes is roughly equal to that of adding a sec-
ond spindle.

The last bar in Figure 9 shows the performance of
a configuration which is log-structured and uses a 2-
disk striped array. We see that the performance of off-
loading is comparable to that of this configuration. In
other words, off-loading gets the full benefit both of log-
structured writes and of an additional spindle, but by
opportunistically using the second spindle for off-load
rather than explicitly provisioning it.

Impact of unreclaimed data: By only off-loading to
lightly loaded volumes, Everest ensures that off-loaded
writes will not severely degrade the performance of the
applications using those volumes. However reads of off-
loaded data must be sent to the Everest store that holds
the latest version of the data. In the common case, off-
loaded data is reclaimed before being read, i.e. fore-
ground reads on the Everest store are rare. Additionally,
if N -way off-loading is enabled, the client is likely to
find at least one lightly loaded replica to read.

However, in the worst case, there can be contention for

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 25

Figure 10: Off-loading worst-case scenario.

disk bandwidth between an Everest store satisfying read
requests and applications using the store’s base volume.
To quantify this effect, we measured a “worst-case” sce-
nario using two machines both running SQL Server and
OLTP. Machine 1 was configured for off-load, and ma-
chine 2 hosted an Everest store on the same disk as the
OLTP database. For the first 10 min of the experiment,
only machine 1 was active and it achieved the expected
performance improvement. At the end of 10 min, ma-
chine 1 had off-loaded 936 MB (13% of the database)
to the store on machine 2. At this point machine 2 also
became active. Due to this competing load, machine 1
stopped off-loading fresh data onto machine 2; however,
accesses to already off-loaded data still went to the Ever-
est store on machine 2. Figure 10 shows the performance
of the machines before and after machine 2 became ac-
tive, compared to the baseline (no off-loading) case. Ma-
chine 1’s performance dropped to 93% of baseline: rel-
atively few of its I/Os were redirected to the contended
disk. Machine 2’s performance dropped to 59% of the
baseline value: all its I/Os went to the contended disk.

This experiment shows a worst-case scenario of con-
tinuous load with no idle periods. Everest is not de-
signed for such scenarios, but rather to improve perfor-
mance when load is bursty and unbalanced. To avoid
off-loading during long periods of high load, the amount
of data off-loaded by each client can be bounded. This
limits the amount of contention in a worst-case scenario.

Performance scaling: In general, one or more Everest
clients can share one or more Everest stores. A single
client can improve performance by off-loading to more
than one idle store; alternatively multiple clients can off-
load to a single idle store.

To measure the effect of using multiple idle stores,
we ran the OLTP benchmark on one of the SQL Servers
with off-loading enabled, and added 1–3 machines host-
ing Everest stores but otherwise idle. The solid line in
Figure 11 shows the throughput achieved by SQL Server.
The throughput is normalized to the baseline throughput

Figure 11: Scaling of OLTP off-load performance.

Figure 12: OLTP throughput with 1-way and 2-way off-
loading.

of SQL Server with no off-loading (the baseline case is
not shown on the graph). With one idle store we get a
3x improvement over the baseline, as seen before. The
throughput scales linearly up to 3 idle stores, at which
point SQL Server becomes CPU-bound.

To measure the effect of multiple clients sharing a sin-
gle idle store, we configured one machine to host an
Everest store and added 1–3 machines running OLTP and
configured for off-load. The dashed line in Figure 11
shows the normalized average throughput achieved by
the active machines. As more load is added, per-server
throughput decreases slightly, since the benefit of the ad-
ditional spindle must be shared. However, even with 3
SQL Servers sharing a single Everest store, we get an
average speedup of 1.7x.

N -way off-loading: Everest supports N -way off-
loading to create redundant copies for fault-tolerance. In
general this adds overheads due to the bandwidth used to
write additional copies. We compared the performance
of 1-way and 2-way off-loading on a configuration with
one machine running OLTP and two idle machines host-
ing Everest stores. The throughput of these two cases,
normalized to the 1-disk baseline throughput, is shown
by the first two bars in Figure 12. We see that 2-way

26 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

40

60

80

100

I/
O

 th
ro

ug
hp

ut
 (M

B/
s)

0

20

40

0 20 40 60 80 100

I/
O

 th
ro

ug
hp

ut
 (M

B/
s)

% of reads
(a) Effect of read/write ratio

40

60

80

100

Re
cl

ai
m

 th
ro

ug
hp

ut

(M
B/

s)

Streaming write workload
Random-access write workload

0

20

40

1 4 16 64 256

Re
cl

ai
m

 th
ro

ug
hp

ut

(M
B/

s)

Concurrency level
(b) Reclaim throughput

100

150

200

250

W
ri

te
 th

ro
ug

hp
ut

 (M
B/

s)

0

50

100

1 2 3 4W
ri

te
 th

ro
ug

hp
ut

 (M
B/

s)

Number of Everest stores
(c) Scaling with number of Everest stores

Figure 13: Micro-benchmark results.

off-loading incurs a performance penalty since it uses
twice as much write bandwidth on the stores; however
the penalty is relatively small since the stores are write-
optimized. The second pair of bars in Figure 12 repre-
sents a configuration with two active SQL Servers and
one idle machine. In this case, with 1-way off-loading
the two clients share the performance benefit of off-
loading to one extra spindle. With 2-way replication we
get performance equivalent to the baseline. This is be-
cause neither Everest client can find two lightly loaded
Everest stores and hence no off-loading occurs.

We also see that 2-way off-load to two stores does bet-
ter than 1-way off-load to one store; this is because al-
though the write load per store is the same, the read load
is halved in the former case. However, in general when
using Everest for short-term peak off-loading, we would
not expect a high read load on the Everest stores: the
main purpose of N -way off-loading is to provide fault-
tolerance rather than read performance.

4.3 Micro-benchmarks
In this section we use synthetic micro-benchmarks to
measure the sensitivity of Everest performance to the
workload read/write ratio and the reclaim concurrency
level, as well as the scaling of performance with the num-
ber of clients and stores. The results presented here all
use 64 KB reads and writes, and are based on the average
of 5 runs of each experiment, with error bars showing the
maximum and minimum values. Each experiment runs
for 20 seconds. All configurations used a single Everest
client with a single disk, and one or more Everest stores
each with a single disk. The Everest client is configured
with an “always off-load” policy.

Figure 13(a) shows the throughput achieved by an
Everest client with a single store for a random-access
workload, as a function of the workload’s read/write ra-
tio. With a write-only workload, Everest achieves a
throughput equal to the streaming write bandwidth of the
disk (observed to be 90 MB/s), since it converts random-
access writes to sequential accesses. As the fraction
of reads increases, the throughput is increasingly dom-

inated by the reads: since the workload has no temporal
locality, almost all reads go to the base disk (observed
random-access throughput for this disk type is 21 MB/s).
However, off-loading continues to show benefit until the
workload is 100% read-dominated.

Figure 13(b) shows the reclaim throughput achieved
by Everest with an otherwise unloaded base disk and
Everest store, for random-access and streaming write
workloads. Since off-loaded records are reclaimed in log
order, the writes to the base disk during reclaim have the
same locality pattern as the original write workload. For
a random-access workload, reclaim throughput is dom-
inated by the random-access write performance of the
base disk, which increases with the concurrency level to a
maximum of about 20 MB/s. For a streaming workload,
the throughput is limited by the Everest store, which al-
ternates between reading from the tail of the log and writ-
ing deletion records to the head. At higher concurrency
levels, this effect is amortized by batching, and we can
achieve a throughput of up to 70% of the streaming band-
width of the disk.

We conclude the evaluation section by measuring the
scaling of client write throughput as a function of the
number of available stores. The results are shown in Fig-
ure 13(c). Scaling is linear up to 2 stores. With 3 stores
the system becomes CPU-bound, achieving 206 MB/s,
or 3300 IOPS. About 9% of the CPU time was spent
in Everest meta-data operations; the remainder was due
to our user-level trace replay infrastructure, which re-
quires at least one user-kernel transition and two memory
copies per I/O.

5 Related work

Most research on storage system performance has fo-
cused on achieving good performance when I/O loads
remain within expected limits. In contrast, Everest mit-
igates performance degradations from short-term unpre-
dictable bursts, and is orthogonal to these efforts. We are
unaware of much work that exploits pooled storage as a
short term store to improve performance.

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 27

Self-scaling systems and data migration: There has
been much work on dynamic reconfiguration of storage
to adapt to workloads, e.g. switching between RAID-5
and mirroring [24] or re-encoding of data in cluster stor-
age [1]. Many storage systems [2, 5, 7, 10, 11, 14, 18]
scale incrementally by redistributing existing data across
newly added nodes; the same mechanisms can also be
used to dynamically reconfigure individual workloads
when load changes. For example, Amazon’s Dynamo [7]
can redistribute keys across nodes to balance load; how-
ever this is a heavyweight operation not designed for use
when one node becomes a temporary I/O hotspot.

In general data migration allows a storage system to
adapt to changes in workload behavior over the long
term. It is not suitable for short, upredictable bursts
of load where the system cannot predict ahead of time
when, how, and what data to migrate. Migrating or re-
encoding data during the load burst itself will add addi-
tional load to the system. For short unpredictable bursts
a better approach is to opportunistically and temporarily
balance the load with minimal migration of data, as is
done in Everest. Data is not permanently migrated or re-
encoded in Everest, but temporarily off-loaded and then
reclaimed to the original volume. It is thus complemen-
tary to long-term reconfiguration through migration or
re-encoding of data. Everest is also transparent to appli-
cations and file systems, and hence can be incrementally
deployed with minimal changes to server software.

Automatic provisioning: Provisioning tools such as
HP’s Disk Array Designer [4] generate storage sys-
tem configurations from workload characteristics and
service-level objectives. Such tools can optimize for dif-
ferent goals, such as cost, performance, or power [21].
However workload characteristics must be explicitly
specified, perhaps using a language such as Rome [23].

Workloads with high peak-to-mean ratios are a prob-
lem for these approaches. Even if the peak levels are
known, the only option to get good performance at peak
load is to massively over-provision the storage subsys-
tem. This problem is compounded by the rapid increase
in disk capacity compared to throughput over time: in-
creasingly throughput is driving the number of disks re-
quired in data volumes. Rather than provisioning each
data volume for its peak load, Everest exploits the fact
that peaks may not be correlated among all the work-
loads in a data center, and statistically multiplexes stor-
age across workloads for short periods of time. This al-
lows volumes to be provisioned for common-case loads
or 99th percentiles rather than worst-case peaks.

Write off-loading: In previous work [15] we showed
that write off-loading can save energy by increasing the
length of idle periods and allowing disks to spin down.
In the current work we re-use much of the same infras-
tructure — with the addition of N -way replication for

fault-tolerance — to address performance degradation
due to unbalanced peak loads. The two applications of
write off-loading are complementary, and exploit differ-
ent workload characteristics to achieve different ends.

Log-structured stores: Everest stores are log-
structured, in order to be able to efficiently handle a
write dominated workload. They are different in de-
sign and use from traditional log-structured file sys-
tems [17, 19] as well as file system journals, DBMS
transaction logs, or block-level write-ahead logs [6]. Un-
like a log-structured file system, data is only stored in
Everest stores for short periods of time, and in the com-
mon case stores do not serve application reads. Free
space on the store is created by clients reclaiming and
deleting data, rather than by using a log cleaner. Write-
ahead logs and journals are used to improve write re-
sponse times; however they share the same disk re-
sources as the underlying DBMS or file system. By con-
trast, Everest clients opportunistically use idle bandwidth
on other volumes to off-load writes.

Idle disk bandwidth: Everest utilizes idle disk band-
width for off-load and reclaim. Modern storage subsys-
tems might also use idle disk bandwidth for a variety of
background maintenance tasks [12, 22].

Solid-state storage: There have been many propos-
als for using flash-based solid state memory for stor-
age [3, 9, 16, 25]. This might be in the form of solid-
state storage devices (SSDs), or the flash might be added
inside the disks, in the RAID controllers, or on the moth-
erboards. The Everest store design could be used with
any of these. The circular log design results in writes be-
ing sequential and evenly spread over the flash memory,
and hence is optimal both for write performance and for
wear-leveling [9].

6 Conclusion

Server I/O workloads are bursty, and under peak load
performance can degrade significantly. Everest ad-
dresses this by pooling idle disk bandwidth into a virtual
short-term persistent store to which overloaded volumes
can off-load write requests. These volumes can then ded-
icate their I/O bandwidth to read requests, thereby im-
proving performance. Everest can be interposed trans-
parently at the block I/O level, and unmodified applica-
tions can benefit from its use. We have demonstrated the
effectiveness of the approach using traces from a produc-
tion Exchange server, as well as benchmarks.

Acknowledgements: We thank Bruce Worthington,
Swaroop Kavalanekar and Chris Mitchell for the produc-
tion Exchange server traces used in this paper. We also
thank our shepherd Kim Keeton and the anonymous re-
viewers for their feedback.

28 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R.
Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier,
M. Prasad, B. Salmon, R. R. Sambasivan, S. Sinnamo-
hideen, J. D. Strunk, E. Thereska, M. Wachs, and J. J.
Wylie. Ursa Minor: versatile cluster-based storage. In
Proc. USENIX Conference on File and Storage Technolo-
gies (FAST), San Francisco, CA, Dec. 2005.

[2] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. Farsite: Federated,
available, and reliable storage for an incompletely trusted
environment. In Proc. Symposium on Operating Systems
Design and Implementation (OSDI), Boston, MA, Dec.
2002.

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs for SSD
performance. In Proc. USENIX Annual Technical Confer-
ence, Boston, MA, June 2008.

[4] E. Anderson, S. Spence, R. Swaminathan, M. Kalla-
halla, and Q. Wang. Quickly finding near-optimal stor-
age designs. ACM Transactions on Computer Systems,
23(4):337–374, November 2005.

[5] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patter-
son, D. S. Roselli, and R. Y. Wang. Serverless network file
systems. In Proc. ACM Symposium on Operating Systems
Principles (SOSP), Copper Mountain, CO, Dec. 1995.

[6] W. J. Bolosky. Improving disk write performance by log-
ging. Private Communication.

[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In Proc. ACM Symposium on
Operating Systems Principles (SOSP), Oct. 2007.

[8] J. R. Douceur and W. J. Bolosky. Progress-based regu-
lation of low-importance processes. In Proc. ACM Sym-
posium on Operating Systems Principles (SOSP), Kiawah
Island, SC, Dec. 1999.

[9] E. Gal and S. Toledo. Algorithms and data structures for
flash memories. CSURV: Computing Surveys, 37, 2005.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In ACM Symposium on Operating System
Principles, Lake George, NY, Oct. 2003.

[11] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W.
Chang, H. Gobioff, C. Hardin, E. Riedel, D. Rochberg,
and J. Zelenka. A cost-effective, high-bandwidth storage
architecture. In Proc. International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), San Jose, CA, Oct. 1998.

[12] R. Golding, P. Bosch, C. Staelin, T. Sullivan, and
J. Wilkes. Idleness is not sloth. In Proc. USENIX An-
nual Technical Conference, New Orleans, LA, Jan. 1995.

[13] G. Hunt and D. Brubacher. Detours: Binary interception
of Win32 functions. In Proc. USENIX Windows NT Sym-
posium, Seattle, WA, July 1999.

[14] E. K. Lee and C. A. Thekkath. Petal: distributed virtual
disks. In Proc. International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems (ASPLOS), Cambridge, MA, Oct. 1996.

[15] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-
loading: Practical power management for enterprise stor-
age. In Proc. USENIX Conference on File and Storage
Technologies (FAST), San Jose, CA, Feb. 2008.

[16] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou. Trans-
actional flash. In Proc. Symposium on Operating Systems
Design and Implementation (OSDI), San Diego, CA, Dec.
2008.

[17] M. Rosenblum and J. Ousterhout. The design and imple-
mentation of a log-structured file system. In Proc. ACM
Symposium on Operating Systems Principles (SOSP), Pa-
cific Grove, CA, Oct. 1991.

[18] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and
S. Spence. FAB: building distributed enterprise disk ar-
rays from commodity components. In Proc. International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Boston,
MA, Oct. 2004.

[19] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin.
An implementation of a log-structured file system for
UNIX. In Proc. USENIX Winter Conference, San Diego,
CA, Jan. 1993.

[20] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. Journal of the ACM, 32(3):652–686, 1985.

[21] J. D. Strunk, E. Thereska, C. Faloutsos, and G. R. Ganger.
Using utility to provision storage systems. In Proc.
USENIX Conference on File and Storage Technologies
(FAST), San Jose, CA, Feb. 2008.

[22] E. Thereska, J. Schindler, J. Bucy, B. Salmon, C. R.
Lumb, and G. R. Ganger. A framework for building unob-
trusive disk maintenance applications. In Proc. USENIX
Conference on File and Storage Technologies (FAST), San
Francisco, CA, Mar. 2004.

[23] J. Wilkes. Traveling to Rome: QoS specifications for
automated storage system management. In Proc. Inter-
national Workshop on Quality of Service (IWQoS), Karl-
sruhe, Germany, June 2001.

[24] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The
HP AutoRAID hierarchical storage system. ACM Trans-
actions on Computer Systems, 14(1):108–136, February
1996.

[25] D. Woodhouse. JFFS: The journalling flash file system. In
Proc. The Linux Symposium, Ottawa, Canada, July 2001.

[26] B. Worthington and S. Kavalanekar. Characterization
of storage workload traces from production Windows
servers. In Proc. IEEE International Symposium on Work-
load Characterization (IISWC), Seattle, WA, Sept. 2008.

