
THE MAGAZINE OF USENIX & SAGE
April 2003 • volume 28 • number 2

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
CONFERENCE REPORTS

WIESS ‘02

OSDI ‘02

82 Vol. 28, No. 2 ;login:

conference reports
example, a stock trading system may
have several redundant pathways for
entering a trade, to protect against
trades being lost before they have been
entered. For the IT infrastructure, this
means the redundant pathways need to
be synchronized at some point. This
type of problem is rarely considered by
researchers or product developers.

Third, error logging and reporting is
important. As an industry, we currently
support very primitive logging with no
mechanisms for root-cause analysis or
correlation of failures. Error messages
are often arcane or not useful, and “first-
failure” capture is impossible. This is
evidenced by a common, though unreal-
istic, request from support center staff:
“Turn logging on and recreate the fail-
ure.” Because logging events need to be
correlated, error tracking and logging
should be a basic service of the OS.

SESSION 2

Summarized by Wanghong Yuan

USING END-USER LATENCY TO MANAGE

INTERNET INFRASTRUCTURE

Bradley Chen, Michael Perkowitz,
Appliant

The problem addressed in this paper is
that distributed application perfor-
mance is important but hard to under-
stand. CDN selection and CRM systems
were offered as examples to illustrate the
problem. The basic approach proposed
is to use end-user latency analysis: (1)
content (e.g., an HTML Web page) is
tagged to collect data; (2) tagged data is
observed on the desktop (end-client sys-
tem); and (3) data is analyzed on the
management server.

The challenges for this approach include
(1) technique issues such as larger data
sets, heavy-tailed data, and the deriva-
tion of request properties, and (2) social
and economic issues such as privacy.
The results show that end-user latency
analysis can monitor relevant informa-
tion, which is obscured otherwise.

This issue’s reports focus on WIESS ‘02

and on OSDI ‘02.

OUR THANKS TO THE SUMMARIZERS:

Scott Banachowski

Richard S. Cox

Steven Czerwinski

Himanshu Raj

Cristian Tapus

Charles P. Wright

Praveen Yalagandula

Wanghong Yuan

Nickolai Zeldovich

Ben Zhao

Yutao Zhong

2nd Workshop on Industrial
Experiences with Systems
Software (WIESS ‘02)
BOSTON, MASSACHUSSETS
DECEMBER 9-11, 2002
KEYNOTE ADDRESS

Douglass J. Wilson, IBM

Summarized by Richard S. Cox

MIT’s Technology Review recently ran a
story titled “Why Software Is So Bad.”

The key is the problem of integration.
CIOs spend 35% of their budgets on
integration, because every new system
must work with the existing infrastruc-
ture. The complexity of integration is
driven up by the constraints of the busi-
ness environment as well as those of the
software.

Several lessons can be learned from
studying systems usage. First, standards
and componentization are proving inef-
fectual for complex systems. For exam-
ple, LDAP is a fine protocol, but no two
organizations use the same schema.
Making matters worse, interoperability
is poor due to differing interpretations
of standards, edge conditions, and ven-
dor-specific extensions. This is leading
to a change from creating solutions by
mixing “best-of-breed” products to
using a single “best-of-suite” package.
Unfortunately, much of the literature on
building component systems is aca-
demic, failing to deal with the scale of
large systems.

Second, systems will fail. Other indus-
tries have accepted this, but software
engineers are just now realizing that fail-
ure is hard. The recovery design must fit
the usage, which means the designer
must understand the failure modes in
practice. This may mean using less
sophisticated algorithms that are better
fitted to the purpose. It also means
accepting that business redundancy may
be at odds with IT redundancy. For

83April 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SBUILDING AN “IMPOSSIBLE” VERIFIER

ON A JAVA CARD

Damien Deville, Gilles Grimaud, Uni-
versité de Science et Technologies de
Lille

The smart card device environment
imposes constraints on CPU, memory,
and I/O. As a result, Java Card Virtual
Machine needs to be adapted to the
smart card. The regular verification
approaches do not fit, since unification
is costly. The proposed approach
addresses the above problems via (1)
non-stressing encoding and (2) efficient
fixed points using a software cache pol-
icy.

ENHANCEMENTS FOR HYPER-THREADING

TECHNOLOGY IN THE OPERATING SYSTEM:
SEEKING THE OPTIMAL SCHEDULING

Jun Nakajima, Venkatesh Pallipadi, Intel

In this talk, Jun Nakajima first gave an
overview of Hyper-Threading (HT)
technology by comparing it with multi-
processors. The reason behind HT is
that CPU units are not fully utilized. To
fully utilize CPU units, the HT approach
is to use two architectural sets, thereby
executing two tasks simultaneously.

The HT approach requires the OS
scheduler to support HT-aware idle han-
dling, processor-cache affinity, and scal-
ability (per-package run queue). This
paper proposes a micro-architecture
scheduling assist (MASA) methodology
to address the above problems, thereby
achieving an optimal process placement.

INVITED TALK

SOFTWARE STRATEGY FROM THE

“1980 TIME CAPSULE”

John R. Mashey

Summarized by Yutao Zhong

John Mashey reused the slides from a
talk he gave 25 years ago titled “Small Is
Beautiful and Other Thoughts on Pro-
gramming Strategies.” It is interesting to
see from these old slides and the newly
added comments what has changed and
what hasn’t.

The previous talk was given in 1977,
when the main computer models were
IBM mainframes, coming VAX, and
PDP-11s, while C was taking the place of
ASM and structured programming
became the dominating idea. Three
approaches of building system software
were introduced and compared: “Do it
right,”“Do it over,” and “Do it small,
with tools.”“Do it right” emphasizes an
optimistic on-requirement analysis that
assumes “we know what we are doing.”
“Do it over” puts more emphasis on
early implementation by still starts from
scratch. The last approach, by contrast,
considers tools instead of systems and
builds small and fast so that, if neces-
sary, failures can happen quickly.

In order to see the effect of these strate-
gies, Mashey discussed different metrics
to qualitatively measure success and gave
statistics and observations of projects in
data processing. Figures and numbers
showed the low percentage of complete
success and indicated the larger a project
is, the higher overhead it has to pay.
Laws of program evolution also state
that the entropy of a project increases
with time and may result in a complex
program used to solve a simple problem.

Several principles were offered to coun-
teract these problems: “build it fast,”
“keep it small and simple,” and “build
for change.” Existing tools should be uti-
lized whenever possible. It would be
good to build tools and consider the
interfaces of connecting tools. Some
“small tactics,” including “lifeboat the-
ory,”“sinking lifeboat theory,” and other
considerations about people and consol-
idations, were also discussed.

Even after 25 years of work, we need to
keep these problems in mind, since sys-
tem complexity is much higher nowa-
days; fortunately, people are increasingly
aware of these issues.

Mashey ended the talk by saying, “We
have met the enemy and they are us.”

SESSION 4

Summarized by Cristian Tapus

AN EXAMINATION OF THE TRANSITION OF

THE ARJUNA DISTRIBUTED TRANSACTION

PROCESSING SOFTWARE FROM RESEARCH TO

PRODUCTS

M.C. Little, HP–Arjuna Labs; S.K.
Shrivastava, Newcastle University

Arjuna started in 1986 as a research
project at the University of Newcastle,
England. Arjuna was a “vehicle for get-
ting Ph.D. degrees.” The decision to use
C++ was a pragmatic one (expensive
Euclid vs. free C++ AT&T). Arjuna was
designed to be a toolkit for development
of fault-tolerant applications which
would provide persistence, concurrency
control, and replication. Modularity was
the key to the longevity of the system.

In 1994 Newcastle University asked
them to implement a student registra-
tion system because the “academic
researchers are cheap.” The system was
supposed to run on multiple platforms,
serve about 15,000 students over five
days, and could not tolerate failures.
There were problems, though. Assump-
tions were made about network parti-
tions and recovery that made the system
fail to identify dead machines vs. slow
connections. Intuition is not a good
approach to designing systems.

The year 1995 brought standards for
transactions: object transaction system
specifications (OTSS) from OGM. It
shared many similarities with Arjuna,
but it was only a two-phase commit pro-
tocol engine (persistence and concurrent
control where required from elsewhere).
At this time the OTSArjuna system was
developed. With only slight changes to
the interfaces between modules, the sys-
tem was complying with OTS. JTSAr-
juna followed just two years later as the
first Java transaction service.

In 1999 the Java and C++ transaction
service were marketed; only one year
later Bluestone took over Arjuna Solu-
tions Limited and was, in turn, acquired
by HP in 2001. When the system was

WIESS ‘02 �

acquired by Bluestone the need for real
testing became a reality. For the previous
decade only about 20 tests had been
used, but this was increased to over 4000
tests in order to stretch every feature of
the system. The previous method was to
get a release out to the users, and users
would then report problems back and
bugs would be fixed. Not anymore. The
industry method was different from
many perspectives: write manuals and
white papers and train other people. “I
used to laugh at white papers, but I real-
ized you need skills. An academic person
cannot do it. Academic people do tech-
nical reports, which are different,” Little
said.

Was it worth it? YES. But it was stressful
moving away from R&D. “If you have a
family don’t do it. If you are in the
industry and you feel you are stressed
up, move to academia.”

When asked what they would do differ-
ently, the reply was that they would (1)
get somebody else to do the failure
recovery and (2) make sure that they
would have more than 20 tests.

TREE HOUSES AND REAL HOUSES: RESEARCH

AND COMMERCIAL SOFTWARE

Susan LoVerso and Margo Seltzer,
Sleepycat Software

Susan talked about the process they fol-
lowed to make a commercial product
out of BerkeleyDB. The main argument
was that a research prototype is like a
tree house – it doesn’t last – while a
commercial product is the real house.
Sleepycat was founded in 1996 and
transformed DB1.85 into a real product.
It added transactions, utilities, and
recoverability while continuing to be
open source. Sleepycat is a “distributed”
company; with employees spread across
the world, it is hard for them to interact
with each other directly. But the hetero-
geneous environment makes the com-
pany more powerful. In order to
produce quality software, however,
Sleepycat must follow rigorous software
practices. Designs and reviews are sent

84 Vol. 28, No. 2 ;login:

to the entire engineering staff (one
advantage of being small), and there are
strict coding standards (it is the law).

The talk continued by describing tech-
niques used to obtain the final product.
When you hit bedrock, try to rethink
what you are doing; and observe the
“rule of holes – if you are in one, stop
digging.” In the end, certain lessons were
learned from the development process:
Designs and reviews are important, but
reviews are not perfect; there needs to be
a willingness to stop and change course
when necessary and to throw code away,
even if it works; and you need someone
nearby who’s close to the process but
objective.

JOINT WIESS/OSDI PANEL

RESEARCH MEETS INDUSTRY

Chair: Noah Mendelsohn; Panelists:
Ramon Caceres, ShieldIP; Mark Day,
Cisco Systems; Charles Leiserson, MIT;
Dick Flower, HP; Brian Bershad, Univer-
sity of Washington

Summarized by Nickolai Zeldovich

The joint panel discussed issues related
to the ridge between research and indus-
trial development and their correlation.
The discussion was entitled “Research
Meets Industry.”

Brian Bershad: Knowing how to teach
helps in the industry, as does having a
degree. You need to know how to man-
age and motivate people in academia.
Coming back to academia, you start ask-
ing questions like, “Who cares about this
project?”“Will it scale?” and so on.

Below are capsules of the discussion by
the panel and the audience

Someone Whose Name I Forgot: People
in academia are generally not interested
in details, testing, and usability, which
are needed to take something from
research to a product. The industry in
general is also not very interested in
research work, reading papers, and so
on.

Mark Day: More incentives are needed
to get industry and academia to interact.

Currently there are almost no such
incentives.

Andrew Hume: I do technology transfer
at AT&T. The problem is enticing
researchers, because you go for a while
without publishing papers. On the other
hand, you can then write a different kind
of paper, about the real aspects of sys-
tems. Academia should care more about
results having to do with real details.

Noah Mendelsohn: Academic papers
don’t line up with industrial interests. If
conferences did accept industry papers,
will companies write them?

Andrew Hume: Yes. Motivating factors
are satisfaction and recognition, perhaps
because this is rare.

Noah Mendelsohn: There’s also an
opportunity cost to writing a paper, of
losing developer time.

Charles Leiserson: Students going into
industry don’t understand company cul-
ture; they are used to the academic envi-
ronment.

Margo Seltzer: There needs to be moti-
vation for companies to write papers.
Engineers want to write papers, but need
to sell papers to managers, as a tool for
marketing, for example.

Brian Bershad: Often companies don’t
want intellectual property published.
Thus, commercial papers lack technical
detail.

Charles Leiserson: Writing papers is usu-
ally as useful internally as getting it pub-
lished. Papers help internal
communication.

Roblis(?), Intel: At Intel Labs, writing
papers is rewarded and expected. In the
product groups, however, it is viewed as
a net negative. It would be useful if con-
ferences could accept/reject rough drafts
to avoid wasted write-up efforts.

Anthropologists studied engineers and
found that usually there are a few “lead-
ers’’ in engineering groups that go to
conferences, lead things to turn some-

thing into a product, etc. Maybe we
don’t need people transfer, we just need
to market things to these “leaders’’?

Dick Flower(?): There are groups with-
out leading individuals. Having an
advanced development group of some
sort could be useful, though.

Brian Bershad: I think some companies
have reasonable expectations of the
research world, and some companies
don’t.

John(?): The HotChips conference, for
example, only produces presentations
and not papers. It’s much easier to get a
presentation, rather than a paper, from a
lead chip designer.

Mark T (MS Research): At PARC, of the
people who went to industry, none ever
came back for long. Can you ever come
back from the industry?

Brian Bershad: No, not possible to come
back and be the same. Your focus changes
to short-term goals.

Charles Leiserson: In my lab, lots of peo-
ple, including staff, did it OK. Doing so
colors your interest, though. You learn
about things like barriers to adoption,
etc.

Mark Day: Do you mean returning to
applied research or to academia?

Mark T (MS Research): PARC returnees
were successful in the industry and kept
going back to form new startups. Focus
on doing something with impact in the
world.

Noah Mendelsohn: Having gone to
industry before grad school gave me a
great perspective on reality, judging the
realism of projects, etc. It’s very hard to
do research part-time.

Bradley Chen (Appliant): What do you
think about requiring faculty to have
industrial experience?

Charles Leiserson: Depends on the qual-
ity of the experience. But yes, there are
things from industry to be taught to

85April 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Suniversity people. Management, leader-

ship, motivation, educating about team-
work, working with each other.

Fred Douglis (IBM): Were there more
core industrial papers back when
USENIX took extended abstracts?

Chris Small: We seem to have a hangover
after the dot-com boom. There was a
huge flux of ideas from research to com-
merce.

Brian Bershad: The dot-com boom
shows what happens when the barriers
to adoption from research are removed.
The result wasn’t so great – too many
worthless ideas, no industrial experi-
ence. Doing a startup is easier the sec-
ond time around.

Someone from VMware: We were lucky
to have good timing to submit our paper
to OSDI – the submission deadline was
a few months after an internal deadline,
which gave us time to gather results. The
community should be more receptive to
papers about released or dead products;
they are valuable.

Jun Nakajima (Intel): In this economy,
R&D costs are being reduced and moved
to China. For the cost of one engineer
here you can get three to five engineers
in China. How do you justify the three-
to-five times cost?

Charles Leiserson: Education. Also loca-
tion – most other companies are located
here.

Erez Zadok (Stony Brook): Academia is
not preparing students for life in indus-
try. It’s difficult to convince universities
to create courses with practical aspects.

5th Symposium on Operating
Systems Design and
Implementation (OSDI ‘02)
TECHNICAL SESSIONS

DECENTRALIZED STORAGE SYSTEMS

Summarized by Himanshu Raj

FARSITE: FEDERATED, AVAILABLE, AND

RELIABLE STORAGE FOR AN INCOMPLETELY

TRUSTED ENVIRONMENT

Atul Adya, William J. Bolosky, Miguel
Castro, Gerald Cermak, Ronnie
Chaiken, John R. Douceur, Jon Howell,
Jacob R. Lorch, Marvin Theimer, Roger
P. Wattenhofer, Microsoft Research

The goal of this research was to make a
scalable serverless distributed file system
while maintaining security against mali-
cious attacks in untrusted systems.
Byzantine protocols are used to define
untrusted infrastructure. The FARSITE
solution is a virtual global file store of
encrypted data that is replicated to facil-
itate availability. Storage is divided into
two parts: file data and metadata. Meta-
data information is a hash-computed
form of actual file data. The system is
built around an infrastructure to store
file data and metadata separately, and
traditional Byzantine properties are
applied only for machines storing meta-
data.

Since Byzantine operations are costly,
they are not performed per file I/O.
Instead, a Byzantine operation is defined
valid for a period of lease. Various differ-
ent types of leases are available to suit
different consistency requirements.
Batching is another concept used to
reduce cost. The system is implemented
as a service in user level and as a kernel
mode driver that routes the actual file
system calls to NTFS. According to the
results reported, the system performs
better than a central file system, though
worse than bare-bones NTFS. The sys-
tem is not designed to address efficient
large-scale write sharing, database
semantics, or disconnected operations.
The project link is
http://research.microsoft.com/sn/Farsite/.

OSDI ‘02 �

http://research.microsoft.com/sn/Farsite/

TAMING AGGRESSIVE REPLICATION IN THE

PANGAEA WIDE-AREA FILE SYSTEM

Yasushi Saito, Christos Karamanolis,
Magnus Karlsson, Mallik Mahalingam,
HP Labs

Pangaea is a scalable distributed file sys-
tem targeted for the type of WAN infra-
structure characteristic of multinational
companies with overseas corporate
offices and a need to share data. Design
goals of Pangaea include hiding WAN
link latencies, availability in a high-
change environment, and network usage
efficiency. The system assumes the pres-
ence of an available secure infrastruc-
ture, such as VPN. The system also
provides eventual consistency, though
manual open/close-style consistency
could also be provided. The system
employs pervasive replication to dynam-
ically replicate each file/directory in the
system independently. Benefits drawn
from intensive replication are speed,
availability, and network efficiency. The
system is implemented in user space
based on SFS API. The NFS client at the
kernel level routes the I/O requests to
the Pangaea service at the user level. The
system uses graph-based replica man-
agement. A random graph is created for
every file/directory in the system, and
edges of this graph are used for update
propagation among replicas and for
replica discovery. Since the system does
not have a central lock manager, it uses a
technique called harbingers to compute
a spanning tree so that duplicate trans-
missions can be avoided. This technique
also helps reduce the propagation delay.
The project link is
http://www.hpl.hp.com/research/ssh.

IVY: A READ/WRITE PEER-TO-PEER FILE

SYSTEM

Athicha Muthitacharoen, Robert Morris,
Thomer M. Gil, Benjie Chen, MIT

The main goal of Ivy is to build a highly
available file system out of inexpensive
infrastructure that can scale to multiple
writers on the same data. The system
leverages DHT in the core, and provides
weaker consistency guarantees for meta-

86 Vol. 28, No. 2 ;login:

data for performance reasons. The main
idea behind the system is to use a log per
user and combine potentially multiple
logs to serialize the updates made on a
shared object. Serialization is based on a
version-vectoring scheme rather than
using a timestamp technique. The evalu-
ation compares Ivy’s performance with a
local file system to see the load charac-
teristics and runtime comparisons made
with NFS over WAN. Results show that
log operations tend to dominate the per-
formance of the system over WAN and
parallel fetching of log records can be
used to hide latency. The system
addresses sharing among only a small
number of writers and hence does not
address the scalability issues involved
with a large number of writers sharing
an object. Merging of logs is performed
later, as in the Coda file system, and con-
flict resolution is addressed then. The
way to provide effective read sharing in
Ivy is to use multiple file systems. The
project link is http://pdos.lcs.mit.edu/ivy.

ROBUSTNESS

Summarized by Ben Zhao

DEFENSIVE PROGRAMMING:
USING AN ANNOTATION TOOLKIT TO BUILD

DOS-RESISTANT SOFTWARE

Xiaohu Qie, Ruoming Pang, Larry
Peterson, Princeton University

Qie began by examining how typical
DoS attacks work. One attacks a Web
server, for example, by intentionally
slowing down TCP, faking packet loss,
and attempting to tie down as many
TCP connections at the server end as
possible. It is useful to classify resources
as renewable (CPU, network bandwidth,
disk bandwidth) and nonrenewable
(processes, file descriptors, memory
buffers). Renewable resources are vul-
nerable to “busy attacks,” which try to
request the resources faster than they
can be allocated. The corresponding
solution is protection via admission
control. Nonrenewable resources are
vulnerable to “claim-and-hold attacks,”
which attempt to request and hold on to

them. The corresponding solution
would be to recycle resources when they
are exhausted, reclaiming them from
certain applications. Combinations of
the two types of resource attacks are
harder to deal with. For example, when
file descriptors (nonrenewable) are recy-
cled to protect against claim-and-hold
attacks, they become a renewable
resource and therefore vulnerable to
busy attacks.

The proposal is to utilize a toolkit con-
taining “sensors” and “actuators” to pro-
tect both types of resources, with low
programming burden. The toolkit is a
combination of techniques from work in
protection, static analysis, anomaly
detection, and profiling. To protect
renewable resources, the approach is to
divide functionality into distinct services
and balance resources among them, such
that the impact of an attack on a single
service is limited to that service. To pro-
tect nonrenewable resources, they need
to be recycled when necessary. The algo-
rithm to choose the resource instance to
reclaim can be driven by a timer. The
timer can be set on idleness or on the
length of the service lifetime. The work
proposes a user-defined progress metric
(amount of data output or number of
state transitions) that will reclaim
resources from the “slowest” principal.

The toolkit is implemented as 11 C
macros and library functions. The
authors also modified gcc for auxiliary
code generation at compile time. The
evaluation contains case studies of a
flash Web server. The Web server is par-
titioned into 46 services; 60 annotations
were added to the code. Under a slash
attack, the annotated server response
time is 5.1 milliseconds, compared to a
normal response time of 4.3 millisec-
onds, and is significantly lower than a
non-annotated server under attack,
which has a response time of 25 seconds.
A possible limitation is that its effective-
ness depends on service granularity. The
project link is
http://www.cs.princeton.edu/nsg.

http://www.hpl.hp.com/research/ssh
http://pdos.lcs.mit.edu/ivy
http://www.cs.princeton.edu/nsg.

USING MODEL CHECKING TO DEBUG DEVICE

FIRMWARE

Sanjeev Kumar, Kai Li, Princeton
University

Device firmware is a piece of concurrent
software that achieves high performance
at the cost of software complexity. It
contains subtle race conditions that
make it difficult to debug using tradi-
tional debugging techniques. The prob-
lem is further compounded by the
lack of debugging support on the
devices. Model checking is a promising
approach. It can systematically explore
all possible scheduling orders and pro-
vide counter-examples of bugs found.
The general technique is to extract mod-
els from programs either manually or
via a compiler. The authors extracted
models for the Spin model from pro-
grams written in the ESP language. ESP
is a language for programmable devices
that the compilers use to generate tests.
In evaluation, the techniques are applied
to VMMC (high performance commu-
nication design that bypasses the OS for
data transfers). VMMC firmware was
reimplemented using ESP. Seven models
were found using abstract models,
despite the global nature of some bugs
(deadlock). These bugs would be hard to
find without using a model. Where a full
search of the state space is not possible,
partial searches can minimize resource
costs and still produce useful results.

CMC: A PRAGMATIC APPROACH TO MODEL

CHECKING REAL CODE

Madanlal Musuvathi, David Y.W. Park,
Andy Chou, Dawson R. Engler, David L.
Dill, Stanford University

Many system errors do not emerge
unless some intricate sequence of events
occurs. In practice, this means that most
systems have errors that only trigger
after days or weeks of execution. Model
checking is an effective way to find such
subtle errors. This work contributes the
C model checker, which links to code,
emulates a real system, captures the
states of the system, and analyzes the
results. CMC schedules threads to emu-

87April 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Slate nodes in the network, where sched-

uling granularity is on the order of
entire even handlers. This means han-
dlers are treated atomistically, and syn-
chronization bugs can be missed. CMC
tries to search the entire space, but it can
checkpoint at decision points and
resume later where different states can
be generated. The work uses three opti-
mizations to reduce the search space:
hash compaction, downscaling, and state
canonicalization. Hash compaction is
the use of hashtables to store previously
seen states so they are not examined
again, and computing hashed signatures
for each state to reduce space require-
ments. Downscaling is the use of a small
number of nodes in order to reduce the
state space. Complex interaction bugs
can still be produced, but it might miss
bugs only seen on large-scale interac-
tions. State canonicalization is the sim-
plification of similar states down to a
single state, which is then evaluated.
When applied to AODV routing proto-
col implementations, the CMC checker
found 42 bugs (of which 34 are distinct,
and one is a bug in the specification).

KERNELS

Summarized by Charles P. Wright

PRACTICAL, TRANSPARENT OPERATING

SYSTEM SUPPORT FOR SUPERPAGES

Juan Navarro, Rice University and Uni-
versidad Católica de Chile; Sitaram Iyer,
Peter Druschel, and Alan Cox, Rice
University

Translation lookaside buffer (TLB) cov-
erage has decreased by a factor of 1000
in 15 years. In 1985 the TLB miss over-
head was less than 5%; today it is over
30%. This is primarily due to increases
in the size of working sets, yet TLB size
has remained constant. Many architec-
tures allow the creation of superpages. A
superpage TLB is like a normal TLB, but
a size field is added. Navarro presented a
practical implementation of superpages
for FreeBSD 4.3.

There are three major issues when
implementing superpages: (1) super-

pages require allocation of contiguous,
aligned memory; (2) a superpage can be
created out of several normal pages
(promoted) or broken into several pages
(demoted); and (3) the need to prevent
internal fragmentation. Each issue is
dealt with in an opportunistic manner.
For example, once an application
touches the first page of a memory
object it will quickly touch every page.
Each superpage is created as long as pos-
sible and at the earliest point. To do this,
reservation is employed, but it may be
broken if the memory is needed (the
oldest reservations are broken first). The
same type of opportunistic algorithm is
applied to promotion and demotion. To
keep fragmentation low the page demon
restores contiguity, and wired pages are
clustered. On the SPEC CPU 2000 inte-
ger and floating point operations, a per-
formance improvement of about 11%
was observed. For a large matrix trans-
position, an improvement of over 600%
was observed.

More information is available at http://
www.cs.rice.edu/~jnavarro/superpages/.

VERTIGO:
AUTOMATIC PERFORMANCE-SETTING FOR

LINUX

Krisztián Flautner, ARM Limited; Trevor
Mudge, University of Michigan

Flautner presented a software frame-
work to do energy management by set-
ting processor speed. The processor
consumes 32% of the power budget on
small devices (e.g., PDAs). Vertigo
focuses on power management when the
CPU is performing work, not when the
CPU is idle. The underlying principle is
to run just fast enough to meet dead-
lines, without using higher power con-
sumptions. An increase in performance
will create an exponential increase in
energy usage—it is better to use a
smaller amount of computing power for
a longer period of time than to use a
large amount of power over a short
period.

Vertigo is a Linux kernel module that
monitors system execution to determine

OSDI ‘02 �

http://

how fast things need to go. There are five
hooks in the kernel (e.g., task switching,
some system calls, and swapping) that
are used to determine activity. A policy
stack combines multiple simple algo-
rithms to determine the best perfor-
mance level. Each algorithm can be
specified for a specific performance situ-
ation. For example, an interactive per-
formance algorithm may monitor X
server events.

Vertigo was compared to the Crusoe
LongRun on-chip power saving system.
Using application-specific knowledge
was very effective. For example, the Cru-
soe LongRun would cause spikes to full
power when the GNOME clock ticked.
When playing MPEG movies both Ver-
tigo and LongRun do not drop any
frames, but Vertigo used 52% of the
peak performance level and LongRun
used 80%. The conclusion is that the
kernel has lots of valuable information
that is lost on the chip.

COOPERATIVE I/O: A NOVEL I/O
SEMANTICS FOR ENERGY-AWARE

APPLICATIONS

Andreas Weissel, Bjorn Beutel, and
Frank Bellosa, University of Erlangen

Traditional operating system power
management assumes the timings of
disk operations by user applications are
unknown and cannot be influenced.
Additionally, transitioning to a low-
power mode will actually waste power if
the transition was unnecessary. Cooper-
ative I/O changes this assumption by
introducing three new system calls:
coop_read, coop_write, and coop_open.
Along with the standard parameters for
these calls, a timeout and an abortable
flag are passed (e.g., a MPEG player may
specify that I/O can be deferred until the
frame actually needs to be decoded).
This allows the operating system to
schedule I/O intelligently.

There are three components to coopera-
tive I/O: a modified IDE driver that
shuts down the disk after the break-even
point (the number of seconds required

88 Vol. 28, No. 2 ;login:

to reduce overall power consumption),
VFS modifications, and ext2 modifica-
tions. The goal of these modified com-
ponents is to cluster I/O operations into
batches, thus leaving the drive idle for
the longest period of time possible. For
the Amp MP3 player, 150 lines of code
were modified (the bit rate was used to
determine timeouts). While this modi-
fied Amp was running, an unmodified
mail client using write was used. Using
coop_read, a power consumption was
reduced to 210 joules from 373 joules.
This is a better energy savings than an
“Oracle” policy and one which always
makes the right power decision based
upon a previous trace, without modify-
ing the timing of the I/O.

PHYSICAL INTERFACE

Summarized by Charles P. Wright

TAG: A TINY AGGREGATION SERVICE FOR

AD-HOC SENSOR NETWORKS

Samuel Madden, Michael J. Franklin,
Joseph M. Hellerstein, University of
California, Berkeley; Wei Hong, Intel
Research

Sensor networks are a collection of
small, inexpensive battery-run devices
with sensors and RF interfaces. Pro-
gramming a sensor network is a difficult
task: It took two weeks for two experi-
enced students to program a vehicle-
tracking sensor network. TAG eliminates
the need to program sensor networks by
using an SQL-like declarative lan-
guage—using TAG, the same vehicle
position network was programmed in
two minutes. Sensor networks are
installed under harsh conditions (e.g., in
habitat- or earthquake-monitoring
applications). The primary metric used
for sensor networks is power consump-
tion. Berkeley “Mica Motes” run for only
two to three days when using full power
but can last up to six months at a 2%
duty cycle. Communication dominates
the power consumption cost, so they use
bytes sent as a metric.

To reduce the communications over-
head, TAG allows in-network processing

of aggregate queries (count, max, aver-
age, etc.). Madden asserts that most
common data-analysis operations are
aggregate operations. For example, the
average temperature over all the sensors
(or in a given sector) is a more interest-
ing indicator than the temperature at
each individual node.

There are several methods that can be
used to decrease communication. The
first method is to incrementally com-
pute values using partial state records
(PSRs). For example, an average can be
transmitted to a node’s parent as a sum
and a count, and the parent’s values can
be inserted into this PSR. Additionally,
snooping or guesses can improve perfor-
mance. If the desired aggregate is the
max, a node does not need to communi-
cate its own value if it hears a value
larger than its own. If the root knows the
max value is at least 50, then it can
reduce communication by communicat-
ing this value to other nodes.

More information can be obtained at
http://telegraph.cs.berkeley.edu/tinydb/.

FINE-GRAINED NETWORK TIME

SYNCHRONIZATION USING REFERENCE

BROADCASTS

Jeremy Elson, Lewis Girod, Deborah
Estrin, UCLA

To present a consistent view of informa-
tion, sensor networks need to have a
consistent view of time. This problem
has already been solved on the Internet
(e.g., NTP), but sensor networks do not
have the infrastructure available to
Internet hosts. Sensor applications also
have stronger time synchronization
requirements than the Internet (tracking
phenomena may require microsecond-
level synchronization).

Elson presented reference broadcast syn-
chronization (RBS). Traditional syn-
chronization methods have lots of
nondeterministic delay when sending
packets (e.g., backoff timers or link-level
retransmission). Receiving a packet that
a host sent has much less variation than
the time it takes to actually send a packet

http://telegraph.cs.berkeley.edu/tinydb/

(1 bit width for receive vs. 1000 for
send). Therefore, two hosts can make
note of the time they received a packet
sent by a third host. The two receivers
now know the difference between their
clocks. Clock skew perturbs this obser-
vation, however, so a best-fit line is used
to determine the difference.

RBS synchronized the clock on a Com-
paq iPaq to precisions of 6 microsec-
onds, whereas NTP is only able to obtain
a precision of 53 microseconds. The
clock resolution on the Linux platform
is only 1 microsecond; Elson believes
that a more accurate clock would yield
better results. The performance under a
6 Mbps load shows even better results:
RBS degrades to 8 microseconds, but
NTP degrades to 1542 microseconds.

RBS effectively removes sender nonde-
terminism from network time synchro-
nization. This facilitates a wide range of
applications, including acoustic ranging
and collaborative signal detection.

SUPPORTING TIME-SENSITIVE APPLICATIONS

ON A COMMODITY OS

Ashvin Goel, Luca Abeni, Charles Kra-
sic, Jim Snow, Jonathan Walpole,
Oregon Graduate Institute

Fast processors enable interactive real-
time applications in software: for exam-
ple, software radio, software modems,
voice over IP, video conferencing, and
accurate network traffic generators.
However, these applications need mil-
lisecond to microsecond timing guaran-
tees. It has long been accepted that to
provide such timing guarantees a special
real-time OS is required and that general
purpose OSes need a complete redesign.
Real-time operating systems have many
disadvantages (e.g., nonstandard inter-
faces and small user communities). Goel
presented time-sensitive Linux (TSL).
TSL aims to provide real-time perfor-
mance on commodity general-purpose
operating systems using an evolutionary
approach.

The requirements for TSL were fine-
grained timers, a responsive kernel, and

89April 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
San accurate implementation of a good

scheduler. There are two types of kernel
timers: fine-grained (soft) or one-shot
timers (firm). There are two overheads
when evaluating timers: reprogramming
and interrupts. Reprogramming the
timer turns out to be inexpensive, but
the interrupts are expensive. However,
soft timers have a potentially
unbounded latency. TSL uses firm
timers. Firm timers insert checks into
kernel paths (e.g., system call entry/exit
to check the timer) but also use one-
shot timers that are configured to over-
shoot the required delay. This provides
some guarantee while, hopefully, reduc-
ing the number of interrupts.

Linux has already broken down the big
kernel lock, but some locks are still large.
TSL uses voluntary lock yielding to
increase kernel responsiveness. Finally,
TSL implements a proportional share
scheduler that provides a constant-speed
virtual machine. Even heavy-load soft-
ware modems (which require 4–16 mil-
lisecond guarantees) are supported. TSL
implements sub-millisecond-timing
guarantees on a general-purpose operat-
ing system. TSL imposes 1.5% overhead,
which is low for firm timers. For the
additional kernel preemption points, an
overhead of 0.5% was introduced.

PANEL

Summarized by Steven Czerwinski

SELF-ORGANIZING NETWORKS FROM SENSOR

NETS TO P2P: PANACEA OR PIPE-DREAM?

Co-Moderators: Peter Druschel, Rice
University; David Culler, University of
California, Berkeley/Intel; Panelists:
Hari Balakrishnan, MIT; Yaneer Bar-
Yam, NECSI; John D. Kubiatowicz,
University of California, Berkeley

Are self-organized networks superior to
traditionally engineered solutions and
are they necessary to solve today’s prob-
lems? In Culler’s opinion, self-organized
networks are necessary but require engi-
neering in order to build systems with
the desired predictable global behaviors.
They are necessary in sensor networks

because of the near impossibility of
administering and configuring millions
of sensor nodes; they must be able to
self-organize. However, as he showed
with several different self-organizing
methods to compute spanning trees,
designing the local rules that lead to cor-
rect global behavior is difficult. This is
where engineering needs to be applied.

Balakrishnan also advocated self-organ-
ized networks because they can elimi-
nate human misconfiguration from
distributed systems and allow such sys-
tems to adapt to errors and change. He
argued that distributed systems are all
about enabling autonomy at subsystems,
but with this autonomy come problems
with misconfiguration. Using traces, he
showed how a significant portion of
invalid DNS queries were caused by
human misconfiguration.

Kubiatowicz used a thermodynamics
analogy to argue the importance of self-
organizing networks. Large systems can
exhibit stability through statistics if they
possess replicated components that
interact and adjust to one another.
Energy could be injected into the system
through both passive and active correc-
tion mechanisms. He labeled such sys-
tems as “thermospective.” With Moore’s
Law enabling redundancy and with the
need to eliminate human configuration,
he saw these systems as being the future.

Druschel presented a spectrum of cur-
rent distributed systems, with decentral-
ized approaches on one end and self-
organizing ones on the other. He argued
that natural (biological) systems are the
only truly self-organizing systems, with
sensor networks being fairly close. Sys-
tems requiring ACID semantics have dif-
ficulties making it onto the
self-organized end. He also noted that
the systems we engineer are robust to
both mundane failures and malicious
attacks, while self-organizing ones are
only robust to mundane failures. They
would require (at the least) a trusted
certificate authority to be robust to
attacks.

OSDI ‘02 �

Bar-Yam used analogies from biology to
show that we already have the concep-
tual tools to demystify self-organizing
networks. It may be hard to understand
the progression of a mouse embryo
from a macroscopic perspective, but
that’s because we don’t understand the
local rules or patterns of behavior of the
smaller components. He showed how
different types of patterns of behavior
(such as local majority, two-dimensional
condensation, and local activation/long-
range inhibition) can lead to interesting
phenomena, such as the stripes on a
zebra’s back.

Audience members pointed out the dif-
ficulties of creating such a system from
an economic and business standpoint
(who pays for all of this?) along with
privacy concerns (do you really want
your data going anywhere and every-
where?). Some also cautioned against
the misuse of biology and other non-
computer science metaphors, which can
encourage similarities being drawn
where none exist.

VIRTUAL MACHINES

Summarized by Praveen Yalagandula

MEMORY RESOURCE MANAGEMENT IN

VMWARE ESX SERVER

Carl A. Waldspurger, VMware

This won the Best Paper award.

VMware ESX server is a thin kernel to
multiplex hardware resources among
virtual machines. The three main issues
that arise in memory resource manage-
ment are fairness, performance isolation
among virtual machines, and efficient
utilization of the available machine
memory.

To efficiently reclaim memory from a
virtual machine, Waldspurger proposes
the ballooning technique where a driver
inside the virtual machine allocates
some pages, forcing the guest OS to evict
pages not in use or to swap some pages.
Experimental results show that there is
only a small overhead of 1.4% to 4.4%
in using this technique.

90 Vol. 28, No. 2 ;login:

Efficient use of available machine mem-
ory is provided through memory shar-
ing, where a single page on the machine
is shared by multiple VMs (using copy-
on-write semantics). A background
process computes hashes of pages to
determine the duplicate pages. For “best
case” workloads, in which multiple
Linux VMs are run, about 60% memory
savings are observed. For real workloads,
the savings ranged from 7% to 32%.

For a memory allocation scheme that
provides fairness among virtual
machines while being efficient, the
author proposes the concept of “idle
memory tax,” where the idle pages are
charged more than active pages. This
new mechanism resulted in a 30%
throughput increase for the workload
considered in experiments.

SCALE AND PERFORMANCE IN THE DENALI

ISOLATION KERNEL

Andrew Whitaker, Marianne Shaw, and
Steven D. Gribble, University of
Washington

The goal of this work is to enable the
execution of untrusted code while pro-
viding isolation so that the untrusted
code does not interfere with any other
process on the system. The Denali “iso-
lation kernel” isolates untrusted software
services in separate protection domains.
The approach is to use virtual machines
to provide isolation with strategic modi-
fications for scalability, simplicity, and
performance.

Denali’s virtual machine architecture
achieves scalability and performance at
the cost of giving up backwards compat-
ibility. It omits rarely used features like
BIOS, protection rings, etc.; revises
interrupts and MMU; and simplifies
hardware I/O instructions. The resulting
core kernel is an order of magnitude
smaller than the bare-bones Linux
2.4.16 kernel.

For scalability, Denali employs the fol-
lowing techniques: (1) batched, asyn-
chronous interrupts – instead of
invoking a VM when interrupt arrives,

interrupts are batched together and
applied when the corresponding VM is
scheduled, thus reducing the overhead
of context switches; and (2) idle-with-
timeout instruction – this instruction
allows VM to specify how long it yields,
thus leading to better scheduling. The
first technique provided a 30% improve-
ment in performance in experiments,
and the second scheme yielded a 100%
throughput improvement.

REVIRT: ENABLING INTRUSION ANALYSIS

THROUGH VIRTUAL-MACHINE LOGGING

AND REPLAY

George W. Dunlap, Samuel T. King,
Sukru Cinar, Murtaza A. Basrai, and
Peter M. Chen, University of Michigan

The aim of this work is to provide a way
for post-mortem analysis of intrusions.
Typical system logs are subverted by the
intruder. The “CoVirt” project aims at
enhancing security by running the target
OS and all target services inside a Virtual
Machine (VM) and then adding security
services in the VM or host platform.
ReVirt aims at checkpointing and log-
ging a VM’s execution trace so that it
can be replayed later. The virtual
machine used is UMLinux, a Linux ker-
nel that can be run on any other Linux
machine.

To enable complete replay, checkpoint-
ing is done that covers the memory,
CPU, and disk states, and logging is
done that covers all keyboard, network
events, and interrupts, along with the
data corresponding to these events.
Replaying the interrupts is a hard prob-
lem, and the authors use tuple, as in the
Hypervisor project, to uniquely identify
the place in execution where interrupts
should happen.

The virtualization overhead ranged from
1% to 58% for different workloads. The
logging overhead on runtime is about
8%, and the log grew at a rate of
1.4GB/day in the worst case workload
and at 0.04GB/day in the best case.

CLUSTER RESOURCE MANAGEMENT

Summarized by Praveen Yalagandula

INTEGRATED RESOURCE MANAGEMENT FOR

CLUSTER-BASED INTERNET SERVICES

Kai Shen, University of Rochester;
Hong Tang,University of California,
Santa Barbara; Tao Yang, University of
California, Santa Barbara and Ask
Jeeves; Lingkun Chu, University of Cali-
fornia, Santa Barbara

The challenges involved in hosting large-
scale resource-intensive Internet services
on a server cluster are: (1) scalability
and robustness, (2) timely response,
(3) efficient resource utilization, (4)
adaptive resource management, and (5)
differentiated services. The goal of the
Neptune project is to provide program-
ming and run-time environment sup-
port for effective management of
services through partitioning, replica-
tion, and aggregation. Instead of using
monolithic metrics such as throughput,
mean response time, etc., the authors
define “quality-aware service yield” with
respect to a request as denoting the
amount of economic benefit resulting
from servicing this request in a timely
fashion, and then try to maximize the
aggregate service yield over all requests.

Service differentiation is done based on
service classes, where service accesses of
a particular service class obtain the same
level of service support. A service class
can be a set of client identities, service
types, or data partitions. In Neptune,
two-level request distribution and
scheduling is done: gateways do random
polling of the servers and try to achieve
load balancing, and service differentia-
tion is done at the servers. This two-level
architecture provides scalability and
robustness at the cost of less isolation
and fairness. Within a server, a request
scheduler schedules requests from the
queues belonging to different classes to
several worker threads such that the
aggregate yield is maximized. The offline
optimal scheduling problem is NP-com-
plete, and, hence, the authors use heuris-
tics such as Earliest Deadline First

91April 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
S(EDF), Yield-Inflated Deadline (YID),

Greedy, and Adaptive techniques. The
experimental results show that Adaptive
outperforms all other heuristics on a 16-
node cluster.

RESOURCE OVERBOOKING AND APPLICATION

PROFILING IN SHARED HOSTING PLATFORMS

Bhuvan Urgaonkar, Prashant Shenoy,
University of Massachusetts; Timothy
Roscoe, Intel

The goal of this work is to maximize the
number of hosted applications on a
server cluster while providing resource
guarantees to the applications. Taking a
worst-case load and assigning those
amounts of resources is not efficient,
since the average load of an application
is typically an order of magnitude less
than the worst case. So the authors pro-
pose to use the scheme of overbooking
resources and show that this scheme is
feasible and maximizes the revenue gen-
erated by the available resources.

The authors define “capsules” as the
components of an application that runs
on a node. To determine the resource
requirements of a capsule, the authors
perform “application profiling” using
Linux Trace Toolkit (for CPU and mem-
ory requirements) with well known
traces. From typical application profiles,
the authors conclude that these capsules
exhibit different degrees of burstiness
and use “Token Buckets” to represent the
resource requirements. A Token Bucket
of a capsule with two parameters s and p
states that the resource usage of that
capsule over any time period t has to be
<= s*t + p. Each capsule specifies an
overbooking tolerance parameter, O, to
denote the probability with which the
resource requirements of that capsule
can be violated. Once capsules’ resource
requirements are estimated, these are
mapped to nodes using a simple algo-
rithm that uses a greedy technique. A
capsule can be mapped to a node only if
the resource requirements of the capsule
can be satisfied by the node. The experi-
mental results show that there is a 100%
improvement with just 1% overbooking.

AN INTEGRATED EXPERIMENTAL

ENVIRONMENT FOR DISTRIBUTED SYSTEMS

AND NETWORKS

Brian White, Jay Lepreau, Leigh Stoller,
Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and
Abhijeet Joglekar, University of Utah

Typically, network experiments are done
through simulation, emulation, or on
live networks. While simulation is
repeatable but not accurate, live network
experimentation is realistic but not
repeatable. The emulation method of
experimentation is a hybrid approach
that creates a synthetic network environ-
ment but requires tedious manual con-
figuration. Netbed complements existing
experimental environments by spanning
simulation, emulation, and live experi-
mentation, integrating them into a com-
mon framework. The integration allows
ease of use while being realistic. About
2176 experiments were done on the
Netbed within the last 12 months by
about 365 users.

The Netbed uses a virtual machine
approach for network experimentation.
Configuration time is improved through
automation by two orders of magnitude.
Network nodes are emulated using vir-
tual machines on a cluster of nodes.
Links including WAN links are emulated
using VLANs and tunnels. The network
topology to be emulated can be specified
either using a ns-type Tcl-based specifi-
cation or in a Java-based GUI. A global
resource allocator scheme assigns local
cluster resources to different components
of the network topology requested.

Configuring a six-node dumbbell net-
work took just 3 minutes on Netbed, in
comparison to a 3.5-hour effort by a
student with significant Linux system
administration experience.

For more information, see
http://www.netbed.org.

OSDI ‘02 �

http://www.netbed.org

PEER-TO-PEER INFRASTRUCTURE

Summarized by Scott Banachowski

SCALABILITY AND ACCURACY IN A

LARGE-SCALE NETWORK EMULATOR

Amin Vahdat, Ken Yocum, Kevin Walsh,
Priya Mahadevan, Dejan Kostic, Jeff
Chase, David Becker, Duke University

Yocum discussed a network traffic emu-
lator designed to provide realistic sce-
narios for complex systems such as the
Internet. Using the emulator, called
ModelNet, has advantages over simula-
tion because it allows execution of real
code while still providing control over
network conditions not possible with
live deployment. The goals when devel-
oping ModelNet included support for
10K nodes with a 10Gbps bisection
bandwidth, and realistic emulation of
network failures and cross-traffic.

The emulator organizes networks into
two types of nodes: (1) edge nodes that
run the code being tested and connect
through (2) core nodes that run Model-
Net emulation code. A technique called
“distillation” is the key for providing the
scalability necessary for handling large
numbers of nodes. Distillation trans-
forms the topology of core nodes, which
represent the Internet, into a smaller
subset of nodes that preserve only inter-
esting links, including the first and last
hops of the edge nodes. In this
approach, instead of injecting packets
that incur processing overhead for an
emulator, cross-traffic is simulated by
changing the characteristics of the con-
nections through the core nodes.

The ModelNet emulator was verified by
reproducing experiments from a previ-
ously published study of the CFS storage
system layered on the Chord distributed
hashtable. Running Chord/CFS on the
edge nodes and substituting ModelNet
for the network, the throughput of data
transfers closely matched the previously
published results. Yocum concluded
with the assertion that ModelNet is
effective for studying how your code
behaves in a large-scale network running

92 Vol. 28, No. 2 ;login:

on its native OS. Questions from audi-
ence members revealed that it was not
known yet exactly how far ModelNet
scales, and that it does require a lot of
storage.

More information is available at
http://issg.cs.duke.edu/modelnet.html.

PASTICHE:
MAKING BACKUP CHEAP AND EASY

Landon P. Cox, Christopher D. Murray,
Brian B. Noble, University of Michigan

Users rarely, if ever, make backups of
their personal systems, because it is
expensive and time-consuming. Capital-
izing on the trend that many disks are
often less than half-full, Pastiche is a sys-
tem for peer-to-peer backups of files on
others’ computers. Recognizing that
many of the binaries on a disk are iden-
tical to the binaries of other users, much
of the cost of transferring data is elimi-
nated. The goal of Pastiche is efficient,
cost-effective backup, while preserving
individual privacy.

As its name implies, Pastiche is assem-
bled from already existing technologies.
Pastiche uses content-based indexing of
data, the same techniques employed by
LBFS. Data is fingerprinted and divided
into chunks, and a hash function
uniquely identifies each chunk. Using
only a subset of fingerprints from a disk
– for example, a fingerprint from a Win-
dows distribution – Pastiche can identify
redundant copies of the data on other
machines. To locate machines for back-
ing up data, or “backup buddies,” Pas-
tiche uses two overlay networks deter-
mined by Pastry, a peer-to-peer routing
infrastructure. A mechanism called
“lighthouse sweep” was added to Pastry
to ensure a geographically diverse set of
nodes.

When participating in Pastiche, your
system may contain information that
also backs up your peers’ systems, so the
file system must ensure that this data is
not deleted or modified. The Chunk-
store file system views all data as chunks

and assembles files for users in objects
called “container files.” When data from
a container is modified, it is written to a
new chunk, preserving the older ver-
sions of the data. The performance of
backup and restore operations is compa-
rable to VFS copies.

The talk generated enough controversy
that there were long lines at the ques-
tioning microphones, mostly people
interested in more in-depth compar-
isons with other backup methods.

SECURE ROUTING FOR STRUCTURED

PEER-TO-PEER OVERLAY NETWORKS

Miguel Castro, Microsoft Research;
Peter Druschel, Rice University; Ayal-
vadi Ganesh, Antony Rowstrom,
Microsoft Research; Dan S. Wallach,
Rice University

While peer-to-peer overlay networks are
scalable, self-organizing, and robust with
respect to node failure, they are suscepti-
ble to malicious participants. The talk
presented several attacks on these over-
lays followed by a discussion of defenses.

Castro began with an overview of the
Pastry routing overlay and then
described several attacks on this tech-
nique. In one type of attack, a node can
choose its node ID so that, instead of
being random, it is positioned to control
another node’s network access or pre-
vent availability of objects. A defense
against this attack would be to certify
node IDs using keys from a trusted
source. To prevent users from obtaining
a large number of node IDs, certificates,
it was suggested, might require purchas-
ing. Other attacks on overlays affect
routing: for example, supplying peers
with fake proximity information or bad
routing table information to increase the
probability that messages travel through
a malicious node. A defense for attacks
on routing is to maintain a fallback
table, with constrained and more verifi-
able routing for use when the perfor-
mance-based routing table fails. Finally,
a malicious node may drop or misroute
messages. A solution is to incorporate a

http://issg.cs.duke.edu/modelnet.html

routing test, and if it fails, rely on a
redundant route.

Using these security techniques, peer-to-
peer protocols may still work even when
up to a quarter of the nodes of an over-
lay network are malicious, and they pro-
vide efficiency when the actual number
of compromised nodes is small. In the
question period, one audience member
quipped that the idea of charging for
certificates was the work of the presen-
ter’s employer and suggested that the
alternative of using a real-world authen-
tication based on a user’s identity is
more viable.

WORK-IN-PROGRESS REPORTS

Summarized by Scott Banachowski

DISCOVERING BOTTLENECKS IN DISTRIBUTED

SYSTEMS

Athicha Muthitacharoen, MIT; Jeffrey
C. Mogul, Janet L. Wiener, HP Labs

Contact: Athicha Muthitacharoen,
athicha@amsterdam.lcs.mit.edu

In large, distributed systems it is not
always possible to investigate causes of
performance bottlenecks created by
internal, proprietary components,
because discovering problems often
requires instrumenting these compo-
nents to measure statistics. MIT is devel-
oping a tool to identify critical paths
using a passive trace of messages. Using
the relationships between messages, the
tool automatically infers the source of
bottlenecks.

WITNESS: LEADER ELECTION WITHOUT

MAJORITY

Haifeng Yu and Amin Vahdat, Duke
University

Contact: Haifeng Yu, yhf@cs.duke.edu

The title must have been inspired by the
last presidential election. Many distrib-
uted algorithms require a node be
elected as leader, but under some kinds
of failures it is impossible to guarantee
that the elected leader is unique. The
new election algorithm provides proba-
bilistic guarantees of a unique leader,

93April 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sand is based on choosing a random

set of witnesses to participate in the
protocol.

CONFIDENTIAL BYZANTINE FAULT-TOLERANCE

Jian Yin, Jean-Philippe Martin, Arun
Venkataramani, Lorenzo Alvisi, Mike
Dahlin, University of Texas, Austin

Contact: Arun Venkataramani,
arun@cs.utexas.edu

As replication systems add more servers
and heterogeneity, they become increas-
ingly vulnerable to attack, so providing
confidentiality for replicated data is a
difficult problem. This system increases
the intrusion-tolerance of a set of repli-
cation servers when a number of the
servers fail.

INCREASING FILE SYSTEM BURSTINESS FOR

ENERGY EFFICIENCY

Athanasios E. Papathanasiou, Michael
L. Scott, University of Rochester

Contact: Athanasios Papathanasiou,
papathan@cs.rochester.edu

This report describes a method to create
longer idle times in disk traffic so that
these idle periods may be exploited for
power saving. The key is to increase the
burstiness of access using aggressive
prefetching combined with new disk-
scheduling algorithms. Trace experi-
ments show the energy reduction using
this technique during an MP3 playback
reached 55%.

FAB: FEDERATED ARRAY OF BRICKS

Yasushi Saito, Svend Frolund, Arif Mer-
chant, Susan Spence, Alastair Veitch,
HP Labs

Contact: Yasushi Saito,
ysaito@hpl.hp.com

The talk described a logical disk system
that uses low-cost commodity CPU and
disks and is intended to replace high-
end disk arrays. The decentralized sys-
tem software, based on Petal, achieves
high-performance and fail-over ability
by replicating disk blocks throughout
the cluster.

NCRYPTFS: A SECURE AND CONVENIENT

CRYPTOGRAPHIC FILE SYSTEM

Charles P. Wright, Michael C. Martino,
and Erez Zadok, Stony Brook University

Contact: Charles P Wright,
cwright@ic.sunysb.edu

NCryptfs is a stackable file system based
on CryptFS from FiST. The low-level file
system is transparent to applications. An
attach maps an accessed directory to its
associated encrypted directory (which
stores the actual data in cipher form).
Each attach keeps its own data and
authorizations private, and on-exit call-
backs purge the clear-text data from the
kernel.

SUPPORTING MASSIVELY MULTIPLAYER

GAMES WITH PEER-TO-PEER SYSTEMS

Wei Xu and Honghui Lu, University of
Pennsylvania

Contact: Honghui Lu,
hhl@cis.upenn.edu

A massively multiplayer game supports
up to 200,000 players. Traditionally,
games use a client-server architecture,
but Wei Xu proposes using peer-to-peer
protocols. The talk describes a mapping
of players to subsets of multicast groups.
By trading consistency for performance,
only “nearby” players need to synchro-
nize their environments using P2P mul-
ticast groups. A prototype game was
developed using Scribe.

KELIPS: A FAT BUT FAST DHT

Indranil Gupta, Prakash Linga, Dr. Ken-
neth Birman, Dr. Al Demers, Dr. Rob-
bert Van Renesse, Cornell University

Contact: Indranil Gupta,
gupta@cs.cornell.edu

Kelips is a peer-to-peer probabilistic
protocol for group discovery, in which
the lookup cost of a file is reduced by
enabling the address of any file to be dis-
covered within a single hop. This is
achieved by increasing the size of file
index tables on each peer and using
background communication, or “gossip-
ing,” between nodes to keep state
updated.

OSDI ‘02 �

IMPROVISED NETWORK: AUTONOMOUSLY

RECONFIGURABLE MOBILE NETWORK

Nobuhiko Nishio, Keio University, Japan

Contact: Nobuhiko Nishio,
vino@sfc.keio.ac.jp

New applications are emerging that use
a combination of wireless networks and
distributed sensor nodes, as in cellular
phones. In such an ad hoc network, both
sensors and sink nodes may be mobile,
so the research is developing ways to
adapt to the changing environment
without hurting performance.

PROBABILISTIC ENERGY SAVING IN SENSOR

NETWORKS

Santashil PalChaudhuri and David B.
Johnson, Rice University

Contact: Santashil PalChaudhuri,
santa@cs.rice.edu

On mobile devices, idle and receive peri-
ods use about the same amount of
energy, so if idle periods may be
replaced with inactivity, the device
stands to save a lot of energy. According
to the “birthday paradox,” a relatively
small number of people can ensure a
high probability that two of them share
the same birthday. Applying this princi-
ple to communication, only a small
number of nodes is needed to ensure
that a sender and receiver are active
simultaneously. Using a probabilistic-
based protocol, the device pre-chooses
its waking and sleeping periods, intro-
ducing some increase in communication
latency but drastically reducing power
consumption.

SOLAR: SUPPORTING CONTEXT-AWARE

MOBILE APPLICATIONS

Guanling Chen and David Kotz,
Dartmouth University

Contact: Guanling Chen,
glchen@cs.dartmouth.edu

The goal of this research is to provide
flexible and scalable pervasive comput-
ing. Solar is an infrastructure for context
computation. An example is a mobile
device that subscribes to a set of inter-
esting events; in Solar, by moving the

94 Vol. 28, No. 2 ;login:

processing of these events to the infra-
structure (called “planets”), applications
that subscribe to the events remain
lightweight. Sharing the computation
among several applications reduces both
development and network costs.

THE EXNODE DISTRIBUTION NETWORK

Jeremy Millar, University of Tennessee

Contact: Jeremy Millar,
millar@cs.utk.edu

exNode is a content distribution net-
work. It is developed to provide access to
time-limited data, such as the release of
a software product, and is currently used
by RedHat. The exNode architecture is
effective at distributing load by imple-
menting a highly distributed wide-area
RAID system.

SCALABLE CONSTRAINED ROUTING IN

OVERLAY NETWORKS

Xiaohui Gu and Klara Nahrstedt, Uni-
versity of Illinois, Urbana-Champaign

Contact: Xiaohui Gu, xgu@cs.uiuc.edu

This system is a step toward value-added
service overlays. In overlay networks,
such as those used by peer-to-peer
applications, it is desirable to satisfy
some end-to-end constraints – for
example, establishing a level of quality of
service between endpoints. Qualay is a
proposed overlay network designed to
provide QoS constraints over paths. In
the setup phase, service paths are chosen
by probing nodes, and in the runtime
phase, faults are detected and paths
rerouted to maintain QoS.

REVERSE FIREWALLS IN DENALI

Marianne Shaw and Steve Gribble,
University of Washington

Contact: Marianne Shaw,
mar@cs.washington.edu

Shaw presented a way to introduce poli-
cies and mechanisms to protect the
Internet from bad services. The system
allows untrusted code to run in the net-
work infrastructure on a virtual
machine, with a reverse firewall that pre-
vents the Internet from malicious traffic

generated by the VM. The flexible
framework allows policies to be added
on the fly, and in the example provided
in the talk, Shaw focused on a “don’t
speak unless spoken to” policy for con-
tainment of client-server code.

IMPROVING APPLICATION PERFORMANCE

THROUGH SYSTEM CALL COMPOSITION

Amit Purohit, Joseph Spadavecchia,
Charles Wright, Erez Zadok, Stony
Brook University

Contact: Amit Purohit,
purohit@cs.sunysb.edu

A problem with application perfor-
mance is overhead incurred by system
calls that move data across the kernel
boundary. This system provides a solu-
tion that removes user-level bottlenecks
by moving user code into the kernel.
Using a tool called Cosy, combined with
the gcc compiler, designated code is
compiled into special code segments
that can be loaded into the kernel at
runtime. Static and dynamic checks
ensure that kernel security is not vio-
lated, and adding preemption to the ker-
nel protects against user segments
monopolizing the CPU.

PERFORMANCE OF MACH-KERNEL

Igor Shmukler, OS Research

Contact: Igor Shmukler,
shmukler@mail.ru

Shmukler spoke about enhancements to
the Mach kernel aimed at increasing its
attractiveness to the user community.
Although Mach introduced many good
ideas, it didn’t really catch on because it
was never fine-tuned for the common-
case performance. Shmukler tried to
clear Mach’s bad name by discussing
proposed improvements, including
changing the memory management sub-
system, optimizing the RPC implemen-
tation, adding new synchronization
primitives, and stomping on a slew of
bugs.

ELASTIC QUOTAS

Ozgur Can Leonard, Jason Nieh, Erez
Zadok, Jeffrey Osborn, Ariye Shater,
Charles P. Wright, Kiran-Kumar
Muniswamy-Reddy, Stony Brook Uni-
versity

Contact: Jeffrey R. Osborn,
jrosborn@ic.sunysb.edu

“Elastic quotas” for disks are aimed at
shared file servers, such as those used by
university students, where each user
receives a quota of space. By implement-
ing elastic quotas, extra space may be
allocated to users for their temporary
use, but this space may later be
reclaimed. The elastic quota service sets
both global and user-assigned policies
for how the space occupied by files des-
ignated as elastic will be reclaimed, using
information such as size or creation
time. The next step in their research is to
determine if users will embrace such a
system.

A MAIL SERVICE ON OCEANSTORE

Steven Czerwinski, Anthony Joseph,
John Kubiatowicz, University of
California, Berkeley

Contact: Steven Czerwinski,
czerwin@eecs.berkeley.edu

The Mail Service uses the OceanStore
file system to provide low-latency access
to email, independent of a user’s loca-
tion. Goals of the system include data
durability and relaxed consistency by
allowing application-specific conflict
resolution. Following this session, mem-
bers of the project gave a demo of
OceanStore.

NETWORK BEHAVIOR

Summarized by Kenneth Yocum

AN ANALYSIS OF INTERNET CONTENT

DELIVERY SYSTEMS

Stefan Saroiu, Krishna P. Gummadi,
Richard J. Dunn, Steven D. Gribble,
Henry M. Levy, University of Washing-
ton

There’s a lot more than just Web content
being served across the Internet. Now we
have CDNs and peer-to-peer systems

95April 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sserving up audio, video clips, and

movies. The authors studied HTTP Web
traffic, Akamai CDN, and Kazaa and
Gnutella nets. The basic result of the
authors’ trace, conducted at the Univer-
sity of Washington, is that peer-to-peer
traffic constitutes a large fraction of the
bytes, and it’s very different from the
Web. For example, it may be possible to
cache 80–90% of the outbound traffic
and 60% of the inbound traffic. But it
takes a long time to warm up the cache
(about a month). In both directions P2P
objects are three orders of magnitude
larger than Web objects. A small number
of objects account for most of the bytes
in P2P systems.

TCP NICE: A MECHANISM FOR

BACKGROUND TRANSFERS

Arun Venkataramani, Ravi Kokku, Mike
Dahlin, University of Texas, Austin

TCP NICE, a building block for back-
ground transfers, finds and uses spare
bandwidth in the Internet to improve
availability, reliability, latency, and con-
sistency. As a “new” variant on TCP con-
gestion control, TCP NICE is similar to
TCP VEGAS monitor RTT but provides
three changes: a more sensitive conges-
tion detector, multiplicative reduction in
response to increasing RTT, and the pos-
sibility of having a congestion window
less than one. With NICE you can
bound the interference caused by back-
ground flows. One use is prefetching.
The authors found that NICE could
improve performance by a factor of
three, where using old-style TCP hurt
performance by a factor of six.

THE EFFECTIVENESS OF REQUEST

REDIRECTION ON CDN ROBUSTNESS

Limin Wang, Vivek Pai, Larry Peterson,
Princeton University

We now use replication across geo-
graphic distance to deliver content.
Client requests are delivered to the
“best” candidate based on server load,
server closeness, and cache. This work
describes current schemes and intro-
duces a new one to balance locality, load,

and nearness (proximity). This new
scheme was shown through simulation
to improve system capacity by 60–90%
while maintaining low request latencies
for clients. One dynamic algorithm, Fine
Dynamic Replication (FDR), is espe-
cially promising. It keeps fine-grained
information on URL popularity to
adjust the number of replicas. They’re
trying to deploy it on PlanetLab.

MIGRATION

Summarized by Richard S. Cox

THE DESIGN AND IMPLEMENTATION OF ZAP:
A SYSTEM FOR MIGRATING COMPUTING

ENVIRONMENTS

Steven Osman, Dinesh Subhraveti,
Gong Su, and Jason Nieh, Columbia
University

Zap supports the transparent migration
of unmodified applications. The migra-
tion of network applications is sup-
ported without loss of connectivity.
Zap-migrated processes leave no resid-
ual state behind on the previous system.
Implementing Zap involves minimal
changes to a commodity operating sys-
tem and requires low overhead.

Three problems must be solved to
migrate processes: resource consistency,
resource conflicts, and resource depen-
dency. Zap’s solution to all three is the
process domain (pod). A pod is a private
virtual space that may contain a single
process, a process group, or a whole user
session. As a private space, processes in a
pod cannot interact with processes out-
side a pod. Pods are migrated as a unit.
Zap contains pods by introducing a thin
layer in the Linux kernel, virtualizing
process IDs, IPC, memory, the file sys-
tem, network, and devices. The overhead
of this approach is minimal, and the pod
images are small.

More information can be found at
http://www.ncl.cs.columbia.edu/research/
migrate.

OSDI ‘02 �

http://www.ncl.cs.columbia.edu/research/

OPTIMIZING THE MIGRATION OF VIRTUAL

COMPUTERS

Constantine P. Sapuntzakis, Ramesh
Chandra, Ben Pfaff, Jim Chow, Monica
S. Lam, Mendel Rosenblum, Stanford
University

By virtualizing the x86 architecture, the
VMware GSX server enables an entire
virtual machine’s (VM) hardware state
to be easily suspended and captured.
Once saved, the state can be sent to
another machine and resumed. How-
ever, capturing the entire state generates
machine images, or capsules, that are
gigabytes in size. This work applies sev-
eral optimizations to reduce the capsules
to a size that can be transferred over a
DSL link in under 20 minutes, enabling
applications such as user mobility and
software updates. The two largest com-
ponents of a capsule are the disk and
memory images.

Using standard copy-on-write tech-
niques, VMware can track the changes to
a disk image and transfer only the differ-
ences if the target machine already has
an old version of the disk image. By
hashing each disk block, and searching
for a block with matching hash value on
the target system, the server can avoid
transferring pages whose contents
already exist on the target system. Much
of a VM’s memory may not be in active
use; thus, if VMware could request that
the guest OS de-allocate inactive pages,
the size of the memory image could be
greatly reduced. This is the idea behind
ballooning, which utilizes a driver added
to the guest OS to reclaim low-priority
pages prior to suspending the VM.
Finally, by demand-paging the disk
images, the time to resume the VM on
the target can be reduced. Demand-pag-
ing takes advantage of the disk-latency
tolerance already built into modern
OSes. Several macro-benchmarks show
that the combination of these tech-
niques is effective in reducing the total

96 Vol. 28, No. 2 ;login:

data transferred to migrate a capsule as
well as the time-to-start.

LUNA: A FLEXIBLE JAVA PROTECTION SYSTEM

Chris Hawblitzel, Dartmouth College;
Thorsten von Eicken, Expertcity

Extensible applications require protec-
tion schemes that can isolate extensions
while permitting lightweight communi-
cation. Java uses language-based approaches
to enforce domain separation, enabling
cheap communication because of the
single address space. However, systems
with Java extensions lack clear domain
boundaries; all code and objects are
stuck together. The resources used by an
extension cannot be reclaimed if the
extension is terminated, because they
may be referenced by other parts of the
system.

By introducing a task abstraction, exten-
sions in a Java system can be strongly
isolated. Tasks contain all the objects,
threads, and code for an extension. All
cross-task communication is explicit. In
Luna, regular (local) pointers are not
allowed to reference objects in other
tasks. Remote pointers, a new type of
reference that is allowed to point to
objects in other tasks, are Luna’s mecha-
nism supporting intertask communica-
tion. Remote pointers may be revoked at
any time; if a revoked remote pointer is
used, an exception is raised. This allows
an entire extension to be removed from
the system cleanly, without dangling ref-
erences in other tasks. Remote pointers
are implemented with a two-word struc-
ture. The first word is just the memory
address of the object. The second word
is a pointer to the permit, which con-
tains a revocation flag and is checked
before each use. As an optimization that
removes most checks in common cases,
Luna can generate loop code that does
not contain any checks. On revocation,
threads using the object are suspended,
and a breakpoint is placed where the
check would have been. If and when the

breakpoint is reached, an exception is
raised, simulating the effect of the check.
Micro-benchmarks, as well as an imple-
mentation of an extensible Squid Web-
cache, confirm that Luna’s isolation
imposes low overhead.

