
USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 323

Quanto: Tracking Energy in Networked Embedded Systems

Rodrigo Fonseca , Prabal Dutta , Philip Levis , and Ion Stoica
{rfonseca,prabal,istoica}@cs.berkeley.edu {pal}@cs.stanford.edu

Computer Science Division Yahoo! Research Computer Systems Laboratory
University of California, Berkeley Santa Clara, CA Stanford University

Berkeley, CA Stanford, CA

Abstract
We present Quanto, a network-wide time and energy

profiler for embedded network devices. By combining
well-defined interfaces for hardware power states, fast
high-resolution energy metering, and causal tracking of
programmer-defined activities, Quanto can map how en-
ergy and time are spent on nodes and across a network.
Implementing Quanto on the TinyOS operating system
required modifying under 350 lines of code and adding
1275 new lines. We show that being able to take fine-
grained energy consumption measurements as fast as
reading a counter allows developers to precisely quan-
tify the effects of low-level system implementation deci-
sions, such as using DMA versus direct bus operations,
or the effect of external interference on the power draw
of a low duty-cycle radio. Finally, Quanto is lightweight
enough that it has a minimal effect on system behavior:
each sample takes 100 CPU cycles and 12 bytes of RAM.

1 Introduction

Energy is a scarce resource in embedded, battery-
operated systems such as sensor networks. This
scarcity has motivated research into new system architec-
tures [16], platform designs [17], medium access control
protocols [36], networking abstractions [26], transport
layers [23], operating system abstractions [21], middle-
ware protocols [11], and data aggregation services [22].
In practice, however, the energy consumption of de-
ployed systems differs greatly from expectations or what
lab tests suggest. In one network designed to monitor
the microclimate of redwood trees, for example, 15% of
the nodes died after one week, while the rest lasted for
months [33]. The deployers of the network hypothesize
that environmental conditions – poor radio connectivity,
leading to time synchronization failure – caused the early
demise of these nodes, but a lack of data makes the exact
cause unknown.

Understanding how and why an embedded application
spends energy requires answering numerous questions.
For example, how much energy do individual operations,
such as sampling sensors, receiving packets, or using
CPU, cost? What is the energy breakdown of a node,
in terms of activity, hardware, and time? Network-wide,
how much energy do network services such as routing,
time synchronization, and localization, consume?

Three factors make these questions difficult to answer.
First, nodes need to be able to measure the actual draw
of their hardware components.While software models of
system energy are reasonably accurate in controlled en-
vironments, networks in the wild often experience exter-
nalities, such as 100◦C temperature swings [32], electri-
cal shorts due to condensation [31], and 802.11 interfer-
ence [24]. Second, nodes have limited storage capability,
on the order of kilobytes of RAM, and profile collection
must be very lightweight, so it is energy efficient and
minimizes its effect on system behavior. Finally, there
is a semantic gap between common abstractions, such as
threads or subsystems, and the actual entities a developer
cares about for resource accounting. This gap requires a
profiling system to tie together separate operations across
multiple energy consumers, such as sampling sensors,
sending packets, and CPU operations.

This paper presents Quanto, a time and energy pro-
filer that addresses these challenges through four re-
search contributions. First, we leverage an energy sensor
based on a simple switching regulator [9] to enable an
OS to take fine-grained measurements of energy usage
as cheaply as reading a counter. Second, we show that a
post-facto regression can distinguish the energy draw of
individual hardware components, thereby only requiring
the OS to sample aggregate system consumption. Third,
we describe a simple labeling mechanism that causally
connects this energy usage to high-level, programmer-
defined activities. Finally, we extend these techniques to
track network-wide energy usage in terms of node-local
actions. We briefly outline these ideas next.

324 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Energy in an embedded system is spent by a set of
hardware components operating concurrently, respond-
ing to application and external events. As a first step in
understanding energy usage, Quanto determines the en-
ergy breakdown by hardware component over time. A
system has several hardware components, like the CPU,
radio, and flash memory, and each one has different func-
tional units, which we call energy sinks. Each energy
sink has operating modes with different power draws,
which we call power states. At any given time, the ag-
gregate power draw for a system is determined by the set
of active power states of its energy sinks.

In many embedded systems, the system software can
closely track the hardware components’ power states and
state transitions. We modify device drivers to track and
expose hardware power states to the OS in real-time. The
OS combines this information with fine-grained, timely
measurements of system-wide energy usage taken using
a high-resolution, low-latency energy meter. Every time
any hardware component changes its power state, the OS
records how much energy was used, and how much time
has passed since the immediately preceding power state
change. For each interval during which the power states
are constant, this generates one equation relating the ac-
tive power states, the energy used, the time spent, and the
unknown power draw of a particular energy sink’s power
state. Over time, a family of equations are generated and
can be solved (i.e. the power draw of individual energy
sinks can be estimated) using multivariate linear regres-
sion. Section 2 presents the details of this approach.

The next step is to tie together the energy used by
different hardware components on behalf of high-level
activities such as sensing, routing, or computing, for
which we need an abstraction at the appropriate gran-
ularity. Earlier work has profiled energy usage at the
level of instructions [8], performance events [7], program
counter [13], procedures [14], processes [30], and soft-
ware modules [28]. In this work, we borrow the activity
abstraction of a resource principal [2, 19]. An activity is a
logical set of operations whose resource usage should be
grouped together. In the embedded systems we consider,
it is essential that activities span hardware components
other than the CPU, and even different nodes.

To account for the resource consumption of activi-
ties, Quanto tracks when a hardware component is per-
forming operations on behalf of an activity. Each ac-
tivity is given a label, and the OS propagates this label
to all causally related operations. As an analogy, this
tracking is accomplished by conceptually “painting” a
hardware component the same “color” as the activity for
which it is doing work. To transfer activity labels across
nodes, Quanto inserts a field in each packet that includes
the initiating activity’s label. More specifically, when a
packet is passed to the network stack for transmission,

the packet’s activity field is set to the CPU’s then-current
activity. This ensures that a transmitted packet is labeled
the same as the activity which initiated its submission.
Upon reception, Quanto reads the packet’s hidden field
and sets the CPU activity to the activity noted in the
packet. In Section 3 we give a more precise definition
of activities, and detail how Quanto implements activity
tracking across both the hardware components of a single
node and across the nodes in a network.

The final step is to merge this information. Quanto
records events for both power state and activity changes
for each hardware resource. In our current prototype, we
use these logs to perform this step post-facto. From the
power states log and the regression, we know the active
power state and the power draw for each hardware com-
ponent; from the activities log, we know on behalf of
which activity the component was doing work. Combin-
ing these two pieces of information provides a thorough
breakdown of energy consumption over time.

To evaluate the functionality and performance of
Quanto, we implemented the framework in TinyOS, a
popular sensornet operating system. Implementing our
approach required small changes to six OS abstractions –
timers, tasks, arbiters, network stack, interrupt handlers,
and device drivers. We changed 22 files and 171 lines of
code for core OS primitives, and 16 files and 148 lines of
code for representative device drivers, to support activity
tracing and exposing of power states.

2 Energy Tracking

In this section, we present how Quanto answers the ques-
tion where have all the joules gone? This requires dis-
tinguishing the individual energy consumption of hard-
ware components or peripherals that are operating con-
currently when only their aggregate energy usage is ob-
servable. We ground our discussion on the specific hard-
ware and software platform in our prototype, although
we believe the techniques to be applicable to other plat-
forms as well. We briefly sketch our approach in the next
subsection and then use the remainder of this section to
describe Quanto’s energy tracking framework in detail.

2.1 Overview

In many embedded systems, the OS can track the power
states and state transitions of the platform’s various en-
ergy sinks. This power state information can be com-
bined with snapshots of the aggregate energy consump-
tion to infer the consumption of individual sinks.

We call each functional unit in a system an energy sink,
and their different operating modes power states. Quanto
modifies the device drivers to intercept all events which
change the power state of an energy sink. The OS itself

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 325

keeps track of both the energy usage, ∆E, and elapsed
time, ∆t, between any two such events. Since the OS
tracks the active sinks and their power states, it is able
to generate one linear equation of the following form for
each interval

∆E = ∆t
n

i=0

αipi (1)

where the average power over the interval, P , is∆E/∆t.
The variable αi is a binary variable indicating whether
the i-th power state was active during the interval, and
pi is the (unknown) power draw of the i-th state. The
limit n represents the total number of power states over
all energy sinks in the system. In one time interval, this
equation is not solvable (unless only one power state is
active), but over time, an application generates a system
of equations as different energy sinks transition through
different power states. When the system of equations is
sufficiently constrained, a simple linear regression yields
the individual power draws.

2.2 Hardware Platform

Because it samples the accumulated energy consumption
at every hardware power state change, Quanto requires
high-resolution, low-latency, and low-overhead energy
measurements. These readings must closely reflect the
energy consumed during the preceding interval. To ac-
complish this, our implementation uses the iCount en-
ergy meter [9]. The iCount implementation on this plat-
form exhibits a maximum error of ±15% over five orders
of magnitude in current draw, an energy resolution of ap-
proximately 1 µJ, a read latency of 24 µs (24 instruction
cycles), and a power overhead that ranges from 1% when
the node is in standby to 0.01% when the node is active,
for a typical workload.

We used the HydroWatch platform which incorporates
iCount into a custom sensornet node [10]. This plat-
form uses the Texas Instruments 16-bit MSP430F1611
microcontroller with 48 KB of internal flash memory and
10 KB of RAM, an 802.15.4-compliant CC2420 radio,
and an Atmel 16-Mbit AT45DB161D NOR flash mem-
ory. The platform also includes three LEDs.

2.3 Energy Sinks and Power States

The Hydrowatch platform’s energy sinks, and their nom-
inal current draws, are shown in Table 1. The micro-
controller includes several different functional units. The
microcontroller’s eight energy sinks have sixteen power
states but since many of the energy sinks can operate in-
dependently, the microcontroller can exhibit hundreds of
distinct draw profiles. The five energy sinks in the ra-
dio have fourteen power states. Some of these states are

Energy Sink Power State Current
Microcontroller
CPU ACTIVE 500 µA

LPM0 75 µA
LPM1 75 µA
LPM2 17 µA
LPM3 2.6 µA
LPM4 0.2 µA

Voltage Reference ON 500 µA
ADC CONVERTING 800 µA
DAC CONVERTING-2 50 µA

CONVERTING-5 200 µA
CONVERTING-7 700 µA

Internal Flash PROGRAM 3 mA
ERASE 3 mA

Temperature Sensor SAMPLE 60 µA
Analog Comparator COMPARE 45 µA
Supply Supervisor ON 15 µA

Radio
Regulator OFF 1 µA

ON 22 µA
POWER DOWN 20 µA

Batter Monitor ENABLED 30 µA
Control Path IDLE 426 µA
Rx Data Path RX (LISTEN) 19.7 mA
Tx Data Path TX (+0 dBm) 17.4 mA

TX (-1 dBm) 16.5 mA
TX (-3 dBm) 15.2 mA
TX (-5 dBm) 13.9 mA
TX (-7 dBm) 12.5 mA
TX (-10 dBm) 11.2 mA
TX (-15 dBm) 9.9 mA
TX (-25 dBm) 8.5 mA

Flash POWER DOWN 9 µA
STANDBY 25 µA
READ 7 mA
WRITE 12 mA
ERASE 12 mA

LED0 (Red) ON 4.3 mA
LED1 (Green) ON 3.7 mA
LED2 (Blue) ON 1.7 mA

Table 1: The platform energy sinks, their power states,
and the nominal current draws in those states at a supply
voltage of 3 V and clock speed of 1 MHz, compiled from
the datasheets. Assumed.

mutually exclusive. For example, the radio cannot use
both receive and transmit at the same time. Similarly, the
flash memory can operate in several distinct power states.
Collectively, the energy sinks represented by the micro-
controller, radio, flash memory, and LEDs can operate
independently, so, in principle, the system may exhibit
hundreds or thousands of distinct power profiles.

2.4 Exposing and Tracking Power States

Tracking power states involves a collaborative effort be-
tween device drivers and the OS: we modify the device
driver that abstracts a hardware resource to expose the
device power states through a simple interface, while the
OS tracks and logs the power states across the system.

Quanto defines the PowerState interface, shown in
Figure 1, and provides a generic component that imple-
ments it. A device driver merely declares that it uses
this interface and signals hardware power state changes

326 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

interface PowerState {
// Sets the powerstate to value.
async command void set(powerstate_t value);

// Sets the bits represented by mask to value.
async command void setBits(powerstate_t mask,
uint8_t offset, powerstate_t value);

}

Figure 1: Device drivers must be modified to expose de-
vice power states using the PowerState interface.

async command void Leds.led0On() {
call Led0PowerState.set(1);
// Setting pin to low turns Led on
call Led0.clr();

}

async command void Leds.led0Off() {
call Led0PowerState.set(0);
// Setting pin to high turns Led off
call Led0.set();

}

Figure 2: Implementing power state tracking is sim-
ple for many devices, like LEDs, and requires signaling
power state changes using the PowerState interface.

through its simple calls. This approach eliminates state
tracking in many device drivers and simplifies the in-
strumentation of more complex device drivers. Multiple
calls to the PowerState interface signaling the same
state are idempotent: such calls do not result in multiple
notifications to the OS.

Figure 2 illustrates the changes to the LED device
driver to expose power states. This requires intercept-
ing calls to turn the LED on and off and notifying the OS
of these events. For a simple device like the LED which
only has two states and whose power states are under
complete control of the processor, exposing the power
state is a simple and relatively low-overhead matter.

More involved changes to the device driver are needed
if a device’s power state can change outside of direct
CPU control. Flash memory accesses, for example, go
through a handshaking process during which the power
states and transitions are visible to the processor but not
directly controlled by it. Prior to a write request, a flash
chip may be in an idle or sleep state. When the processor
asserts the flash chip enable line, the flash transitions to
a ready state and asserts the ready line. Upon detecting
this condition, the processor can issue a write command
over a serial bus, framed by a write line assertion. The
flash may then signal that it is busy writing the requested
data by asserting the busy signal. When finished with
the write, the flash asserts the ready signal. In this ex-
ample, the device driver should monitor hardware hand-
shake lines or use timeouts to shadow and expose the
hardware power state.

The glue between the device drivers and OS is a com-
ponent that exposes the PowerState interface to de-

interface PowerStateTrack {
// Called if an energy sink power state changes
async event void changed(powerstate_t value);

}

Figure 3: The PowerStateTrack interface is used by
the OS and applications to receive power state change
events in real-time.

vice drivers and provides the PowerStateTrack in-
terface, shown in Figure 3, to the OS and application.
This component tracks the power states change events
and only notifies the OS and registered application lis-
teners when an actual state change occurs. Each time a
power state changes, Quanto logs the current value of the
energy meter, the time, and the vector of power states.

2.5 Estimating Energy Breakdown

The purpose of estimating the energy breakdown is to
attribute to each energy sink its share of the energy
consumption. Quanto uses weighted multivariate least
squares to estimate the power draw of each energy sink.
The input to this offline regression process is a log
that records, for each interval during which the power
states are same, the aggregate energy consumed dur-
ing that interval (∆E), the length of the interval (∆t),
and the power states of all devices during the interval
(α1, . . . , αn).

We estimate the power draw of the i-th energy sink
as follows. First we group all intervals from the log
that have the same power state j (a particular setting of
α1, . . . , αn), adding the time tj and energy Ej spent at
that power state. For each power state j, possibly ranging
from 1 to 2n, we determine the average aggregate power
yj :

yj = Ej/tj ,

and collect them in a column vector Y over all j:

Y =

y1 . . . yj . . . ym

T
.

Due to quantization effects in both our time and en-
ergy measurements, the confidence in yj increases with
both Ej and tj . Correspondingly, we use a weight,
wj =

Ejtj for each estimate in the regression, and

group them in a diagonal weight matrix W. We use the
square root because, for a constant power level, Ej and
tj are linearly dependent.

We first collect the observed power states αj,i in a ma-
trix X:

X =

α1,1 . . . α1,n

...
. . .

...
αm,1 . . . αm,n

Then, the unknown power draws are estimated:

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 327

Π = (XTWX)−1XTWY,

and finally, the residual errors are given by:

 = Y −XΠ

3 Activity Tracking

Tracking power states and energy consumption of energy
sinks over time shows where and when the energy is go-
ing, but leaves a semantic gap to the programmer of why
the energy is being spent.

The key here is to attribute energy usage to entities –
or resource principals – that are meaningful to the pro-
grammer. In traditional operating systems, processes or
threads combine the roles of protection domain, schedu-
lable unit, and resource principal, but there are many
situations in which it is desirable that these notions be
independent. This idea was previously explored in the
context of high-performance network servers [2] but it is
also especially true in networked embedded systems.

We borrow from earlier work the concept of an ac-
tivity as our resource principal. In the Rialto system in
particular [19], an activity was defined as the “the ab-
straction to which resources are allocated and to which
resource usage is charged.” In other words, an activity is
a set of operations whose resource consumption should
be grouped together. In the environments we consider,
where most of the resource consumption does not hap-
pen at the CPU, and sometimes not even on the same
node that initiated an activity, it is fundamental to sup-
port activities that span different hardware components
and multiple nodes.

We close the gap of why energy is spent by assigning
the energy consumption to activities that are defined by
the programmer at a high level. To do this we follow all
operations related to an activity across hardware compo-
nents on a single node and across the network.

3.1 Overview

To account for the resource consumption of activities, we
track when a hardware component, or device, is perform-
ing operations on behalf of an activity. A useful analogy
is to think of an activity as a color, and devices as be-
ing painted with the activity’s color when working on its
behalf. By properly recording devices’ successive colors
over time and their respective resource consumptions, we
can assign to each activity its share of the energy usage.

Figure 4 shows an example of how activities can span
multiple devices and nodes. In the figure, the program-
mer marks the start of an activity by assigning to the CPU
the sensing activity (“painting the CPU red”). We repre-
sent activities by activity labels, which Quanto carries

CPU

Flash

Radio

Node B

CPU

Sensor

Radio Node A

Act: sensing Act: sending/storing

Proxy Rx Activity Packet Tx

Figure 4: Activity tracking for a sensing, sending, and
storing a sample across two nodes. The developer chose
sending as a separate activity. Receiving is part of a
proxy activity until the CPU can decode the true activ-
ity and correctly bind the resource usage.

automatically to causally related operations. For exam-
ple, when a CPU that is “painted red” invokes an opera-
tion on the sensor, the CPU paints the sensor red as well.
The programmer may decide to change the CPU activ-
ity if it starts work on behalf of a new logical activity,
such as when transitioning from sensing to sending (red
to blue in the figure). Again the system will propagate
the new activity to other devices automatically.

This propagation includes carrying activity labels on
network messages, such that operations on node B can
be assigned to the activity started on node A. This exam-
ple also highlights an important aspect of the propaga-
tion, namely proxy activities. When the CPU on node B
receives an interrupt indicating that the radio is starting
to receive a packet, the activity to which the receiving
belongs is not known. This is generally true in the case
of interrupts and external events. Proxy activities are a
solution to this problem. The resources used by a proxy
activity are accounted for separately, and then assigned
to the real activity as soon as the system can determine
what this activity is. In this example the CPU can deter-
mine that it should be colored blue as soon as it decodes
the activity label in the radio packet. It terminates the
proxy activity by binding it to the blue activity.

The programmer can define the granularity of activi-
ties in a flexible way, guided by how she wants to divide
the resource consumption of the system. Some opera-
tions do not clearly belong to specific activities, such as
data structure maintenance or garbage collection. One
option is to give these operations their own activities,
representing this fact explicitly.

The mechanisms for tracking activities are divided
into three parts, which we describe in more detail next,

328 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

interface SingleActivityDevice {
// Returns the current activity
async command act_t get();

// Sets the current activity
async command void set(act_t newActivity);

// Sets the current activity and indicates
// that the previous activity’s resource
// usage should be charged to the new one
async command void bind(act_t newActivity);

}

Figure 5: The SingleActivityDevice interface.
This interface represents hardware components that can
only be part of one activity at a time, such as the CPU or
the transmit part of the radio.

interface MultiActivityDevice {
// Adds an activity to the set of current
// activities for this device
async command error_t add(act_t activity);

// Removes an activity from the set of current
// activities for this device
async command error_t remove(act_t activity);

}

Figure 6: The MultiActivityDevice interface.
This interface represents hardware components that can
be working simultaneously on behalf of multiple activi-
ties. Examples include hardware timers and the receiver
circuitry in the radio (when listening).

in the context of TinyOS: (i) an API that allows the pro-
grammer to create meaningful activity labels, (ii) a set of
mechanisms to propagate these labels along with the op-
erations that comprise the activity, (iii) and a mechanism
to account for the resources used by the activities.

3.2 API

We represent activity labels with pairs of the form origin
node:id, where id is a statically defined integer, and ori-
gin node indicates the node where the activity starts.

We provide an API that allows the assignment of ac-
tivity labels to devices over time. This API is shown in
Figures 5 and 6, respectively, for devices that can only be
performing operations on behalf of one, or possibly mul-
tiple activities simultaneously. Most devices, including
CPUs, are SingleActivityDevices.

There are two classes of users for the API, applica-
tion programmers and system programmers. Applica-
tion programmers simply have to define the start of high-
level activities, and assign labels to the CPU immedi-
ately before their start. System programmers, in turn,
use the API to propagate activities in the lower levels of
the system such as device drivers. We instrumented core
parts of the OS, such as interrupt routines, the sched-
uler, arbiters [21], the network stack, radio, and the

task void sensorTask() {
call CPUActivity.set(ACT_HUM);
call Humidity.read();
call CPUActivity.set(ACT_TEMP);
call Temperature.read();

}

void sendIfDone() {
if (sensingDone) {
call CPUActivity.set(ACT_PKT);
post sendTask();
sensingDone = 0;

}
}

Figure 7: Excerpt from a sense-and-send application,
showing how an application programmer “paints” the
CPU to start tracking activities.

timer system. Figure 7 shows an excerpt of a sense-and-
send application similar to the one described in [21], in
which the application programmer “paints” the CPU us-
ing the CPUActivity.setmethod (an instance of the
SingleActivityDevice interface) before the start
of each logical activity. The OS takes care of correctly
propagating the labels with the following execution.

3.3 Propagation

Once we have application level activities set by the ap-
plication programmer, the OS has to carry activity labels
to all operations related to each activity. This involves 4
major components: (i) transfer activity labels across de-
vices, (ii) transfer activity labels across nodes, (iii) bind
proxy activities to real activities when interrupts occur,
and (iv) follow logical threads of computation across sev-
eral control flow deferral and multiplexing mechanisms.

To transfer activity labels across devices our in-
strumentation of TinyOS uses the Single- and
MultiActivityDevice APIs. Each hardware com-
ponent is represented by one instantiation of such inter-
faces, and keeps the activity state for that component
globally accessible to code. The CPU is represented by
a SingleActivityDevice, and is responsible for
transferring activity labels to and from other devices. An
example of this transfer is shown in Figure 8, where the
code “paints” the radio device with the current CPU ac-
tivity. Device drivers must be instrumented to correctly
transfer activities between the CPU and the devices they
manage. In our prototype implementation we instru-
mented several devices, including the CC2420 radio and
the SHT11 sensor chip. Also, we instrumented the Ar-
biter abstraction [21], which controls access to a number
of shared hardware components, to automatically trans-
fer activity labels to and from the managed device.

To transfer activity labels across nodes, we added a
hidden field to the TinyOS Active Message (AM) im-
plementation (the default communication abstraction).

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 329

When a packet is submitted to the OS for transmission,
the packet’s activity field is set to the CPU’s current ac-
tivity. This ensures the packet is colored the same as the
activity which initiated its submission. We currently en-
code the labels as 16-bit integers representing both the
node id and the activity id, which is sufficient for net-
works of up to 256 nodes with 256 distinct activity ids.
Upon decoding a packet, the AM layer on the receiving
node sets the CPU activity to the activity in the packet,
and binds resources used between the interrupt for the
packet reception and the decoding to the same activity.

More generally, this type of resource binding is done
when we have interrupts. Our prototype implementa-
tion uses the Texas Instruments MSP430F1611 micro-
controller. Since TinyOS does not have reentrant inter-
rupts on this platform, we statically assign to each inter-
rupt handling routine a fixed proxy activity. An inter-
rupt routine temporarily sets the CPU activity to its own
proxy activity, and the nature of interrupt processing is
such that very quickly, in most cases, we can determine
to which real activity the proxy activity should be bound.
One example is the decoding of the radio packets at the
Active Message layer. Another example is an interrupt
caused by a device signaling the completion of a task. In
this case, the device driver will have stored locally both
the state required to process the interrupt and the activity
to which this processing should be assigned.

Lastly, the propagation of activity labels should fol-
low the control flow of the logical threads of execution
across deferral and multiplexing mechanisms. The most
important and general of these mechanisms in TinyOS
are tasks and timers.

TinyOS has a single stack, and uses an event-based
execution model to multiplex several parallel activities
among its components. The schedulable unit is a task.
Tasks run to completion and do not preempt other tasks,
but can be preempted by asynchronous events triggered
by interrupts. To achieve high degrees of concurrency,
tasks are generally short lived, and break larger compu-
tations in units that schedule each other by posting new
tasks. We instrumented the TinyOS scheduler to save the
current CPU activity when a task is posted, and restore
it just before giving control to the task when it executes,
thereby maintaining the activities bound to tasks in face
of arbitrary multiplexing. Timers are also an important
control flow deferral mechanism, and we instrumented
the virtual timer subsystem to automatically save and re-
store the CPU activity of scheduled timers.

There are other less general structures that effec-
tively defer processing of an activity, such as forwarding
queues in protocols, and we have to instrument these to
also store and restore the CPU activity associated with
the queue entry. As we show in Section 4, changes to
support propagation in a number of core OS services

void loadTXFIFO() {
...
//prepare packet
...
call RadioActivity.set(call CPUActivity.get());
call TXFIFO.write((uint8_t*)header,

header->length - 1);
}

Figure 8: Excerpt from the CC2420 transmit code that
loads the TXFIFO with the packet data. The instrumen-
tation sets the RadioActivity to the current value of
the CPUActivity.

interface SingleActivityTrack {
async event void changed(act_t newActivity);
async event void bound(act_t newActivity);

}
interface MultiActivityTrack {
async event void added(act_t activity);
async event void removed(act_t activity);

}

Figure 9: Single- and MultiActivityTrack in-
terfaces provided by device abstractions. Different ac-
counting modules can listen to these events.

were small and localized.

3.4 Recording and Accounting

The final element of activity tracking is recording the
usage of resources for accounting and charging pur-
poses. Similarly to how we track power states, we
implement the observer pattern through the Single-
ActivityTrack and MultiActivityTrack in-
terfaces (Figure 9). These are provided by a module
that listens to the activity changes of devices and is cur-
rently connected to a logger. In our prototype we log
these events to RAM and do the accounting offline. For
single-activity devices, this is straightforward, as time is
partitioned among activities. For multi-activity devices,
the the log records the set of activities for a device over
time, and how to divide the resource consumption among
the activities for each period is a policy decision. We
currently divide resources equally, but other policies are
certainly possible.

4 Evaluation

In this section we first look at two simple applications,
Blink and Bounce, that illustrate how Quanto combines
activity tracking, power-state tracking, and energy me-
tering into a complete energy map of the application. We
use the first, Blink, to calibrate Quanto against ground
truth provided by an oscilloscope, and as an example of
a multi-activity, single-node application. We use the sec-
ond, Bounce, as an example with activities that span dif-

330 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.5 1 1.5

C
ur

re
nt

(m
A)

Time(ms)

LED1(G) On
Mean (3.05 mA)

 0 0.5 1 1.5
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Time(ms)

All LEDs On
Mean (6.30 mA)

Figure 10: Current over time for two states of Blink
recorded with the oscilloscope, showing the mean cur-
rent and the iCount pulses that Quanto accumulates.

ferent nodes. We then look at three case studies in which
Quanto exposes real-world effects and costs of applica-
tion design decisions, and lastly we quantify some of the
costs involved in using Quanto itself. In these experi-
ments processed Quanto data with a set of tools we wrote
to parse and visualize the logs. We used GNU Octave to
perform the regressions.

4.1 Calibration

We set up a simple experiment to calibrate Quanto
against the ground truth provided by a digital oscillo-
scope. The goal is to establish that Quanto can indeed
measure the aggregate energy used by the mote, and that
the regression does separate this energy use by hardware
components.

We use Blink, the hello world application in TinyOS.
Blink is very simple; it starts three independent timers
with intervals of 1, 2, and 4s. When these timers fire,
the red, green, and blue LEDs are toggled, such that in
8 seconds Blink goes through 8 steady states, with all
combinations of the three LEDs on and off. The CPU is
in its sleep state during these steady states, and only goes
active to perform the transitions.

Using the Hydrowatch board (cf. Section 2.2), we con-
nected a Tektronix MSO4104 oscilloscope to measure
the voltage across a 10 resistor inserted between iCount
circuit and the mote power input. We measured the volt-
age provided by the regulator for the mote to be 3.0V.

We confirmed the result from [9] that the switching
frequency of iCount varies linearly with the current. Fig-
ure 10 shows the current for two sample states of Blink.
This curve has a wealth of information: from it we
can derive both the switching frequency of the regula-
tor, which is what Quanto measures directly, and the
actual average current, Iavg . We verified over the 8
power states that Iavg , in mA, and the switching fre-

X Y
L0 L1 L2 C I(mA)
0 0 0 1 0.74
1 0 0 1 3.32
0 1 0 1 3.05
1 1 0 1 5.53
0 0 1 1 1.62
1 0 1 1 4.15
0 1 1 1 3.88
1 1 1 1 6.30

Π
I(mA)

LED0 2.50
LED1 2.23
LED2 0.83
Const. 0.79

XΠ
I(mA)

0.79
3.29
3.02
5.53
1.62
4.12
3.85
6.36

Table 2: Oscilloscope measurements of the current for
the steady states of Blink, and the results of the regres-
sion with the current draw per hardware component. The
relative error (Y −XΠ/Y) is 0.83%.

quency fiC , in kHz, have a linear dependency given by
Iavg = 2.77fiC−0.05, with an R2 value of 0.99995. We
can infer from this that each iCount pulse corresponds,
in this hardware, at 3 V, to 8.33 µJ. We also verified that
Iavg was stable during each interval.

Lastly we tested the regression methodology from
Section 2.5, using the average current measured by the
oscilloscope in each state of Blink and the external state
of the LEDs as the inputs. We also added a constant
term to account for any residual current not captured by
the LED state. Table 2 shows the results, and the small
relative error indicates that for this case the linearity as-
sumptions hold reasonably well, and that the regression
is able to produce a good breakdown of the power draws
per hardware device.

4.2 Two Illustrative Examples

4.2.1 Blink
We instrumented Blink with Quanto to verify the re-

sults from the calibration and to demonstrate a simple
case of tracking multiple activities on a single node.
We divided the application into 3 main activities: Red,
Green, and Blue, which perform the operations related
to toggling each LED. Each LED, when on, gets labeled
with the respective activity by the CPU, such that its en-
ergy consumption can be charged to the correct activity.
We also created an activity to represent the managing of
the timers by the CPU (VTimer). We recorded the power
states of each LED (simply on and off), and consider the
CPU to only have two states as well: active, and idle.

Figures 11(a) and (b) show details of a 48-second run
of Blink. In these plots, the X axis represents time, and
each color represents one activity. The lower part of (a)
shows how each hardware component divided its time
among the activities. The topmost portion of the graph
shows the aggregate power draw measured by iCount.
There are eight distinct stable draws, corresponding to
the eight states of the LEDs.

Part (b) zooms in on a particular state transition span-
ning 4 ms, around 8 s into the trace, when all three LEDs

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 331

CPU

Led0

Led1

Led2

 0 5 10 15 20 25 30 35 40 45

H
ar

dw
ar

e
C

om
po

ne
nt

s

Time(s)

1:Blue
1:Green

1:Red
1:int_TIMER

1:VTimer

 0
 5

 10
 15
 20
 25
 30
 35

Po
w

er
(m

W
)

(a) Power draw measured by Quanto and the
activities over time for each hardware

component.

CPU

Led0

Led1

Led2

 7999 7999.5 8000 8000.5 8001 8001.5 8002 8002.5 8003

H
ar

dw
ar

e
C

om
po

ne
nt

s

Time(ms)

1:Blue
1:Green

1:Red
1:int_TIMER

1:VTimer

(b) Detail of a transition from all on to all off,
showing the activities for each hardware

component.

 0

 10

 20

 30

 40

 50

 7999 7999.5 8000 8000.5 8001 8001.5 8002 8002.5 8003

Po
w

er
 (m

W
)

Time(ms)

CPU
Led2 (Blue)

Led1 (Green)

Led0 (Red)
Constant

Oscilloscope Trace

(c) Stacked power draw for the hardware
components, with values from the re-
gression, overlaid with the oscilloscope-

measured power.

Figure 11: Activity and power profiles for a 48-second run of the Blink application on the Hydrowatch platform.

Hardware Components - Time(s)
Activities LED0 LED1 LED2 CPU

1:Red 24.01 0 0 0.0176
1:Green 0 24.00 0 0.0091
1:Blue 0 0 24.00 0.0045
1:Vtimer 0 0 0 0.0450
1:int Timer 0 0 0 0.0092
1:Idle 23.99 24.00 24.00 47.9169
Total 48.00 48.00 48.00 48.0024

(a) Time break down.

Hardware Components -Π
LED0 LED1 LED2 CPU Const.

Iavg(mA) 2.51 2.24 0.83 1.43 0.83
Pavg(mW) 7.53 6.71 2.49 4.29 2.48

(b) Result of the regression.

P
EHW (mJ)

LED0 180.71
LED1 161.06
LED2 59.84
CPU 0.37
Const. 119.26
Total 521.23

(c) Total Energy per Hard-
ware Component.

Activities
P

Eact(mJ)
1:Red 180.78
1:Green 161.10
1:Blue 59.86
1:Vtimer 0.19
1:int Timer 0.04
1:Idle 0.00
Const. 119.26
Total 521.23

(d) Total Energy per Activity.

Table 3: Where the joules have gone in Blink. The tables
show how activities spend time on hardware components
(a), the regression results (b), and a break down of the en-
ergy usage by activity (c) and hardware component (d).

simultaneously go from their on to off state, and cease
spending energy on behalf of their respective activities.
At this time scale it is interesting to observe the CPU
activities. For clarity, we did not aggregate the proxy
activities from the interrupts into the activities they are
bound to. At 8.000 s the timer interrupt fires, and the
CPU gets labeled with the int TIMERB0 and VTimer ac-
tivities. VTimer, after examining the scheduled timers,

yields to the Red, Green, and Blue activities in succes-
sion. Each activity turns off its respective LED, clears
its activities, and sets its power state to off. VTimer per-
forms some bookkeeping and then the CPU sleeps.

Table 3(a) shows, for the same run, the total time when
each hardware component spent energy on behalf of each
activity. The CPU is active for only 0.178% of the time.
Also, although the LEDs stay on for the same amount of
time, they change state a different number of times, and
the CPU time dedicated to each corresponding activity
reflects that overhead.

We ran the regression as described in Section 2.5 to
identify the power draw of each hardware component.
Table 3(b) shows the result in current and power. This
information, combined with the time breakdown, allows
us to compute the energy breakdown by hardware com-
ponent (c), and by activity (d). The correlation between
the corresponding components of Table 3(b) and the cur-
rent breakdown in Table 2 is 0.99988. Note that we don’t
have the CPU component in the oscilloscope measure-
ments because it was hard to identify in the oscilloscope
trace exactly when the CPU was active, something that
is easy with Quanto.

From the power draw of the individual hardware com-
ponents we can reconstruct the power draw of each
power state and verify the quality of the regression.
The relative error between the total energy measured by
Quanto and the energy derived from the reconstructed
power state traces was 0.004% for this run of Blink.

Figure 11(c) shows a stacked breakdown of the mea-
sured energy envelope, reconstructed from the power
state time series and the results of the regression. The
shades in this graph represent the different hardware
components, and at each interval the stack shows which
components are active, and in what proportion they con-

332 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cpu

cc2420

led1

led2

 1.5 2 2.5 3 3.5

H
ar

dw
ar

e
C

om
po

ne
nt

s

Time(ms)

1:BounceApp
4:BounceApp

1:pxy_RX
1:int_UART0RX

1:int_TIMER
1:VTimer

(a) A 2-second window on a run of Bounce
at a node with id 1.

cpu

cc2420

led1

led2

 1552 1554 1556 1558 1560 1562 1564

H
ar

dw
ar

e
C

om
po

ne
nt

s

Time(ms)

1:BounceApp
4:BounceApp

1:pxy_RX
1:int_UART0RX

1:int_TIMER
1:VTimer

(b) Detail of a packet reception with an activ-
ity label from node 4.

cpu

cc2420

led1

led2

 2060 2065 2070 2075 2080

H
ar

dw
ar

e
C

om
po

ne
nt

s

Time(ms)

1:BounceApp
4:BounceApp

1:pxy_RX
1:int_UART0RX

1:int_TIMER
1:VTimer

(c) Detail of a packet transmission on node 1
as part of the activity started at node 4.

Figure 12: Activity tracking on Bounce. Each packet carries the activity current at the time it was generated, and the
receiving node executes some operations as part of that remote activity.

tribute to the overall energy consumption. The graph also
shows an overlaid power curve measured with the oscil-
loscope for the same run. The graph shows a very good
match between the two sources, both in the time and en-
ergy dimensions. We can notice small time delays be-
tween the two curves, on the order of 100 µs, due to the
time Quanto takes to record a measurement.

4.2.2 Bounce
The second example we look at illustrates how Quanto

keeps track of activities across nodes. Bounce is a sim-
ple application in which two nodes keep exchanging two
packets, each one originating from one of the nodes.
In this example we had nodes with ids 1 and 4 partic-
ipate. All of the work done by node 1 to receive, pro-
cess, and send node 4’s original packet is attributed to
the ’4:BounceApp’ activity. Although this is a trivial ex-
ample, the same idea applies to other scenarios, like pro-
tocol beacon messages and multihop routing of packets.

Figure 12 shows a 2-second trace from node 1 of a
run of Bounce. The log at the other node is symmetrical.
On part (a) we see the entire window, and the activities
by the CPU, the radio, and two LEDs that are on when
the node has “possession” of each packet. In this figure,
node 1 receives a packet which carries the 4:BounceApp
activity, and turns LED1 on because of that. The energy
spent by this LED will be attributed to node 4’s original
activity. The node then receives another packet, which
carries its own 1:BounceApp activity. LED2’s energy
spending will be assigned to node 1’s activity, as well as
the subsequent transmission of this same packet.

Figures 12(b) and (c) show in detail a packet reception
and transmission, and how activity tracking takes place
in these two operations. Again, we keep the interrupt
proxy activities separated, although when accounting for
resource consumption we should assign the consumption

of a proxy activity to the activity to which it binds. The
receive operation starts with a timer interrupt for the start
of frame delimiter, followed by a long transfer from the
radio FIFO buffer to the processor, via the SPI bus. This
transfer uses an interrupt for every 2 bytes. When fin-
ished, the packet is decoded by the radio stack, and the
activity in the packet can be read and assigned to the
CPU. The CPU then “paints” the LED with this activ-
ity and schedules a timer to send the packet.

Transmission in Bounce is triggered by a timer inter-
rupt that was scheduled upon receive. The timer carries
and restores the activity, and “paints” the radio. There
are two main phases for transmission. First, the data is
transferred to the radio via the SPI bus, and then, after a
backoff interval, the actual transmission happens. When
the transmission is done, the CPU then turns the LED off
and sets its activity to idle.

4.3 Case Studies

Quanto allows a developer to precisely understand and
quantify the effects of design decisions, and we discuss
three case studies from the TinyOS codebase.

The first one is an investigation of the effect of inter-
ference from an 802.11 b/g network on the operation of
low-power listening [25]. Low-power listening (LPL) is
a family of duty-cycle regimes for the radio in which the
receiver stays mostly off, and periodically wakes up to
detect whether there is activity on the channel. If there
is, it stays on to receive packets, otherwise it goes back
to sleep. In the simplest version, a sender must transmit
a packet for an interval as long as the receiver’s sleep in-
terval. A higher level of energy in the channel, due to
interference from other sources, can cause the receiver to
falsely detect activity, and stay on unnecessarily. Since

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 333

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14

En
er

gy
 (m

J)

Time(s)

Channel 17
Channel 26

Normal wake-up

Energy detected:
false positive

Radio Duty Cycle: 5.6%

Radio Duty Cycle: 2.2%

Figure 13: 802.11 b/g interference on the mote 802.15.4
radio. In the top curve the mote was set to the 802.15.4
channel 17, and in the bottom curve, to channel 26.
These are, respectively, the closest to and furthest from
the 802.11 b channel 6 which was used in the experiment.

802.11 b/g and 802.15.4 radios share the 2.4 GHz band,
and the former generally has much higher power than
the latter, this scenario can be quite common. We used
Quanto to measure the impact of such interference. We
set an 802.11 b access point to operate on channel 6,
with central frequency of 2.437 GHz, and programmed a
TinyOS node to listen on LPL mode, first on the 802.15.4
channel 17 (central frequency 2.453 GHz), and then on
channel 26 (central frequency 2.480 GHz). We set the
TinyOS node to sample the channel every 500 ms, and
placed it 10 cm away from the access point. We collected
data for 5 14-second periods at each of the two channels.

We verified a significant impact of the interference:
when on channel 17, the node falsely detected activ-
ity on the channel 17.8% of the time, had a radio duty
cycle of 5.58±0.005%, and an average power draw
of 1.43±0.08 mW. The nodes on channel 26, on the
other hand, detected no false positives, had a duty cy-
cle of 2.22±0.0027%, and an average power draw of
0.919±0.006 mW.

Figure 13 shows one measurement at each channel.
The steps on the channel 17 curve are false positives,
and have a marked effect on the cumulative energy con-
sumption. Using Quanto, we estimated the current for
the radio listen mode to be 18.46 mA, with a power draw
of 61.8 mW (this particular mote was operating with a
3.35V switching regulator). Figure 14 shows two sam-
pling events on channel 17. For both the radio and the
CPU, the graph shows the power draw when active, and
the respective activities. We can see the VTimer activity,
which schedules the wake-ups, and the proxy receive ac-
tivity, which doesn’t get bound to any subsequent higher
level activity. This is a simple example, but Quanto
would be able to distinguish these activities even if the
node were performing other tasks.

 0
 1
 2
 3
 4
 5

 4000 4200 4400 4600 4800 5000

C
PU

 P
ow

er
 (m

W
)

Time (ms)

Proxy Receive VTimer

 0
 10
 20
 30
 40
 50
 60
 70

R
ad

io
 P

ow
er

 (m
W

)

CPU

Radio

Normal wake-up

Energy detected:
false positive

Figure 14: Detail of a normal wake-up period with no
activity, in which the radio wakes up and returns to sleep,
and of a false-positive activity detection. In the latter, the
CPU keeps the radio on for about 100 ms, and turns it off
when the timer expires and no packet was received.

CPU

LED0

LED2

 1 1.2 1.4 1.6 1.8 2

R
es

ou
rc

es

Time(s)
32:ActB
32:ActA

32:VTimer
32:int_TIMERB1

32:int_TIMERB0
32:int_TIMERA1

TimerA DCO
Calibration

.

Figure 15: An unexpected result from instrumenting a
simple application with Quanto: we noticed that a partic-
ular timer interrupt was firing 16 times per second for os-
cillator calibration, even when such calibration was un-
necessary.

Our second example concerns an effect we noticed
when we instrumented a simple timer-based application
on a single node. A particular timer interrupt, TimerA1,
was firing repeatedly at 16Hz, as can be seen in Fig-
ure 15. This timer is used for calibrating a digital os-
cillator, which is not needed unless the node requires
asynchronous serial communication. However, it was set
to be always on, a behavior that surprised many of the
TinyOS developers. The lack of visibility into the sys-
tem made this behavior go unnoticed.

Our last example studies the effect of a particular set-
ting of the radio stack: whether the CPU communicates
with the radio chip using interrupts or a DMA channel.
Figure 16 shows the timings captured by Quanto for a
packet transmission, using both settings.

From the figure it is apparent that the DMA transfer
is at least twice as fast as the interrupt-driven transfer.
This has implications on how fast one can send packets,
but more importantly, can influence the behavior of the

334 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Normal

DMA

 0 2 4 6 8 10 12 14 16

R
ad

io
 S

ta
ck

 V
ar

ia
tio

ns

Time(ms)

1:BounceApp
1:int_DACDMA

1:int_UART0RX
1:int_TIMERB1

1:VTimer
1:int_TIMERB0

Figure 16: Timing behavior of a packet transmission us-
ing interrupt-driven and DMA-based communication be-
tween the CPU and the radio chip. Quanto allows the
developer to understand the precise timing behavior of
both options.

MAC protocol. If two nodes A and B receive the same
packet from a third node, and need to respond to it imme-
diately, and if A uses DMA while B uses the interrupt-
driven communication, A will gain access to the medium
more often than B, subverting MAC fairness.

4.4 Costs

We now look at some of the costs associated with our
prototype implementation of Quanto. These are summa-
rized in Table 4.

Cost of logging. The design of Quanto decouples gen-
erating event information, like activity and power state
changes, from tracking the events. We currently record
a log of the events for offline processing. The cost of
logging is divided in two parts, one synchronous and one
asynchronous. Recording the time and energy for each
event has to be done synchronously, as close to the event
as possible. Dealing with the recorded information can
be done asynchronously.

It is very important to minimize the cost of syn-
chronously recording each sample, as this both limits the
rate at which we can capture successive events, and de-
lays operations which must be processed quickly. Our
current implementation records a 12-byte log entry for
each event, described in Figure 17. We measured the
cost of logging to RAM to be 101.7 µs, using the same
technique as in [9]. At 1MHz, this translates to 102 cy-
cles. This time includes 24 µs to read the iCount value,
and 19 µs to read a timer value.

Because Quanto uses the CPU to keep track of state
and to log changes to state, using it incurs a cost by de-
laying operations on the CPU, and spending more en-
ergy. For the run of Blink in Section 4.2, we logged 597

typedef struct entry_t {
uint8_t type; // type of the entry
uint8_t res_id; // hardware resource for entry
uint32_t time; // local time of the node
uint32_t ic; // icount: cumulative energy
union {
uint16_t act; //for ctx changes
uint16_t powerstate; //for powerstate changes

};
} entry_t;

Figure 17: The structure for the activity and powerstate
log entry.

Buffer Size 800 samples
Sample Size 12 bytes
Cost of Logging 102 cycles @ 1MHz

Call Overhead 41 cycles
Read Timer 19 cycles
Read iCount 24 cycles
Others 18 cycles

Table 4: Costs associated with logging to RAM.

messages over 48 seconds. The total time spent on the
logging itself was 60.71 ms, corresponding to 71.05% of
the active CPU time, but only 0.12% of the total CPU
time. The total energy spent with logging, assuming that
logging is using the CPU and the Constant terms in the
regression results, was 0.41 mJ, or 0.08% of the total en-
ergy spent. Although the 71% number is high, the ma-
jority of applications in these sensor network platforms
strive to reduce the CPU duty cycle to save energy, and
we expect the same trend of long idle periods to amortize
the cost of logging.

The above numbers only concern the synchronous
part. We still have to get the data out of the node for
the current approach of offline analysis. We have two
implementations for this. The first records messages to a
fixed buffer in RAM that holds 800 log entries, periodi-
cally stops the logging, and dumps the information to the
serial port or to the radio. The advangate of this is that
the cost of logging, during the period being monitored,
is only the cost of the synchronous part.

The second approach allows continuous logging. The
processor still collects entries to the memory buffer, and
schedules a low priority task to empty the log. This hap-
pens only when the CPU would otherwise be idle. Mes-
sages are written directly to an output port of the micro-
processor, which drives an external synchronous serial
interface. Like the Unix top application, Quanto can ac-
count for its own logging in this mode as its own activity.
For the applications we instrumented, it used between 4
and 15% of the CPU time.

The rate of generated data from Quanto largely de-
pends on the nature of the workload of the application.
For the classes of applications that are common in em-

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 335

Files Diff LOC
Modified Code
Tasks 2 25 Concurrency
Timers 2 16 Deferral
Arbiter 5 34 Locks
Interrupts 11 88
Active Msg. 2 8 Link Layer
LEDs 2 33 Device Driver
CC2420 Radio 11 105 Device Driver
SHT11 3 10 Sensor
New code 28 1275 Infrastructure

Table 5: The cost of instrumenting most core primi-
tives for activity and power tracking in TinyOS, as well
as some representative device drivers, is low in terms
of lines of code. New code represents the infrastruc-
ture code for keeping track of and logging activities and
power states.

bedded sensor networks, of low data-rate and duty cycle,
we believe the overheads are acceptable.

Instrumentation costs. Finally, we look at the burden
to instrument a system like TinyOS to allow tracking and
propagation of activities and power states. Table 5 lists
the main abstractions we had to instrument in TinyOS
to achieve propagation of activity labels in our platform,
and shows that the changes are highly localized and rel-
atively small in number of lines of code.

The complexity of the instrumentation task varies, and
some device drivers with shadowed state that represents
volatile state in peripherals can be more challenging to
instrument. The CC2420 radio is a good example, as it
has several internal power states and does some process-
ing without the CPU intervention. Other devices, like
the LEDs and simple sensors, are quite easier. We found
that once the system is instrumented, the burden to the
application programmer is small, since all that needs to
be done is marking the beginning of relevant activities,
which will be tracked and logged automatically.

5 Discussion

We now discuss some of the the design tradeoffs and lim-
itations of the approach, and some research directions en-
abled by this work.

5.1 Design Tradeoffs

Logging vs. counting. Quanto currently logs every
power state and activity context change which can re-
sult in large volume of trace data. The data are useful for
reconstructing a fine-grained timeline and tracing causal
connections, but this level of detail may be unnecessary

in many cases. The design, however, clearly separates
the event generation from the event consumption. An
alternative would be to maintain a set counters on the
nodes, accumulating time and energy spent per activity.
In our initial exploration we decided to examine the full
dataset offline, and leave as future work to explore per-
forming the regression and accounting of resources on-
line, which would make the memory overhead fixed and
practically eliminate the logging overhead.

Activity model. An important design decision in
Quanto is that activities are not hierarchical. While giv-
ing more flexibility, representing hierarchies would mean
that the system would propagate stacks of activity labels
instead of single labels, a significant increase in over-
head and complexity. If a module C does work on behalf
of two activities, A and B, the instrumenter has two op-
tions: to give C its own activity, or to have C’s operations
assume the activity of the caller.

Platform hardware support. All of the data in this
paper were collected using the HydroWatch platform but
our experiences suggested that a more tailored design
would be useful. In particular, we had the options of stor-
ing the logs in RAM, which has little impact but limited
space, or logging to a processor port, which has a slightly
higher cost and can be intrusive at very high loads. We
have designed a new platform tailored for profiling with
a fast, 128 KB-deep FIFO for full speed logging with
very little overhead, which we plan to use on future ex-
periments.

5.2 Limitations

Constant per-state power draws. The regression tech-
niques used to estimate per-component energy usage as-
sume the power draw of a hardware component is ap-
proximately constant in each power state. Fortunately,
we verified that this assumption largely holds for the
platform we instrumented, by looking at different length
sampling intervals for each state. The regression may
not work well when this assumption fails, but we leave
quantifying this for future work.

Linear independence. The regression techniques also
assume that tracking power states over time produces a
set of linearly independent equations. If this is not the
case, for example if unrelated actions always occur to-
gether, then regression is unlikely to disambiguate their
energy usage. As a work around, custom routines can be
written to exercise different power states independently.

Modifications to systems. Quanto requires the OS,
including device drivers, and applications, to be modified
to perform tracking. The modifications to the system,
however, can be shared among all applications, and the
modifications to applications are, in most cases, simple.
Device drivers have to be modified so that they expose

336 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the power states of the underlying hardware components.
If hardware power states are not observable, estimation
errors may occur.

Energy usage visibility. Our approach may not gener-
alize to systems with sophisticated power supply filtering
(e.g. power factor correction or large capacitors) because
these elements introduce a potentially non-linear phase
delay between real and observed energy usage over short
time scales, making it difficult to correlate short-lived ac-
tivities with their energy usage.

Hardware energy metering. Our proposed approach
requires hardware support for energy metering, which
may not be available on some platforms. Fortunately, the
energy meter design we use may be feasible on many
systems that use pulse-frequency modulated switching
regulators. However, even if hardware-based energy me-
tering is not available, a software-based approach using
hardware power models may still provide adequate visi-
bility for some applications.

5.3 Enabled Research

Finding energy leaks. A situation familiar to many
developers is discovering that an application draws too
much power but not knowing why. Using Quanto, devel-
opers can visualize energy usage over time by hardware
component, allowing one to work backward to find the
offending code that caused the energy leak.

Tracking butterfly effects. In many distributed ap-
plications, an action at one node can have network-wide
effects. For example, advertising a new version of a code
image or initiating a flood will cause significant network-
wide action and energy usage. Even minor local actions,
like a routing update, can ripple through the entire net-
work. Quanto can trace the causal chain from small, lo-
cal cause to large, network-wide effect.

Real time tracking. An extension of the framework
can include performing the regression online, and replac-
ing the logging with accumulators for time and energy
usage per activity. This approach would have signifi-
cantly reduced bandwidth and storage requirements, and
could be used as an always on, network-wide energy pro-
filer analogous to top.

Enery-Aware Scheduling. Since Quanto already
tracks energy usage by activity, an extension to the oper-
ating system scheduler would enable energy-aware poli-
cies like equal-energy scheduling for threads, rather than
equal-time scheduling.

Continuous Profiling. Quanto log entries are
lightweight enough that continuous profiling is possible
with even a modest speed logging back-channel [1].

6 Related Work

Our techniques borrow heavily from the literature on
energy-aware operating system, power simulation tools,
power/energy metering, power profiling, resource con-
tainers, and distributed tracing.

ECOSystem [37] proposes the Currentcy model which
treats energy as a first class resource that cuts across all
existing system resources, such as CPU, disk, memory,
and the network in a unified manner. Quanto leverages
many of the ideas developed in ECOSystem, like track-
ing power states to allocate energy usage or employing
resource containers as the principal to which resource
usage is charged. But there are important differences as
well. ECOSystem uses offline profiling to relate power
state and power draw, and uses a model for runtime oper-
ation. In contrast, Quanto tracks the actual energy used at
runtime, which is useful when environmental factors can
affect energy availability and usage. While ECOSystem
tracks energy usage on a single node, Quanto transpar-
ently tracks energy usage across the network, which al-
lows network-wide effects to be measured. Finally, the
focus of the two efforts is different although similar tech-
niques are used in both systems.

Eon is a programming language and runtime system
that allows paths or flows through the program to be an-
notated with different energy states [29]. Eon’s runtime
then chooses flows to execute, and their rates of execu-
tion, to maximize the quality of service under available
energy constraints. Eon, like Quanto, uses real-time en-
ergy metering but attributes energy usage only to flows,
while Quanto attributes usage to hardware, activity, and
time.

Several power simulation tools exist that use
empirically-generated models of hardware behavior.
PowerTOSSIM [28] uses same-code simulation of
TinyOS applications with power state tracking, com-
bined with a power model of the different peripheral
states, to create a log of energy usage. PowerTOSSIM
provides visibility into the power draw based on its
model of the hardware, but it does not capture the vari-
ability common in real hardware or operating environ-
ments, or simulate a device’s interactions with the real
world. Quanto also addresses a different problem than
PowerTOSSIM: tracing the energy usage of logical ac-
tivities rather than the time spent in software modules.

The challenge in taking measurements in low-power,
embedded systems that exhibit bursty operation is that
until recently, the performance of available metering
options was simply too poor, and the power cost was
simply too high, to use in actual deployments. Tradi-
tional instrument-based power measurements are use-
ful for design-time laboratory testing but impractical
for everyday run-time use due to the cost of instru-

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 337

ments, their physical size, and their poor system integra-
tion [14, 12, 35]. Dedicated power metering hardware
can enable run-time energy metering but they too come
with the expense of increased hardware costs and power
draws [5, 18]. Using hardware performance counters as a
proxy power meter is possible on high-performance mi-
croprocessors like the Intel Pentium Pro [20] and embed-
ded microprocessors like the Intel PXA255 [7]. Quanto
addresses these challenges with iCount, a new design
based on a switching regulator [9].

Of course, if a system employs only one switching reg-
ulator, then the energy usage can be measured only in the
aggregate, rather than by hardware component. This ag-
gregated view of energy usage can present some track-
ing challenges as well. One way to track the distinct
power draws of the hardware components is to instru-
ment their individual power supply lines [34, 30]. These
approaches, however, are best suited to bench-scale in-
vestigations since they require extensive per-system cal-
ibration and the latter requires considerable additional
hardware which would dominate the system power bud-
get in our applications.

The Rialto operating system [19] introduced activities
as the abstraction to which resources are allocated and
charged. Resource Containers [2] use a similar notion,
and acknowledge that there is a mismatch between tra-
ditional OS resource principals, namely threads and pro-
cesses, and independent activities, especially in high per-
formance network servers. Quanto borrows the concept
of activities and extends them across all hardware com-
ponents and across the nodes in a network.

Several previous works have modeled the behavior of
distributed systems as a collection of causal paths includ-
ing Magpie [3], Pinpoint [6], X-Trace [15], and Pip [27].
These systems reconstruct causal paths using some com-
binations of OS-level tracing, application-level annota-
tion, and statistical inference. Causeway [4] instruments
the FreeBSD OS to automatically carry metadata with
the execution of threads and across machines. Quanto
borrows from these earlier approaches and applies them
to the problem of tracking network-wide energy usage in
embedded systems, where resource constraints and en-
ergy consumption by hardware devices raise a number
of different design tradeoffs.

7 Conclusion

The techniques developed and evaluated in this paper –
breaking down the aggregate energy usage of a system
by hardware component, tracking causally-connected en-
ergy usage of programmer-defined activities, and track-
ing the network-wide energy usage due to node-local ac-
tions – collectively provide visibility into when, where,
and why energy is consumed both within a single node

and across the network. Going forward, we believe this
unprecedented visibility into energy usage will enable
empirical evaluation of the energy-efficiency claims in
the literature, provide ground truth for lightweight ap-
proximation techniques like counters, and enable energy-
aware operating systems research.

8 Acknowledgments

This material is based upon work supported by the
National Science Foundation under grants #0435454
(“NeTS-NR”) and #0454432 (“CNS-CRI”). This work
was also supported by a National Science Foundation
Graduate Research Fellowship and a Microsoft Research
Graduate Fellowship as well as generous gifts from
Hewlett-Packard Company, Intel Research, Microsoft
Corporation, and Sharp Electronics.

References
[1] ANDERSON, J. M., BERC, L. M., DEAN, J., GHEMAWAT, S.,

HENZINGER, M. R., LEUNG, S.-T. A., SITES, R. L., VANDE-
VOORDE, M. T., WALDSPURGER, C. A., AND WEIHL, W. E.
Continuous profiling: where have all the cycles gone? ACM
Trans. Comput. Syst. 15, 4 (1997), 357–390.

[2] BANGA, G., MOGUL, J. C., AND DRUSCHEL, P. Resource con-
tainers: A new facility for resource management in server sys-
tems. In Proceedings of the Third Symposium on Operating Sys-
tems Design and Implementation (OSDI) (February 1999).

[3] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER,
R. Using magpie for request extraction and workload modelling.
In OSDI’04: Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation (Berkeley, CA,
USA, 2004), USENIX Association, pp. 18–18.

[4] CHANDA, A., ELMELEEGY, K., COX, A. L., AND
ZWAENEPOEL, W. Causeway: operating system support for con-
trolling and analyzing thexecution of distributed programs. In
HOTOS’05: Proceedings of the 10th conference on Hot Topics in
Operating Systems (Berkeley, CA, USA, 2005), USENIX Asso-
ciation, pp. 18–18.

[5] CHANG, F., FARKAS, K., AND RANGANATHAN, P. Energy-
driven statistical profiling: Detecting software hotspots. In Work-
shop on Power-Aware Computer Systems (feb 2002).

[6] CHEN, M. Y., ACCARDI, A., KICIMAN, E., LLOYD, J., PAT-
TERSON, D., FOX, A., AND BREWER, E. Path-based faliure
and evolution management. In NSDI’04: Proceedings of the 1st
conference on Symposium on Networked Systems Design and Im-
plementation (Berkeley, CA, USA, 2004), USENIX Association,
pp. 23–23.

[7] CONTRERAS, G., AND MARTONOSI, M. Power prediction for
intel xscale processors using performance monitoring unit events.
In ISLPED ’05: Proceedings of the 2005 international sympo-
sium on Low power electronics and design (New York, NY, USA,
2005), ACM, pp. 221–226.

[8] DEAN, J., HICKS, J. E., WALDSPURGER, C. A., WEIHL,
W. E., AND CHRYSOS, G. Profileme: hardware support for
instruction-level profiling on out-of-order processors. In MICRO
30: Proceedings of the 30th annual ACM/IEEE international
symposium on Microarchitecture (Washington, DC, USA, 1997),
IEEE Computer Society, pp. 292–302.

338 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[9] DUTTA, P., FELDMEIER, M., PARADISO, J., AND CULLER, D.
Energy metering for free: Augmenting switching regulators for
real-time monitoring. In IPSN’08: International Conference on
Information Processing in Sensor Networks (2008), pp. 283–294.

[10] DUTTA, P., TANEJA, J., JEONG, J., JIANG, X., AND CULLER,
D. A building block approach to sensornet systems. In Pro-
ceedings of the Sixth ACM Conference on Embedded Networked
Sensor Systems (SenSys’08) (Nov. 2008).

[11] ELSON, J., GIROD, L., AND ESTRIN, D. Fine-grained net-
work time synchronization using reference broadcasts. In OSDI
’02: Proceedings of the 5th symposium on Operating systems de-
sign and implementation (New York, NY, USA, 2002), ACM,
pp. 147–163.

[12] FARKAS, K. I., FLINN, J., BACK, G., GRUNWALD, D., AND
ANDERSON, J. M. Quantifying the energy consumption of a
pocket computer and a java virtual machine. SIGMETRICS Per-
form. Eval. Rev. 28, 1 (2000), 252–263.

[13] FLINN, J., AND SATYANARAYANAN, M. Energy-aware adapta-
tion for mobile applications. In Symposium on Operating Systems
Principles (SOSP’99) (1999), pp. 48–63.

[14] FLINN, J., AND SATYANARAYANAN, M. Powerscope: A tool
for profiling the energy usage of mobile applications. In WMCSA
’99: Proceedings of the Second IEEE Workshop on Mobile Com-
puter Systems and Applications (Washington, DC, USA, 1999),
IEEE Computer Society, p. 2.

[15] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S.,
AND STOICA, I. X-trace: A pervasive network tracing frame-
work. In NSDI’07: Proceedings of the 4th USENIX/ACM Sympo-
sium on Networked Systems Design and Implementation (2007),
USENIX.

[16] HEMPSTEAD, M., TRIPATHI, N., MAURO, P., WEI, G.-Y.,
AND BROOKS, D. An ultra low power system architecture for
sensor network applications. In ISCA’05: 32nd International
Symposium on Computer Architecture (2005).

[17] HILL, J., AND CULLER, D. E. Mica: a wireless platform for
deeply embedded networks. IEEE Micro 22, 6 (nov/dec 2002),
12–24.

[18] JIANG, X., DUTTA, P., CULLER, D., AND STOICA, I. Micro
power meter for energy monitoring of wireless sensor networks
at scale. In IPSN ’07: Proceedings of the 6th international con-
ference on Information processing in sensor networks (New York,
NY, USA, 2007), ACM Press, pp. 186–195.

[19] JONES, M. B., LEACH, P. J., DRAVES, R. P., AND BARRERA,
J. S. Modular real-time resource management in the rialto operat-
ing system. In HOTOS ’95: Proceedings of the Fifth Workshop on
Hot Topics in Operating Systems (HotOS-V) (Washington, DC,
USA, 1995), IEEE Computer Society, p. 12.

[20] JOSEPH, R., AND MARTONOSI, M. Run-time power estima-
tion in high performance microprocessors. In Proceedings of the
International Symposium on Low Power Electronics and Design
(2001), pp. 135–140.

[21] KLUES, K., HANDZISKI, V., LU, C., WOLISZ, A., CULLER,
D., GAY, D., AND LEVIS, P. Integrating concurrency control and
energy management in device drivers. In SOSP ’07: Proceedings
of twenty-first ACM SIGOPS symposium on Operating systems
principles (New York, NY, USA, 2007), ACM, pp. 251–264.

[22] MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND
HONG, W. Tag: a tiny aggregation service for ad-hoc sensor
networks. In OSDI ’02: Proceedings of the 5th symposium on
Operating systems design and implementation (New York, NY,
USA, 2002), ACM, pp. 131–146.

[23] MUSĂLOIU-E., R., JIANG, C.-J. M., AND TERZIS, A. Koala:
Ultra-Low Power Data Retrieval in Wireless Sensor Networks. In
Proceedings of the 7th International Symposium on Information
Processing in Sensor Networks (IPSN) (2008).

[24] PETROVA, M., RIIHIJARVI, J., MAHONEN, P., AND LABELLA,
S. Performance study of ieee 802.15.4 using measurements and
simulations. In Wireless Communications and Networking Con-
ference 2006 (WCNC 2006) (April 2006), vol. 1, pp. 487–492.

[25] POLASTRE, J., HILL, J., AND CULLER, D. Versatile low power
media access for wireless sensor networks. In Proceedings of the
Second ACM Conference on Embedded Networked Sensor Sys-
tems (SenSys) (November 2004).

[26] POLASTRE, J., HUI, J., LEVIS, P., ZHAO, J., CULLER, D.,
SHENKER, S., AND STOICA, I. A unifying link abstraction for
wireless sensor networks. In SenSys ’05: Proceedings of the 3rd
international conference on Embedded networked sensor systems
(New York, NY, USA, 2005), ACM, pp. 76–89.

[27] REYNOLDS, P., KILLIAN, C., WIENER, J. L., MOGUL, J. C.,
SHAH, M. A., AND VAHDAT, A. Pip: detecting the unexpected
in distributed systems. In NSDI’06: Proceedings of the 3rd con-
ference on 3rd Symposium on Networked Systems Design & Im-
plementation (Berkeley, CA, USA, 2006), USENIX Association,
pp. 9–9.

[28] SHNAYDER, V., HEMPSTEAD, M., RONG CHEN, B., WERNER-
ALLEN, G., AND WELSH, M. Simulating the power consump-
tion of large-scale sensor network applications. In Proceedings
of the Second ACM Conference on Embedded Networked Sensor
Systems (SenSys’04) (2004).

[29] SORBER, J., KOSTADINOV, A., GARBER, M., BRENNAN, M.,
CORNER, M. D., AND BERGER, E. D. Eon: a language and run-
time system for perpetual systems. In SenSys ’07: Proceedings of
the 5th international conference on Embedded networked sensor
systems (2007), pp. 161–174.

[30] STATHOPOULOS, T., MCINTIRE, D., AND KAISER, W. The en-
ergy endoscope: Real-time detailed energy accounting for wire-
less sensor nodes. In IPSN’08: International Conference on In-
formation Processing in Sensor Networks (2008), pp. 383–394.

[31] SZEWCZYK, R., POLASTRE, J., MAINWARING, A., AND
CULLER, D. Lessons From A Sensor Network Expedition. In
Proceedings of the First European Workshop on Wireless Sensor
Networks (EWSN) (2004).

[32] TALZI, I., HASLER, A., GRUBER, S., AND TSCHUDIN, C. Per-
maSense: Investigating Permafrost with a WSN in the Swiss
Alps. In Proceedings of the Fourth Workshop on Embedded Net-
worked Sensors (EmNets) (2007).

[33] TOLLE, G., AND CULLER, D. Design of an Application-
Cooperative Management System for Wireless Sensor Networks.
In Proceedings of the Second European Workshop of Wireless
Sensor Netw orks (EWSN) (2005).

[34] VIREDAZ, M. A., AND WALLACH, D. A. Power evaluation of
a handheld computer. IEEE Micro 23, 1 (2003), 66–74.

[35] WERNER-ALLEN, G., SWIESKOWSKI, P., AND WELSH, M.
Motelab: a wireless sensor network testbed. In IPSN ’05: Pro-
ceedings of the 4th international symposium on Information pro-
cessing in sensor networks (Piscataway, NJ, USA, 2005), IEEE
Press, p. 68.

[36] YE, W., HEIDEMANN, J., AND ESTRIN, D. An energy-efficient
mac protocol for wireless sensor networks. In INFOCOM’02:
The 21st Annual Joint Conference of the IEEE Computer and
Communications Societies (June 2002).

[37] ZENG, H., ELLIS, C. S., LEBECK, A. R., AND VAHDAT, A.
Ecosystem: Managing energy as a first class operating system re-
source. In Tenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASP-
LOS X) (2002), pp. 123–132.

