
USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 193

R2: An Application-Level Kernel for Record and Replay

Zhenyu Guo† Xi Wang‡ Jian Tang† Xuezheng Liu†

Zhilei Xu‡ Ming Wu† M. Frans Kaashoek§ Zheng Zhang†

†Microsoft Research Asia ‡Tsinghua University §MIT CSAIL

ABSTRACT

Library-based record and replay tools aim to reproduce
an application’s execution by recording the results of se-
lected functions in a log and during replay returning the
results from the log rather than executing the functions.
These tools must ensure that a replay run is identical to
the record run. The challenge in doing so is that only
invocations of a function by the application should be
recorded, recording the side effects of a function call can
be difficult, and not executing function calls during re-
play, multithreading, and the presence of the tool may
change the application’s behavior from recording to re-
play. These problems have limited the use of such tools.

R2 allows developers to choose functions that can be
recorded and replayed correctly. Developers annotate the
chosen functions with simple keywords so that R2 can
handle calls with side effects and multithreading. R2 gen-
erates code for record and replay from templates, allow-
ing developers to avoid implementing stubs for hundreds
of functions manually. To track whether an invocation is
on behalf of the application or the implementation of a
selected function, R2 maintains a mode bit, which stubs
save and restore.

We have implemented R2 on Windows and anno-
tated large parts (1,300 functions) of the Win32 API,
and two higher-level interfaces (MPI and SQLite). R2
can replay multithreaded web and database servers that
previous library-based tools cannot replay. By allowing
developers to choose high-level interfaces, R2 can also
keep recording overhead small; experiments show that
its recording overhead for Apache is approximately 10%,
that recording and replaying at the SQLite interface can
reduce the log size up to 99% (compared to doing so at
the Win32 API), and that using optimization annotations
for BitTorrent and MPI applications achieves log size re-
duction ranging from 13.7% to 99.4%.

1 INTRODUCTION

Replay is a powerful technique for debugging applica-
tions. When an application is running, a record and re-
play tool records all interactions between the applica-
tion and its environment (e.g., reading input from a file,
receiving a message). Then when a developer wants to
track down an error, she can replay the application to a
given state based on the recorded interactions, and inves-
tigate how the application reached that state. Replay is
particularly useful in the context of distributed applica-

tions with many processes. If one of the processes has an
error, the developer can investigate the error by replay-
ing that single process instead of all processes, observing
the external interactions in the same order as during the
recording.

R2 is a novel record and replay tool that allows de-
velopers to choose at what interface the interactions be-
tween the application and its environment are recorded
and replayed. R2 resides in the application’s address
space and intercepts all functions in the chosen interface.
R2 uses a library-based approach to simplify deploy-
ment, compared to hardware or virtual machine based
approaches. During recording, R2 executes the inter-
cepted calls and records their results in a log. During re-
play, the application runs as usual (i.e., making library
and systems calls, modifying memory, etc.), but R2 in-
tercepts calls in the chosen interface, prevents the real
implementation of the calls from executing, and instead
gives the application the results of the calls that were pre-
viously recorded in the log.

R2 allows developers to choose the interposed inter-
face for two reasons: correctness and performance. The
developers can choose an interface that is easy to make
replay faithful. If an interface is replay faithful, the re-
play run of an application is identical to the recorded run
of the application. This property ensures that if a prob-
lem appears while the application is running in recording
mode, the problem will also appear during replay. (R2
does not attempt to make the behavior of an application
with or without recording identical. That is, if a problem
appears in the application while it is not being recorded,
R2 does not guarantee that the problem will happen again
when the application is recorded.)

Achieving faithful replay can be challenging be-
cause only calls on behalf of the application should be
recorded, recording the effects of a call can be difficult,
and not executing calls during replay, multithreading, the
presence of the tool in the application’s address space
may cause the application to behave differently during
replay. Previous library-based tools (e.g., liblog [10] and
Jockey [28]) interpose a fixed low-level interface and
omit calls that are difficult to make replay faithful, and
thus limit the applications they can replay.

Consider recording and replaying at the system call
interface, which is a natural choice because the applica-
tion interacts with its environment through system calls.
It is not easy to record the output of all system calls. For

194 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Annotation Scope Description Section
in parameter input (read-only) parameter § 3
out parameter output (mutable) parameter § 3
bsize(val) parameter modified size of an array buffer (val can be any expression) § 3
xpointer(kind) parameter address allocated internally (kind can be null, thread, or process) § 3
prepare(key,buf) function prepare asynchronous data transfer § 3
commit(key,size) function commit asynchronous data transfer § 3
callback parameter callback function pointer (upcall) § 4
sync(key) function causality among syscalls and upcalls (key can be any expression) § 4
cache function cache for reducing log size § 6
reproduce function reproduce I/O for reducing log size § 6

Table 1: Annotation keywords (for data transfer, execution order, and optimization).

example, to ensure faithful replay the developer must ar-
range to record the results of socketcall correctly but
its results vary for different parameters. For such cases
R2 makes it easy for a developer to choose an inter-
face consisting of higher-level functions that cause the
same interactions with the environment, but are easier
to record and replay. For example, the developer may
choose recv, which calls socketcall; recv’s ef-
fects are easier to record and replay.

The second reason for allowing developers to choose
the interface is that they can choose an interface that re-
sults in low recording overhead for their applications.
Low overhead is important because the developers can
then run their applications in recording mode even during
deployment, which may help in debugging problems that
show up rarely. To reduce overhead, a developer might
choose to record and replay the interactions at a high-
level interface (e.g., MPI and SQL library interface such
as SQLite) because less information must be recorded. In
addition, these higher-level interfaces may be easier to be
replay faithful.

To lower the implementation effort for intercepting,
recording, and replaying a chosen interface, R2 gener-
ates stubs for the calls in the chosen interface and ar-
ranges that these stubs are called when the application
invokes the calls. The stubs perform the recording and
the replay of the calls. To ensure that these stubs behave
in way that is replay faithful, the developer must anno-
tate the interface with simple annotations (see Table 1)
that specify, for example, how data is transferred across
the interposed interface for calls that change memory in
addition to having a return value. To reduce the effort of
annotating R2 reuses existing annotations from SAL [13]
for Windows API. Inspired by the kernel/user division in
operating systems, R2 uses a mode bit, which stubs save
and restore, to track if a call is on behalf of the applica-
tion and should be recorded.

We have implemented R2 on Windows, and used it
to record and replay at three interfaces (Win32, MPI, and

SQLite API). It has successfully replayed various system
applications (see Section 8), including applications that
cannot be replayed with previous library-based tools. R2
has also replayed and helped to debug two distributed
systems, and has been used as a building block in other
tools [20, 31, 22].

The main contributions of the paper are: first, a record
and replay tool that allows developers to decide which in-
terface to record and replay; second, a set of annotations
that allows strict separation of the application above the
interposed interface and the implementation below the
interface, and that reduces the manual work that a devel-
oper must do; third, an implementation of a record and
replay library for Windows, which is capable of replay-
ing challenging system applications with low recording
overhead.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of the design. Section 3 and 4
describe the annotations for data transfers and execution
orders, respectively. Section 5 discuss how to record and
replay the MPI and SQLite interfaces. Section 6 and 7
describe annotations for optimizations and implementa-
tion details, respectively. We evaluate R2 in Section 8,
discuss related work in Section 9, and conclude in Sec-
tion 10.

2 DESIGN OVERVIEW

A goal of R2 is to replay applications faithfully. To do
so the calls to intercept must be carefully chosen and
stubs must handle several challenges. This section starts
with an example to illustrate the challenges, and then de-
scribes how R2 addresses them.

2.1 An Example and Challenges
Faithful replay is particularly challenging for system
applications, which interact with the operating sys-
tem in complicated ways. Consider Figure 1, a typ-
ical network program on Windows: a thread binds a
socket to an I/O port (CreateIoCompletionPort,

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 195

1 struct iocb {
2 OVERLAPPED ov;
3 void * buf, * user_data;
4 };
5

6 int main() {
7 HANDLE hPort = ...;
8 for (...)
9 CreateThread(..., WorkerThread, hPort, ...);

10 ...
11 SOCKET s = socket(...);
12 CreateIoCompletionPort(s, hPort, ...);
13 struct iocb * cb = (struct iocb *)malloc(...);
14 cb->buf = malloc(BUFSIZ);
15 cb->user_data = ...;
16 BOOL fSucc = ReadFileEx(s, cb->buf, BUFSIZ,
17 (OVERLAPPED *)&cb, 0);
18 ...
19 }
20

21 DWORD WINAPI WorkerThread(HANDLE hPort) {
22 for (; ;) {
23 struct iocb * cb;
24 DWORD size;
25 GetQueuedCompletionStatus(hPort, &size, ...,
26 (OVERLAPPED *)&cb, ...);
27 void * buf = cb->buf;
28 void * user_data = cb->user_data;
29 ...
30 }
31 return 0;
32 }

Figure 1: A typical network program using asyn-
chronous I/O and completion port on Windows. The pat-
tern is also widely available on other platforms, such as
Linux aio (io getevents etc.), Solaris event comple-
tion (port get etc.), and FreeBSD kqueue.

line 12), enqueues an asynchronous I/O request
(ReadFileEx, line 16), and a worker thread waits
on the I/O port for the completion of the I/O request
(GetQueuedCompletionStatus, line 25). Similar
interfaces are provided on other operating systems such
as Linux (aio), Solaris (port), and BSD (kqueue),
and are used by popular software such as the lighttpd
web server that powers YouTube and Wikipedia.

The first challenge a developer must address is what
calls are part of the interface that will be recorded
and replayed. For example, in Figure 1, a developer
might choose socket but not ReadFileEx. However,
since during replay the call to socket is not executed,
the returned socket descriptor is simply read from the
recorded log rather than created. So the choice may crash
ReadFileEx during replay and fail the application; the
developer should choose both functions, or a lower layer
that ReadFileEx uses. Section 2.2 formulates a num-
ber of rules that can guide the developer.

R2 generates stubs for the functions that the devel-
oper chooses to record and replay, and arranges that in-
vocations to these functions will be directed to the cor-
responding stubs. To avoid reimplementing or modifying
the implementation of the interposed interface, R2’s goal

is for the stubs to call the original intercepted functions
and to record their results. This approach also allows R2
to record and replay functions for which only the binary
versions are available.

To achieve this implementation goal and to en-
sure faithful replay, the stubs must address a num-
ber of implementation challenges. Consider the case in
which the developer selects the functions from the Win-
dows API (e.g., GetQueuedCompletionStatus,
ReadFileEx, etc.) as the interface to be interposed.
During a record run, the stubs must record in a log
the socket descriptor and the completion port as inte-
gers, the output of GetQueuedCompletionStatus
(e.g., the value of cb at line 26 and the content of
cb->buf at line 27), along with other necessary infor-
mation, such as the timestamp when the operating system
starts WorkerThread as an upcall (callback) via a new
thread.

During a replay run, the stubs will not invoke
the intercepted functions such as ReadFileEx or
GetQueuedCompletionStatus, but instead will
read the results such as descriptors, the value of cb,
and the content for cb->buf from the log. The stubs
must also cause the memory side effects to happen (e.g.,
copying content into cb->buf). Finally, the replay run
must also deliver upcalls (e.g., WorkerThread) at the
recorded timestamps.

These requirements raise the following challenges:

• Use of intercepted functions by the implementation
of the interposed interface. For example, the imple-
mentation itself may invoke the function socket
and those invocations should not be recorded.

• Functions that have side effects. For example, to
record and replay ReadFileEx, the stubs must
record the content of cb->buf and fill it during
replay. The stub for ReadFileEx must know that
the second argument has side effects.

• Addresses returned by malloc must be identical
during recording and replay. The code in Figure 1
requires that the value that cb receives at line 13
must not change from record to replay: the replay
run reads the value of cb from the log at line 26
and that should be equal to the value returned by
malloc at line 13; a different value for cb may
lead to a crash in further uses (line 27 and 28).

• Threads created by the implementation of the in-
terposed interface. The operating system, for exam-
ple, might create threads to deliver events to the ap-
plication, or might create “anonymous” threads to
perform household tasks. The former should be re-
created during replay, but the latter not.

196 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• Execution order. Dependencies during recording
must be preserved during replay. For example,
ReadFileEx’s start of an asynchronous I/O must
happen before the completion of that I/O event.

2.2 Choosing an Interface
As a starting point for choosing an interface, the devel-
oper must choose functions that form a cut in the call
graph. Consider the call graph in Figure 2. The function
main calls two functions f1 and f2, and those two both
call a third function f3, which interacts with the applica-
tion’s environment. The developer cannot choose to have
only f1 (or only f2) be the interposed interface. In the
case of choosing f1, the effects of interactions by f3
will be recorded only when called by f1 but not by f2.
During replay, f3 interactions caused by f1 will be read
from the log but calls to f3 from f2 will be re-executed;
f1 and f2 will see different interactions during replay.

For faithful replay, the interposed interface must form
a cut in the call graph, thus the interface can be f3 (cut
4) or both f1 and f2 (cut 1). Cuts 3 and 4 are also fine,
but require R2 to track if f3 was called from its side of
the cut or from the other side. In the case of cut 3, R2
will not record invocations of f3 by f2 because f2’s
invocations will be recorded and replayed. R2 supports
all four cuts.

When the interposed interface forms a cut in the call
graph, every function is either above the interface or be-
low the interface. For example, if the developer chooses
f1 and f2 as the interposed interface, then main is
above and f3 is below the interface. Functions above
the interposed interface will be executed during replay,
while functions below the interposed interface will not
be executed during replay.

To ensure faithful replay, the cut must additionally
satisfy two rules.

RULE 1 (ISOLATION) All instances of unrecorded reads
and writes to a variable should be either be below or
above the interposed interface.

Following the isolation rule will eliminate any shared
state between code above and below the interface. A vari-
able below the interface will be unobservable to func-
tions above the interface; it is outside of the debugging
scope of a developer. A variable above the interface will
be faithfully replayed, executing all operations on it. Vi-
olating the isolation rule will result in unfaithful replay,
because changes to a variable made by functions below
the interface will not happen during the replay.

For the Windows API, the isolation rule typically
holds. For example, all the operations on a file descrip-
tor are performed through functions rather than direct
memory access. During recording R2 records the file de-
scriptor as an integer. During replay, R2 retrieves the in-

Figure 2: Four cuts in a call graph for record and replay.
The function f3 interacts with the environment.

teger from the log and returns it to functions above the
interposed interface, without invoking the operating sys-
tem to allocate descriptors. As long as R2 intercepts the
complete set of file functions, the recorded file descrip-
tor works correctly with the replayed application and en-
sures replay faithfulness.

RULE 2 (NONDETERMINISM) Any source of nondeter-
minism should be below the interposed interface.

If any nondeterminism is below the interposed inter-
face, the impact to functions above the interface will be
captured and returned to them. Violating this rule will
result in unfaithful replay, because the behavior during
replay will be different from during recording.

The sources of nondeterminism are as follows.

1. Calls that receive input data from the external (e.g.,
environment variables, files, and network).

2. Interprocess communications through shared mem-
ory (e.g., WriteConsole in Windows communi-
cates with the CSRSS system service for standard
input/output through a shared-memory segment).

3. Interactions between threads through shared vari-
ables (e.g., spinlocks).

R2 can handle the first source easily if the developer
follows the isolation rule because input data from the ex-
ternal is received through functions. For the Windows
API the developer must mark these functions being part
of the interposed interface, which eliminates the nonde-
terminism.

For the second source, R2 can re-execute during re-
play if the replayed application only reads from shared
memory. For more general cases the developer must
mark the higher-level function that encloses the nonde-
terminism of shared memory accesses as being part of
the interposed interface (e.g., WriteConsole).

The third source of nondeterminism stems from vari-
ables that are shared between threads via direct mem-
ory access instructions rather than functions. A similar

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 197

R
2
 S

Y
S

C
A

L
L

R
2
 S

Y
S

C
A

L
L

R
2
 S

Y
S

C
A

L
L

R
2
 U

P
C

A
L
L

OS Kernel

Applications

Libraries

R2 Runtime

R2 System Space

R2 Replay Space

Kernel Space

User Space

Figure 3: R2 overview. The user space is split into two
spaces: R2 runtime that intercepts syscalls and underly-
ing libraries are running in R2 system space; the applica-
tion executes in R2 replay space.

case is the rdtsc instruction on the x86 architecture
that reads the CPU timestamp counter. Often these in-
structions are enclosed by higher-level interface func-
tions (e.g., lock and unlock of spinlocks). Developers
must annotate them as being part of the interposed in-
terface.

In practice, library APIs are good candidates for the
interposed interface. First, library functions usually have
variables shared between internal library routines and it
is difficult to select only a subset of them as the inter-
posed interface. Second, most sources of nondetermin-
ism are contained within software libraries (e.g., spinlock
variables in a lock library), and they affect external state
only via library interfaces.

2.3 Isolation

R2 must address the implementation challenges listed in
Section 2.1 for the stubs for the functions that are part
of the appropriately-chosen interface. A starting point to
handle these challenges is to separate the application that
is being recorded and replayed from the code below the
interface.

Inspired by isolation between kernel space and user
space in operating systems, R2 defines two spaces (see
Figure 3): replay space and system space. Unlike oper-
ating systems, however, the developer can decide which
interface is the boundary between replay and system
space. Like in operating systems, we refer to the func-
tions in the interposed interface as syscalls (unless ex-
plicitly specified, all syscalls mentioned below are R2
syscalls instead of OS syscalls). Syscalls may register
callback functions, which we call upcalls, that are issued
later into replay space by system space runtime. With
these terminologies, we can describe the spaces as fol-
lows:

• Replay space. All the code and data that is above
the chosen syscall interface.

• System space. The R2 library and the underlying
libraries, as well as any application code and data
that is below the chosen syscall interface.

R2 records the output of syscalls invoked from appli-
cation space, the input of upcalls invoked from system
space, and their ordering. It faithfully replays them dur-
ing the replay. R2 does not record and replay events in
system space.

Consider the code in Figure 1 again. The developer
may have chosen malloc, socket, ReadFileEx,
CreateThread, CreateIoCompletionPort,
and GetQueuedCompletionStatus as syscalls.
The execution of main and WorkerThread is in
replay space and the execution of the syscalls and the
underlying libraries is in system space.

To record and replay syscalls and upcalls, R2 gener-
ates stubs from their function prototypes. R2 uses De-
tours [15] to intercept syscalls and upcalls, and detour
their execution to the generated stub. For syscalls that
take a function as an argument, R2 dynamically gener-
ates a stub for the function and passes on the address of
the upcall stub to the system layer. This way when later
the system layer invokes the upcall, it will invoke the up-
call stub.

For syscalls that return data through a pointer argu-
ment, R2 must record the data that is returned during
recording and copy that data into application space dur-
ing replay. To do so correctly, the developer must anno-
tate pointer arguments so that R2 knows what data should
be recorded and how the stubs must transfer data across
the syscall interface. Section 3 describes those annota-
tions.

R2 maintains a replay/system mode bit for each
thread to indicate whether the current thread is executing
in replay or system space (analog to user/kernel mode
bit). When the application in replay space invokes a
syscall, the syscall stub sets the replay/system mode bit
to system space mode, invokes the syscall, records its re-
sults, and restores the mode bit. Similarly, an upcall stub
records the arguments, sets the mode bit to replay space
mode, invokes the upcall, and restores the mode bit after
the upcall returns.

This bit allows R2 to handle a call from system space
to a function that is a syscall; if a syscall is called from
system space then it must be executed without record-
ing anything (e.g., a call to socket from system space).
Similarly, if a syscall is called from system space and it
has a function argument, then R2 will not generate an
upcall stub for that argument. It also allows R2 to apply
different policies to different spaces (e.g., allocate mem-
ory in a separate pool for code in replay space).

For functions that have state that straddles the bound-
ary between system and replay space (e.g., errno in
libc), the developer may be able to adjust the interface

198 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to avoid such state (see Section 2.2) or may be able to
duplicate the state by linking a static library (e.g., libc)
in each space.

2.4 Execution Control
The separation in replay space and system space allows
R2 to handle anonymous threads and threads that, for ex-
ample, the operating system creates to deliver events to
the application.

R2 starts as follows. When a user invokes R2 with
the application to be recorded, R2’s initial thread starts
in system space. It loads the application’s executable and
treats the main entry as an upcall (i.e., the main func-
tion is turned into an upcall by generating an upcall stub).
The stub sets the replay/system mode bit of the current
thread to replay space mode, and invokes main. R2 as-
signs the thread a deterministic tag, which the stubs will
also record. By this means, R2 puts the functions in the
call graph starting from main till the syscall interface
into replay space.

Anonymous threads that do not interact with the ap-
plication will be excluded from replay. These threads will
not call syscalls and upcalls and thus do not generate log
entries during recording and are not replayed. However,
if a thread started by the operating system performs an
upcall (e.g., to trigger an application registered Ctrl-C
handler on Windows), then the upcall stub will set the
mode bit; the thread will enter replay space, and its ac-
tions will be recorded.

During replay, R2 will replay this upcall, but the
thread for the upcall may not exist during replay. R2
solves this problem by creating threads on demand. Be-
fore invoking an upcall, R2 will first look up if the current
thread is the one that ran the upcall during recording (by
comparing the deterministic tag assigned by R2). If not,
R2 will create the thread.

For faithful replay, R2 must replay all syscalls and
upcalls in the same order as during a record run. In mul-
tithreaded programs (and single-threaded programs with
asynchronous I/O) there may be dependencies between
syscalls and upcalls. Section 4 introduces a few annota-
tions that allow R2 to preserve a correct order.

2.5 Memory Management
If a developer chooses malloc and free as syscalls,
R2 must ensure that addresses returned by malloc dur-
ing recording are also returned during replay. If the ad-
dresses returned by malloc during replay are different,
then during replay the bug that the developer is tracking
down might not show up (e.g., invalid value in cb->buf
will not be reproduced if a different cb is returned in
Figure 1 because the program crashes before it reaches
the buggy state). But, during replay, functions in system
space that called malloc during recording will not be

called during replay, and so malloc during replay is
likely to return a different value.

To ensure faithful replay application must have an
identical trace of malloc/free invocations to ensure
that addresses during recording and replay are the same.
R2 uses separate memory allocators for replay and sys-
tem space. A call to malloc allocates memory from
a dedicated pool if it is called in replay space (i.e., the
mode bit of the current thread is of replay space mode),
while it delegates the call to the original libc implemen-
tation if it is called in system space.

Memory addresses returned in system space may
change due to inherent differences between record and
replay, but those addresses are not observable in replay
space so they will not impose any problems during re-
play.

A challenge is addresses allocated in system space
but returned to replay space. For example, a syscall
to getcwd(NULL, 0) to get working directory path-
name may call malloc internally to allocate memory in
system space and return its address to replay space. To
ensure replay faithfulness R2 allocates a shadow copy in
the dedicated pool for replay space and returns it to the
application instead. R2 uses the annotation xpointer de-
scribed in Section 3 to annotate such functions.

Similar to Jockey [28], threads that may execute in
replay space have an extra stack allocated from the re-
play’s memory pool, and R2 switches the two stacks on
an upcall or syscall. This ensures that the memory ad-
dresses of local variables are the same during recording
and replay.

Like all other library-based replay tools, R2 does not
protect against a stray pointer in the application with
which the application accidentally overwrites memory
in system space. Such pointers are usually exposed and
fixed early in the development cycle.

Resources other than memory (e.g., files, sockets) do
not pose the same challenges as memory, as long as the
developer has chosen the interposed interface well. R2
does not have to allocate these resources during replay,
because the execution in replay space will touch these
resources only via syscalls, which R2 records. Memory
in contrast is changed by machine instructions, which R2
cannot record.

2.6 Stubs, Slots and Code Templates

R2 generates stubs from code templates. We have de-
veloped code templates for recording, replay, etc., but de-
velopers can add code templates for other operations that
they would like stubs to perform. To allow for this exten-
sibility, a stub is made of a number of slots, with each
slot containing a function that performs a specific oper-
ation. For example, there is a slot for recording, one for
replay, etc.

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 199

1 int recv (
2 [in] SOCKET s,
3 [out, bsize(return)] char *buffer,
4 [in] int len,
5 [in] int flags);

(a) annotated syscall/upcall prototype

1 BEGIN_SLOT(record_<?=$f->name?>, <?=$f->name?>)
2 logger << <?=$f->name?>_signature
3 << current_thr_tag;
4 <?if(is_syscall($f)) {?>
5 logger << return_val;<?}?>
6 <?$direction = is_syscall($f) ? ’out’:’in’;?>
7 <?foreach($f->params as $p) {
8 if ($p->has($direction)) {
9 if ($p->has(’bsize’)) {?>

10 logger.write(<?=$f->name?>,
11 <?=$p->val(’bsize’)?>);
12 <?} else {?>
13 logger << <?=$f->name?>;
14 <?}}}?>
15 END_SLOT

(b) record slot function template

1 BEGIN_SLOT(record_recv, recv)
2 logger << recv_signature << current_thr_tag;
3 logger << return_val;
4 logger.write(buffer, return_val);
5 END_SLOT

(c) generated record slot function

Figure 4: Templates (in PHP [2]) and Slots. R2 uses
record (and others like replay) code templates (e.g., (b))
to generate corresponding slot functions (e.g., (c)).

Figure 4 provides an overview of how a record slot
function is generated for the recv syscall. Developers
annotate the prototype of recv with keywords from Ta-
ble 1; for recv this step will result in the prototype in
Figure 4(a). (On Windows the developer does not have
to do any annotation for recv, because R2 reuses the
SAL annotations.) R2 uses a record template (see Fig-
ure 4(b)) to process the annotated prototype and produces
the record slot function (see Figure 4(c)).

3 DATA TRANSFERS

R2 provides a set of keywords to define the data trans-
fer at syscall and upcalls boundaries. These keywords
help R2 isolate the replay and system space. This sec-
tion presents the data transfer annotations and discusses
how R2 uses them to ensure replay faithfulness.

3.1 Annotations

The annotations for data transfers fall into the following
three categories.

Direction annotations define the source and destina-
tion of a data transfer. In Figure 4, keyword in on s and
len indicates that they are read-only and transfer data
into function recv, while out on buffer indicates that
recv fills the memory region at buffer and transfers

1 BOOL
2 [prepare(lpOverlapped, lpBuffer)]
3 ReadFileEx (
4 [in] HANDLE hFile,
5 [out] LPVOID lpBuffer,
6 [in] DWORD nNumberOfBytesToRead,
7 [in] LPOVERLAPPED lpOverlapped,
8 [in, callback]
9 LPOVERLAPPED_COMPLETION_ROUTINE completionCb);

10

11 typedef void
12 [commit(lpOverlapped, cbTransferred)]
13 (* FileIOCompletionRoutine) (
14 [in] DWORD dwErrorCode,
15 [in] DWORD cbTransferred,
16 [in] LPOVERLAPPED lpOverlapped);
17

18 BOOL
19 [commit(lpOverlapped, cbTransferred)]
20 GetOverlappedResult(
21 [in] HANDLE hFile,
22 [in] LPOVERLAPPED lpOverlapped,
23 [out] LPDWORD cbTransferred,
24 [in] BOOL bWait);

Figure 5: Asynchrony annotations: prepare indicates
that ReadFileEx issues an asynchronous I/O request
keyed by lpOverlapped, the completion of which
is notified as either FileIoCompletionRoutine
or GetOverlappedResult; commit indicates the re-
quest keyed by lpOverlapped is completed and the
transferred data size is cbTransferred.

data out of the function. The return value of a function is
implicitly annotated as out.

Buffer annotations define how R2 should serialize
and deserialize data being transferred for record and re-
play. For buffer in a contiguous memory region in Fig-
ure 4, which is frequently seen in systems code, key-
word bsize specifies the size, (e.g., bsize(return)), so
that R2 can then automatically serialize and deserial-
ize the buffer. For other irregular data structures such as
linked lists (e.g., struct hostent, the return type of
gethostbyname), R2 requires developers to provide
customized serialization and deserialization via operator
overloading on streams, which is a common C++ idiom.

Asynchrony annotations define asynchronous data
transfers that finish in two calls, rather than in one.
For example, in Figure 5 ReadFileEx issues an
asynchronous I/O request keyed by lpOverlapped,
which we call a request key. Developers use keyword
prepare to annotate the syscall with the request key
and the associated buffer lpBuffer. The completion
of the request will be notified via either an upcall to
FileIoCompletionRoutine (line 13) or a syscall
to GetOverlappedResult (line 20), when the as-
sociated buffer has been filled in system space. In ei-
ther case, developers use keyword commit to anno-
tate it with the request key and transferred buffer size
cbTransferred. R2 can then match lpBufferwith
its size cbTransferred via the request key for record

200 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

and replay.
As mentioned in Section 2.5, some syscalls allocate

a buffer in system space and the application may use the
buffer in replay space. R2 provides the keyword xpointer
to annotate this buffer, and will allocate a shadow buffer
in replay space for the application, at both record and
replay time. Data are copied to the shadow buffer from
the real buffer in system space during recording, and
from logs during replay. While data copy may add some
overhead during recording, this kind of syscalls is infre-
quently used in practice.

Most such syscalls allocate new buffers locally and
usually have paired “free” syscalls (e.g., getcwd and
free, getaddrinfo and freeaddrinfo). Some
others without paired “free” functions may return thread-
specific or global data, such as gethostbyname and
GetCommandLine. They should be annotated with
xpointer(thread) and xpointer(process), respectively.

3.2 Code Generation

Figure 4 illustrates the record slot code template and the
final record slot function for recv. The record slot func-
tions log all the data transmitted from R2 system space
to R2 replay space. The slot template (Figure 4(b)) gen-
erates code for recording the return value only when pro-
cessing R2 syscalls (line 4). When scanning the parame-
ters, it will record the data transfer according to the event
type and annotated direction keywords (line 6 and 8).
Specifically for upcalls, the input parameters and upcall
function pointers are recorded so that R2 can execute
the same callback with the same parameters (including
memory pointers) during replay.

For prototypes annotated with prepare, the record
slot template will skip recording the buffer. Instead, R2
uses another slot template to generate two extra record
and replay slots for each prototype. One is for recording
the buffer (including the buffer pointers), and the other is
for replaying the buffer, which reads the recorded buffer
pointers and fills them with the recorded data. These two
slots will be plugged into stubs for prototypes labeled
with commit at the record and replay phases, respec-
tively. This approach ensures that the memory addresses
during replay are identical to the ones returned during
recording for asynchronous I/O operations.

4 EXECUTION ORDERS

For faithful replay, R2 must replay all syscalls and up-
calls in the same order as during a record run. For single-
threaded programs asynchronous I/O raises some chal-
lenges. For multithreaded programs that run on multipro-
cessors, recording the right order is more challenging,
because syscalls and upcalls can happen concurrently,
but dependencies between syscalls and upcalls executed

1 BOOL
2 [sync(hMutex)]
3 ReleaseMutex (
4 [in] HANDLE hMutex);
5

6 DWORD
7 [sync(hMutex)]
8 WaitForSingleObject (
9 [in] HANDLE hMutex,

10 [in] DWORD dwMilliseconds);

Figure 6: Syscall-syscall causality annotations using
sync. R2 serializes the syscall events with the same sync
key hMutex to obtain an event order, and the causali-
ties between these events are implicitly held by the event
sequence.

by different threads must be maintained. R2 provides de-
velopers with two annotations to express such dependen-
cies. This section describes how R2 handles the record-
ing and replay execution order.

4.1 Event Definition

In R2 there are three events: syscalls, upcalls, and causal-
ities. R2 uses the causality events to enforce the happens-
before relation between events executed by different
threads. Consider the following scenario: one thread uses
a syscall to put an object in a queue, and later a second
thread uses another syscall to retrieve it from the queue.
During replay the first syscall must always happen before
the second one; otherwise, the second syscall will receive
an incorrect result. Using annotations, these causalities
are captured in causality events. A causality event has
a source event e1 and a destination event e2, which cap-
tures e1 ≺ e2. R2 generates a slot function that it stores
in both e1 and e2’s stubs, which will cause the causality
event to be replayed when R2 replays e1 and e2.

R2 captures two types of causality events:

• syscall-syscall: a syscall depends on an earlier one,
e.g., signal and wait;

• syscall-upcall: a syscall registers a callback that is
executed later as an upcall.

To capture syscall-syscall causality, R2 provides the
keyword sync to annotate syscalls that operate on the
same resource. Figure 6 presents an example, where a
call to WaitForSingleObject that acquires a mu-
tex depends on an earlier call to ReleaseMutex that
releases it. Developers can then annotate them with
sync(hMutex). We call the mutex hMutex a sync key.
R2 creates causality events for syscalls with the same
sync key. In addition to mutexes, a sync key can be
any expression that refers to a unique resource. For
asynchronous I/O operations (see Figure 5), R2 uses
lpOverlapped as the sync key.

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 201

1 HANDLE CreateThread (
2 [in] LPSECURITY_ATTRIBUTES lpThreadAttributes,
3 [in] SIZE_T dwStackSize,
4 [in, callback] LPTHREAD_START_ROUTINE lpStartCb,
5 [in] LPVOID lpParameter,
6 [in] DWORD dwCreationFlags,
7 [out] LPDWORD lpThreadId);

Figure 7: A syscall-upcall causality annotation us-
ing callback. R2 converts the callback argument
lpStartCb into an upcall stub; when the upcall is de-
livered, the syscall-upcall causality will be captured.

1: ⊲ c(t0) ← 0
2: procedure UPDATECLOCKUPONEVENT(e)
3: if e.type = CAUSALITY EVENT then
4: c(t) ← max(c(e.source),c(t))+1
5: c(e) ← c(t)
6: else
7: c(t) ← c(t)+1
8: c(e) ← c(t)
9: end if

10: end procedure

Figure 8: Algorithm for calculating event clocks. The
procedure is invoked when processing every event.

For syscall-upcall causality, developers can use the
keyword callback to mark the dependency, as illustrated
in Figure 7. R2 generates a causality event for the syscall
to CreateThread and the upcall to lpStartCb.

4.2 Recording Event Order

R2 uses a Lamport clock [18] to timestamp all events and
uses that timestamp to replay. It assigns each thread t a
clock c(t) and each event e a clock c(e). Figure 8 shows
R2’s algorithm to calculate the Lamport clock for each
event.

During recording, R2 first sets the clock of the main
thread to 0 (line 1). Then, when an event is invoked, R2
calculates the clock for that event using the procedure
UPDATECLOCKUPONEVENT. For non-causality events,
R2 simply increases the current thread’s clock by one
(line 7) and then assigns that value to the event (line 8).

For a causality event, R2 updates the current thread’s
clock to the greater value of itself and the clock from the
source event of the causality (note that e ← e.source ≺

e.destination), and increases it by one (line 4). R2 also
assigns this value to the causality event (line 5).

When a thread invokes the destination event of a
causality event, R2 first runs the slot function for the
causality event, which invokes UPDATECLOCKUPON-
EVENT with the causality event as argument. This will
cause the clock of the causality event to be propagated to
the thread (line 7 in Figure 8).

There are several possible execution orders that pre-
serve the happens-before relation, as we discuss next.

4.3 Replaying Event Order
R2 can use two different orders to record and replay
events: total-order and causal-order. Total-order execu-
tion can faithfully replay the application, but may slow
down multithreaded programs running on a multiproces-
sor, and may hide concurrency bugs. Causal-order exe-
cution allows true concurrent execution, but may replay
incorrectly if the program has race conditions.

4.3.1 Total-Order Execution

Like liblog [10], in total-order execution mode, R2
uses a token to enforce a total order in replay space, in-
cluding execution slices that potentially could be exe-
cuted concurrently by different threads. During record-
ing when a thread enters replay space (i.e., returning
from a syscall or invoking an upcall), it must acquire
the token first and calculate a timestamp if an upcall is
present. When a thread leaves replay space (i.e., invoking
a syscall), R2 assigns a timestamp to the syscall and then
releases the token. On a token ownership switch R2 gen-
erates a causality event to record that the token is passed
from one thread to another. This design serializes execu-
tion in replay space during recording, although threads
executing in system space remain concurrent. The result
is a total order on all events.

During replay, R2 replays in the recorded total or-
der. As it replays the events, R2 will dynamically create
new threads for events executed by different threads dur-
ing recording (as described earlier in Section 2.4). It will
ensure that these threads execute in the same order as
enforced by the token during recording. The reason to
use multiple threads, even though the execution in replay
space has been serialized, is that developers may want
to pause a replay and use a standard debugger to inspect
the local variables of a particular thread to understand
how the program reached the state it is in. In addition,
using multiple threads during replay ensures that thread-
specific storage works correctly.

4.3.2 Causal-Order Execution

Causal-order execution, however, allows threads to
execute in parallel in both replay and system space. R2
does not impose a total order in replay space, it just cap-
tures the causalities of syscall-syscall and syscall-upcall.
Therefore the application will achieve the same speedup
in causal-order execution.

To implement causal-order execution, R2 reuses the
replay facility for total-order execution. R2 processes the
causal-order event log before replay, uses a log converter
to translate the event sequences into any total order that
preserves all causalities, and replays using the total-order

202 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

execution. If the program has an unrecorded causality
(e.g., data race), R2 cannot guarantee to replay these
causalities faithfully in causal-order execution. We have
not fully implemented the log converter yet, since our fo-
cus is replaying distributed applications and total-order
execution has been good enough for this purpose.

5 DEFINING YOUR OWN SYSCALLS

We have annotated a large set of Win32 API calls for
R2 to support most Windows applications without any
effort from developers, including those required to be
annotated with xpointer, prepare, commit, and sync.
Sometimes developers may want to define their own
syscalls, either to enclose nondeterminism in syscalls
(e.g., rdtsc, spin lock cases in Section 2.2) or to re-
duce recording overhead. In this section we use MPI and
SQLite as examples to explain how to do this in general.

5.1 MPI

MPI is a communication protocol for programming par-
allel computing applications. An MPI library usually has
nondeterminism that cannot be captured by intercepting
Win32 functions (e.g., MPICH [4] uses shared-memory
and spinlocks for interprocess communication). To re-
play MPI applications, this nondeterminism must be en-
capsulated by R2 syscalls. Therefore, we annotate all
MPI functions as syscalls, making the entire MPI library
run in system space. Since the MPI library is well encap-
sulated by these MPI functions, doing this ensures that
both rules in Section 2.2 are satisfied.

Annotating MPI functions is an easy task. Most func-
tions only require the in and out annotations at pa-
rameters. Several “non-blocking” MPI functions (e.g.,
MPI Irecv and MPI Isend) use asynchronous data
transfer, which is easily captured using the prepare
and commit annotations. Figure 9 shows the annotated
MPI Irecv and MPI Wait, which issue an asyn-
chronous receive and wait for the completion notifica-
tion, respectively. These functions are associated based
on the request parameter by the annotations. Sec-
tion 8.2 presents the number of annotations needed.

5.2 SQLite

SQLite [3] is a widely-used SQL database library. A
client accesses the database by invoking the SQLite API.
Using Win32 level syscalls, R2 can faithfully replay
SQLite client applications. Additionally, developers can
add the SQLite API to R2 syscalls so that R2 will record
the outputs of SQLite API, and avoid recording file op-
erations issued by the SQLite library in system space.

In certain scenarios, recording at the SQLite API
layer can dramatically reduce the log size, compared
with recording at the Win32 layer. For example, some

1 int
2 [prepare(request, buf)]
3 MPI_Irecv (
4 [out, bsize(MPISize(type, count))] void *buf,
5 [in] int count,
6 [in] MPI_Datatype type,
7 [in] int source,
8 [in] int tag,
9 [in] MPI_Comm comm,

10 [out] MPI_Request *request);
11

12 int
13 [commit(request)]
14 MPI_Wait (
15 [in] MPI_Request *request,
16 [out] MPI_Status *status);

Figure 9: Example of asynchrony annotations on MPI
functions. The size of the returned buffer at commit is by
default the registered bsize at prepare in MPI Irecv.

1 int sqlite3_prepare (
2 [in] sqlite3 * db,
3 [in] const char * zSql,
4 [in] nByte,
5 [out] sqlite3_stmt ** ppStmt,
6 [out] const char ** pzTail);
7

8 int sqlite3_column_int (
9 [in] sqlite3_stmt * pStmt,

10 [in] iCol);

Figure 10: Example of annotated SQLite functions.

SELECT queries may scan a large table but return only
a small portion of matched results. For these queries,
recording only the final results is more efficient than
recording all data fetched from database files. Section 8.4
shows the performance benefits of this approach.

Figure 10 shows two annotated SQLite functions:
sqlite3 prepare and sqlite3 column int are
typical routines for compiling a query and retrieving col-
umn results, respectively.

6 ANNOTATIONS FOR OPTIMIZATION

In this section, we introduce two additional annotation
keywords to optimize R2’s performance.

Cache annotation. By inspecting logs we find that
a few syscalls are invoked much more frequently than
others—more than two orders of magnitude. Also, most
of them return only a status code that does not change
frequently (e.g., GetLastError on Windows returns
zero in most cases). To improve recording performance
R2 introduces keyword cache to annotate such syscalls.
Every time a syscall annotated with cache returns a status
code, R2 compares the value with the cached one from
the same syscall; only when it changes will R2 record the
new value in the log and update the cache. An Apache
experiment in Section 8.5.1 shows that this optimization
reduces the log size by a factor of 17.66%.

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 203

Manually Coded Modules kloc
annotation parser & code generator 4.1
core (interception, isolation, slot) 1.3
upcall (callback) 0.7
causality (sync) 1.9
aio (prepare/commit) 1.3
record-replay (memory, data, event) 10.2
Total 19.5

Automatically Generated Modules kloc
callback.Win32 3.6
causality.Win32 2.9
aio.Win32 1.9
R2.Win32 102.0
R2.app.specific -
Total 110.2

Table 2: R2 modules.

Reproduce annotation. Some application data can
be reproduced at replay time without recording. Consider
a BitTorrent node that receives data from other peers and
writes them to disk. It also reads the downloaded data
from disk and sends them to other peers. It is safe to
record all input data for replay, i.e., both receiving from
network and reading from disk. However, R2 need not
record the latter. Developers can use keyword reproduce
to annotate file I/O syscalls in this case. R2 then gener-
ates stubs from a specific code template, to re-execute or
simulate I/O operations, instead of recording and feed-
ing. Network I/O, such as intra-group communications
of an MPI application, can be reduced similarly [33].
Section 8.5.2 and 8.5.3 show that this optimization can
reduce log sizes ranging from 13.7% to 99.4% for Bit-
Torrent and MPI experiments.

7 IMPLEMENTATION

R2 is decomposed into a number of reusable modules.
Table 2 lists each module and lines of code (loc). In sum,
we have manually written 19 kloc; 110 kloc are gener-
ated automatically for R2’s Win32 layer implementation.

We have annotated more than one thousand Win32
API calls (see statistics in Table 4). Although this well
covers commonly-used ones, Win32 has a much wider
interface, and we may still have missed some used by ap-
plications. Therefore, we have built an API checker that
scans the application’s import table and symbol file to
detect missing API calls when an application starts.

During replay R2 may still fail because of some un-
recorded non-determinisms, e.g., data races not enclosed
by R2 syscalls. Since non-determinisms usually lead to
different control flow choices thus different syscall invo-
cation sequences, R2 records the syscall signature (e.g.,

Category Software Package
web server Apache, lighttpd, Null HTTPd
database SQLite, Berkeley DB, MySQL
distributed system libtorrent, Nyx, PacificA
virtual machine Lua, Parrot, Python
network client cURL, PuTTY, Wget
misc. zip, MPICH

Table 3: Software packages successfully replayed.

name) and checks it during replay (check whether the
current invoked syscall has the same signature with that
from the log). By this means, R2 can efficiently detect the
mismatch at the first time when R2 gains control after the
deviation. When a mismatch is found, R2 reports the cur-
rent Lamport clock and the mismatch. The developer can
then replay the application again with a breakpoint set at
the Lamport clock value minus one. When the breakpoint
is hit, the developer can then examine how the program
reached a different state during replay, and fix the prob-
lem (e.g., by adjusting the interposed interface). We have
found that this approach works well to debug the R2 in-
terface.

8 EVALUATION

We have used R2 to successfully replay many real-
world applications. Table 3 summarizes an incomplete
list. Most of the applications are popular system ap-
plications, such as multi-threaded Apache and MySQL
servers, which we believe R2 is the first to replay. Nyx [7]
is a social network computation engine for MSN and
PacificA [19] is a structured storage system similar to
Google Bigtable [6], both of which are large, complex
distributed systems and have used R2 for replay debug-
ging. The implementation of these applications requires
addressing the challenges mentioned in Section 2.

This section answers the following questions.

• How much effort is required to annotate the syscall-
upcall interface?

• How important are annotations to successful replay
of applications?

• How much does R2 slowdown applications during
recording?

• How effective are custom syscall layers and anno-
tations (cache and reproduce) in reducing log size
and optimizing performance?

Similar to previous replay work, we do not evalu-
ate the replay performance, because replay is usually
an interactive process. However, the replayed applica-
tion without any debugging interaction runs much faster

204 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Interface #func in out bsize cb xptr pr ci sync cache reproduce #serial kloc
Win32 1,301 1,100 631 168 53 11 17 4 30 2 3 7 110.2
MPI 191 171 150 20 6 4 6 4 1 0 4 5 22.2
SQLite 153 150 16 4 19 3 0 0 7 0 0 0 15.7

Table 4: Information about annotations and code generation. Columns with annotation keywords show the number
of functions for each keyword. Keywords callback, xpointer, prepare, commit, are abbreviated to cb, xpr, pr, ci,
respectively. The last two columns list the number of functions that require customized (de)-serialization, and lines of
automatically generated code, respectively.

than when recording (e.g., a replay run of BitTorrent file
downloading is 13x faster).

8.1 Experimental Setup

All experiments are conducted on machines with 2.0
GHz Xeon dual-core CPU, 4 GB memory, two 250 GB,
7200 /s disks, running Windows Server 2003 Service
Pack 2, and interconnected via a 1 Gbps switch. Unless
explicitly specified, the application data and R2 log files
are kept on the same disk; the record run uses total-order
execution; all optimizations (i.e., cache and reproduce)
are turned off.

8.2 Annotation Effort

We annotated the first set (500+ functions) of the Win32
syscall interface within one person-week, and then anno-
tated as needed. We reused in, out, bsize, and callback
from the Windows Platform SDK, and manually added
the other annotations (i.e., xpointer, prepare, commit,
sync); we manually annotated only 62 functions.

We found that once we decided how to annotate
a few functions for a particular programming concept
(e.g., asynchronous I/O, or synchronization), then we
could annotate the remaining functions quickly. For ex-
ample, after we annotated the file-related asynchronous
I/O functions, we quickly went through all the socket re-
lated asynchronous I/O functions.

For the two other syscall interfaces, MPI and SQLite
(discussed in Section 5), we spent two person-days an-
notating each before R2 could replay MPI and SQLite
applications. The first four keywords (in, out, bsize, and
callback) are trivial and cost us little time, and we mainly
spent our time on other annotations and writing cus-
tomized (de)-serialization functions.

Table 4 lists for the three syscall interface the anno-
tations used, how many functions used them, the number
of functions that needed customized (de)-serialization,
and the lines of code auto generated (approximately 148
kloc). The table shows that the annotations are important
for R2; without them it would have been a tedious and
error-prone job to manually write so many stubs.

Configuration Request#/s Slowdown Log rate
native 1242.23 - -
stub only 1241.75 0.04% -
log 1125.58 1.34% 0.760
causal-order 1197.52 3.60% 1.114
total-order 1129.94 9.04% 0.781

Table 5: Apache performance under different R2 con-
figurations (cache on). Log rate is measured in KB/req.
Client concurrency level is 50 and the download file size
is 64 KB.

8.3 Performance

We measure the recording performance of R2 using
the Apache web server 2.2.4 with its default configura-
tion (250 threads) and the standard ApacheBench client,
which is included in the same package.

Table 5 shows the reduction in request throughput
and the log overhead under different R2 configurations.
We use ApacheBench to mimic 50 concurrent clients, all
of which download 64 KB static files (which is a typical
web page size). Each configuration in the table executes
500,000 requests. As we can see, the stub, the logger, and
the causal-order execution have little performance im-
pact; the total-order execution imposes a slowdown up to
9.04%, which we believe to be acceptable for the purpose
of debugging. The log produced for each request is ap-
proximately 0.8 KB, slightly bigger for causal-order ex-
ecution mode since it needs to log more causality events.

Figure 11 shows the results for total-order and causal-
order configurations, with a varied number of concurrent
clients and file size. We see that when the download file
is larger, the slowdown is smaller. This is because the
larger file size means that the execution in replay space
costs less CPU time, and the slow down imposed by total
order execution is less. For the smallest size of 16KB we
tested, the average slowdown for all concurrency levels
is 11.2% under total-order configuration and 4.9% under
causal-order configuration.

In addition to Apache, we have also measured the
performance of many other applications while recording.
The slowdown for most cases is moderate (e.g., 9% on

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 205

1500

2000

2500

3000

16K/native

16K/co-log

16K/to-log

64K/native

0

500

1000

1500

10 20 30 40 50 80 100

64K/native

64K/co-log

64K/to-log

256K/native

256K/co-log

256K/to-log

Figure 11: Apache performance using total-order and
causal-order configurations, with a varied number of
concurrent clients and file size.

100

1000

lo
g

si
ze

 (M
B)

win32
sqlite

1

10

file mem

lo
g

si
ze

 (M
B) 40

60

ti
m

e
(s

)

win32
sqlite
native

0

20

file mem

ti
m

e
(s

)

Figure 12: SQLite log size and execution time at Win32
and SQLite interfaces using FILE and MEM configura-
tions.

average for the standard MySQL benchmark [12]). There
are exceptions, such as the SQLite case below. The per-
formance of these exceptions, however, can be improved
using either customized syscall layer or optimization an-
notations.

8.4 Customized Syscall Layers

This section evaluates the performance of R2 for SQLite
using two syscall layers, i.e., Win32 and SQLite, which
was discussed in Section 5.2.

We adopted a benchmark from Nyx [7], which cal-
culates the degree distribution of user connections in a
social network graph. The calculation is expressed as
a query: SELECT COUNT(*) FROM edge GROUP
BY src uid. We perform the query 10 times, and mea-
sure log size as well as execution time. The data set con-
tains 156,068 edges and is stored in SQLite; the file size
is approximately 3 MB.

By default SQLite stores temporary tables and in-
dices in files; it can store them in memory by setting an
option. We use FILE and MEM to name the two config-
urations. Other options are default values.

Figure 12 shows log size and execution time for
recording at the two syscall layers, respectively. In ei-
ther configuration, recording at the Win32 interface pro-
duces much larger logs (890 MB and 35 MB), compared
to recording at the SQLite interface (only 3 MB). The

Cached Syscalls Call# Miss# Hit Ratio
GetLastError 618,015 99,948 83.82%
CloseHandle 150,016 2 99.99%
setsockopt 150,003 1 99.99%
FindClose 100,147 2 99.99%
WaitForSingleObject 100,014 4 99.99%
Total 1,118,195 99,957 91.06%

Table 6: Apache cached syscalls with cache miss and hit
statistics. Client concurrency level is 50 and download
file size is 64 KB.

slowdown factors of recording at the two interfaces are
126.3% and 9.6% under FILE, 17.8% and 7.3% under
MEM, respectively.

Note that the recording at the SQLite interface pro-
duces the same size of log for the two configurations,
because the SQL layer does not involve file I/O and the
log size is not effected by the configurations.

From these results we can see that recording at the
SQLite layer can reduce log overhead and improve per-
formance, if for a query SQLite must perform I/O fre-
quently.

8.5 Optimization Annotations

As discussed in Section 6, R2 introduces two annotation
keywords to improve its performance. We evaluate them
in this section.

8.5.1 The cache Annotation

We use the Apache benchmark again to evaluate the
cache annotation. The experiment runs R2 in total-order
execution mode. The client’s concurrency level is 50 and
the file downloaded is 64 KB. Profiling Apache shows
that 5 out of 61 syscalls contribute more than 50% of
syscall. We use the cache annotation for these syscalls.
Table 6 shows how many times these syscalls were in-
voked and did not hit the cache in one test run. We see
that the return values of these syscalls were mostly in the
cache, and that the average hit ratio is 91.06%. This re-
duced the log size from 21.99 MB to 18.1 MB (approx-
imately 17.66% reduction). We applied the cache opti-
mization to only five syscalls, but we could gain more
benefits if we annotated more syscalls.

8.5.2 Reproduced File I/O

As discussed in Section 6, when the reproduce anno-
tation is used for file I/O when recording BitTorrent, the
file content that is read from a disk is not recorded, and
the related file syscalls are re-executed during replay.

We use a popular C++ BitTorrent implementation
libtorrent [1] to measure the impact of this annotation.
The experiment was conducted on 11 machines, with one

206 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

550

600

650

700

750

800

850

900

950

1 2 3 4 5 6 7 8 9 10

fi
n

is
h

 t
im

e
 (

s)

nodes (sorted)

native

record

record (reproduce)

Figure 13: Finish time of 10 BitTorrent nodes in runs of
native, record without and with reproduced I/O optimiza-
tion.

seed and 10 downloaders. The seed file size was 4 GB;
the upload bandwidth was limited to 8 MB/s. R2 ran in
total-order mode with cache optimization off.

The average log sizes of the recording run with-
out and with the reproduce annotation are 17.1 GB and
5.4 GB, respectively. The optimization reduces the log
size by 68.2%. Relative to the 4 GB file size, the two
cases introduce 297.5% and 26.4% log size overhead, re-
spectively.

Figure 13 presents the finish time of the 10 down-
loaders for a native run, as well for recorded runs with-
out and with the reproduce annotation. On average, the
slowdown factors of recording without and with the an-
notation are 28% and 3%, respectively. We can see that
the reproduce annotation is effective when recording I/O
intensive applications, reducing both the log and perfor-
mance overhead.

8.5.3 Reproduced Network I/O

We use the MPI syscall layer to evaluate the bene-
fit of the reproduce annotation for network I/O. The ex-
periment was conducted in our MPI-replay project [33],
which uses R2. We annotated MPI functions using
the reproduce annotation so that the messages are not
recorded but reproduced during replay. Table 7 shows the
effectiveness for two typical MPI benchmarks: GE [14]
and PU [11]. We see that the client process of PU gains
much benefit from this keyword; the log size is reduced
by more than 99.4%. For GE, it also results in a log size
reduction, but of about 13.7%.

9 RELATED WORK

R2 borrows many techniques from previous replay tools,
in particular from library-based ones. This section relates
R2 to them in more detail.
Library-based replay. Several replay tools use a library-
based approach. The closest work is Jockey [28] and li-

w/o opt (MB) w/ opt (MB) Ratio
node 0 node 1 node 0 node 1

GE 55.3 55.3 47.7 47.7 86.3%
PU 4.5 1170.0 5.7 1.7 0.6%

Table 7: Reproduced network I/O optimization on MPI.
“Ratio” is the log size with this optimization compared
that without. The other fields are R2 log size on each
node.

blog [10], where a runtime user-mode library is injected
into a target application for record and replay. We bor-
row many ideas from these tools (e.g., using a token to
ensure total-order execution) but extend the library-based
approach to a wider range of applications using stricter
isolation (inspired by operating system kernel ideas), by
flexible customization of the record and replay interface,
by annotations, and automatic generation of stubs.

R2 also isolates the application from the tool in a
different way. For example, Jockey tries to guarantee
that the application behaves the same with and without
record and replay, and liblog shares the same goal. Con-
sequently, they both send the memory requests from the
tool to a dedicated memory region to avoid changing
the memory footprint of the application. As discussed in
Section 1, R2 aims for replay faithfulness instead, and it
manages memory requests from the application.

Jockey and liblog have a fixed interface for record
and replay (a mix of system and libc calls); any nonde-
terminism that is not covered will cause replay to fail.
R2 enables developers to annotate such cases using key-
words on functions of higher-level interfaces to enclose
nondeterminism.

On the implementation side, both Jockey and li-
blog have manually implemented many stubs (100+);
R2’s more automatic approach makes it easier to sup-
port a wider range of syscalls. For example, Jockey does
not support multithreading; liblog also does not support
asynchronous I/O and other functions.

RecPlay [25] captures causalities among threads by
tracking synchronization primitives. R2 uses that idea
too, but also captures other causalities (e.g., syscall-
upcall causalities). RecPlay uses a vector clock during
replay and can detect data races. This feature could be
useful to R2 too.

Another library-based approach but less related is
Flashback [29], which modifies the kernel and records
the input of the application at system call level. Since it
is implemented as a kernel driver, it is less easy to deploy
and use than R2.
Domain-specific replay. There are a large number of
replay tools focusing on applications using restricted
programming models, such as distributed shared mem-

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 207

ory [27] or MPI [26], or in specific programming lan-
guages such as Standard ML [30] or Java [17]. This ap-
proach is not suitable for the system applications that R2
targets. In fact, we built a replay tool before [21], which
relies on the programmers to develop their applications
using our own home-grown API. The limitation of this
work propelled us to design and build R2.
Whole system replay. A direct way to support legacy
applications is to replay the whole system, including the
operating system and the target applications. A set of re-
play tools aim at this target, either using hardware sup-
port [32, 24, 23] or virtual machines [8, 16, 5]. They
can replay almost every aspect of an application’s envi-
ronment faithfully, including scheduling decisions inside
the operating system, which makes them suitable to de-
bug problems such as race conditions. They can achieve
similar performance as R2; ReVirt [8], for instance, has
a slowdown of 8% for rebuilding the kernel or running
SpecWeb99 benchmarks. However, they can be inconve-
nient and expensive to deploy. For example, developers
must create a virtual machine and install a copy of the
operating system to record and replay an application.
Annotations. Annotations on functions are widely used
in many fields. For example, a project inside Mi-
crosoft uses SAL and static analysis to find buffer
overflows [13]. Instead, SafeDrive [34] inserts runtime
checks where static analysis is insufficient according to
the annotations. While they all focus on finding bugs, R2
uses annotations to understand function side effects, and
generates code to record and replay them.
Enforcing isolation with binary instrumentation.
XFI [9] is a protection system which uses a combina-
tion of static analysis with inline software guards that
perform checks at runtime. It ensures memory isolation
by introducing external checking modules to check sus-
picious memory accesses at runtime. Because XFI mon-
itors the memory access at instruction level, its overhead
varies from 5% to a factor of two, depending on how the
static analysis works and also the benchmark. R2 isolates
at function interfaces and targets replay, which allows it
to be more loose in its isolation in some ways (i.e., it does
not have to protect against attacks), but more strict in
other ways (i.e., memory addresses cannot change from
recording to replay).

10 CONCLUSION

R2 uses kernel ideas to split an application’s address
space into a replay and a system space, allowing strict
separation between the application and the replay tool.
With help from the developer, who specifies some an-
notations on the syscall interface, R2 carefully man-
ages transitions between replay and system space at the
syscall interface, and isolates resources (e.g., threads and
memory) within a space.

The annotations also allow R2 to generate syscall
and upcall stubs from code templates automatically,
and make it easy for developers to choose different
syscall/upcall interfaces (e.g., MPI or SQLite). It also
allows developers to enclose nondeterminism and avoid
shared state between replay and system space. Annota-
tions for optimizations can reduce the record log size and
improve performance.

By using these ideas R2 extends recording and replay
to applications that state-of-the-art library-based replay
tools cannot handle. R2 has become an important tool for
debugging applications, especially distributed ones, and
a building block for other debugging tools, such as run-
time hang cure [31], distributed predicate checking [20],
task hierarchy inference [22], and model checking.

ACKNOWLEDGMENT

We thank Alvin Cheung, Evan Jones, John McCullough,
Robert Morris, Stefan Savage, Alex Snoeren, Geoffrey
Voelker, our shepherd, David Lie, and the anonymous
reviewers for their insightful comments. Thanks to our
colleagues Matthew Callcut, Tracy Chen, Ruini Xue, and
Lidong Zhou for valuable feedback.

REFERENCES

[1] libtorrent 0.11. http:
//libtorrent.sourceforge.net/.

[2] PHP: Hypertext preprocessor.
http://www.php.net/.

[3] SQLite 3.5.8. http://www.sqlite.org/.

[4] D. Ashton and J. Krishna. MPICH2 Windows
Development Guide. Argonne National
Laboratory, 2008.

[5] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards,
R. Murray, M. Drinić, D. Mihoc̆ka, and J. Chau.
Framework for instruction-level tracing and
analysis of program executions. In VEE, 2006.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,
D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber. Bigtable: A distributed storage
system for structured data. In OSDI, 2006.

[7] Y. Chen, T. Chen, M. Chen, and Z. Zhang. Islands
in the MSN Messenger buddy network. In
SocialNets, 2008.

[8] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and
P. M. Chen. ReVirt: Enabling intrusion analysis
through virtual-machine logging and replay. In
OSDI, 2002.

208 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[9] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu,
and G. C. Necula. XFI: Software guards for
system address spaces. In OSDI, 2006.

[10] D. Geels, G. Altekar, S. Shenker, and I. Stoica.
Replay debugging for distributed applications. In
USENIX, 2006.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
high-performance, portable implementation of the
MPI message passing interface standard. Parallel
Computing, 22(6):789–828, 1996.

[12] Z. Guo, X. Wang, X. Liu, W. Lin, and Z. Zhang.
Towards pragmatic library-based replay. Technical
Report MSR-TR-2008-02, Microsoft Research,
2008.

[13] B. Hackett, M. Das, D. Wang, and Z. Yang.
Modular checking for buffer overflows in the large.
In ICSE, 2006.

[14] Z. Huang, M. K. Purvis, and P. Werstein.
Performance evaluation of view-oriented parallel
programming. In ICPP, 2005.

[15] G. Hunt and D. Brubacher. Detours: Binary
interception of Win32 functions. In USENIX
Windows NT Symposium, 1999.

[16] S. T. King, G. W. Dunlap, and P. M. Chen.
Debugging operating systems with time-traveling
virtual machines. In USENIX, 2005.

[17] R. Konuru, H. Srinivasan, and J.-D. Choi.
Deterministic replay of distributed Java
applications. In IPDPS, 2000.

[18] L. Lamport. Time, clocks and the ordering of
events in a distributed system. CACM,
21(7):558–565, 1978.

[19] W. Lin, M. Yang, L. Zhang, and L. Zhou.
PacificA: Replication in log-based distributed
storage systems. Technical Report
MSR-TR-2008-25, Microsoft Research, 2008.

[20] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian,
J. Tang, M. Wu, M. F. Kaashoek, and Z. Zhang.
D3S: Debugging deployed distributed systems. In
NSDI, 2008.

[21] X. Liu, W. Lin, A. Pan, and Z. Zhang. WiDS
checker: Combating bugs in distributed systems.
In NSDI, 2007.

[22] H. Mai, C. Gao, X. Liu, X. Wang, and G. M.
Voelker. Towards automatic inference of task
hierarchies in complex systems. In HotDep, 2008.

[23] S. Narayanasamy, C. Pereira, and B. Calder.
Recording shared memory dependencies using
Strata. In ASPLOS, 2006.

[24] S. Narayanasamy, G. Pokam, and B. Calder.
BugNet: Continuously recording program
execution for deterministic replay debugging. In
ISCA, 2005.

[25] M. Ronsse and K. D. Bosschere. RecPlay: A fully
integrated practical record/replay system. TOCS,
17(2):133–152, 1999.

[26] M. Ronsse, K. D. Bosschere, and J. C.
de Kergommeaux. Execution replay for an
MPI-based multi-threaded runtime system. In
ParCo, 1999.

[27] M. Ronsse and W. Zwaenepoel. Execution replay
for treadmarks. In PDP, 1997.

[28] Y. Saito. Jockey: A userspace library for
record-replay debugging. In AADEBUG, 2005.

[29] S. Srinivasan, C. Andrews, S. Kandula, and
Y. Zhou. Flashback: A light-weight extension for
rollback and deterministic replay for software
debugging. In USENIX, 2004.

[30] A. Tolmach and A. W. Appel. A debugger for
Standard ML. Journal of Functional
Programming, 5(2):155–200, 1995.

[31] X. Wang, Z. Guo, X. Liu, Z. Xu, H. Lin, X. Wang,
and Z. Zhang. Hang analysis: Fighting
responsiveness bugs. In EuroSys, 2008.

[32] M. Xu, R. Bodik, and M. D. Hill. A “flight data
recorder” for enabling full-system multiprocessor
deterministic replay. In ISCA, 2003.

[33] R. Xue, X. Liu, M. Wu, Z. Guo, W. Chen,
W. Zheng, Z. Zhang, and G. M. Voelker. MPIWiz:
Subgroup reproducible replay of MPI applications.
In PPoPP, 2009.

[34] F. Zhou, J. Condit, Z. Anderson, I. Bagrak,
R. Ennals, M. Harren, G. Necula, and E. Brewer.
SafeDrive: Safe and recoverable extensions using
language-based techniques. In OSDI, 2006.

