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Abstract 

HP Caliper is an architecture for software developer 
tools that deal with executable (binary) programs. It 
provides a common framework that allows building of a 
wide variety of tools  for doing performance analysis, 
profiling, coverage analysis, correctness checking, and 
testing. HP Caliper uses a technology known as dynamic 
instrumentation, which allows program instructions to be 
changed on-the-fly with instrumentation probes. Dynamic 
instrumentation makes HP Caliper easy to use: It requires 
no special preparation of an application, supports shared 
libraries, collects data for multiple threads, and has low 
intrusion and overhead. This paper describes HP Caliper 
for HP-UX, running on the IA-64 (Itanium) processor. It 
describes Caliper’s architecture, dynamic instrumentation 
algorithm, and the experiences gathered during its 
implementation. 

1. Introduction 

The IA-64 processor’s instruction set architecture (ISA) 
offers an impressive set of architectural features which 
explicitly create synergy between compilers and the  
processor [10]. The IA-64 groups up to three instructions 
in bundles for execution in parallel and can issue multiple 
bundles per clock. The architecture provides 128 integer 
registers, 128 floating point registers, 64 1-bit predicate 
registers, and 8 branch registers. Both control and data 
speculation are supported, as well as predication to 
eliminate branches, software pipelining of loops, and 
branch prediction.  

These processor features enable powerful program 
optimizations. However, their efficiency depends on the 
dynamic run-time behavior of a given program, which can 
only be guessed by a static compiler. Additionally, modern 
software paradigms emphasize distributed systems, 
component-based modularization and object-oriented 
designs. This further prevents compilers from optimization 
and analysis on a global scope. 

Over the last years, the computing community has 
developed a strong set of tools and methods used to 

analyze and monitor run-time behavior of a program. 
Statistical sampling and binary instrumentation are two of 
the major techniques. 

Statistical sampling is typically performed by taking 
periodic snapshots of the program state, e.g., its instruction 
pointer (IP). Sampling is considered to be light-weight, 
non-intrusive, and imprecise. It imposes low overhead on 
a program’s run-time performance and can be used for 
time-critical experiments. However, measurements are 
statistical samples and have errors. Without special 
hardware support, due to super-scalar issues, deep 
pipelining, and out-of-order instruction completion, a 
sampled IP may not be related to the instruction address 
that caused a particular sampling event. Some 
architectures introduce a varying offset to the IP at a 
particular sampling event [2, 10]. 

The IA-64’s performance measurement unit (PMU) 
offers programmable CPU event counters, event address 
registers (EAR), and a branch trace buffer (BTB). The 
PMU supports a set of over 150 event types, allowing a 
wide range of system analysis tasks [10], such as analysis 
of cache misses, translation look-aside buffer (TLB) 
misses, or instruction cycles. When such a hardware 
counter overflows, it is possible to precisely link events to 
an instruction address with help of the event address 
registers (EAR).  

Dynamic binary instrumentation allows program 
instructions to be changed on-the-fly and leads to a whole 
class of more precise results. Measurements such as basic-
block coverage and function invocation counting are 
accurate. Since the binary code of a program is modified, 
all interactions with the processor and operating system 
may change significantly, for example a program’s cache 
and paging behavior. Instrumentation is therefore 
considered to be intrusive. Due to additional instructions, 
execution time can slow down anywhere from some 
percent to factors like 2x or 4x. Dynamic instrumentation, 
as opposed to static instrumentation, is performed at run-
time of a program and only instruments those parts of an 
executable that are actually executed. This minimizes the 
overhead imposed by the instrumentation process itself. 

Tools based on dynamic instrumentation require no 
special preparation of an executable, like many other tools 
for performance analysis and tuning do. Such treatment 
could be recompilation with a special compiler flag, or a 
modified link process before or during program start. A 
good example is profile-based optimization (PBO). There,  
a program must be recompiled with a special flag to insert 
counting code in the program and to output a trace profile 
at the end of the program run. Feeding this profile back 



into the compiler allows combining of static analysis and 
runtime information and to generate a highly optimized 
application for a representative set of input data. This data 
combination also requires another compiler flag to be 
used. PBO generates efficient code, but is complicated to 
use, especially for large-scale software systems. It has not 
been widely accepted by the software industry. 

HP Caliper (or Caliper for short) integrates PMU 
supported sampling and fast dynamic instrumentation. It 
offers a framework for performance analysis tools for 
binary executables and requires no special preparation or 
recompilation of these binaries. It supports shared 
libraries, collects data for multiple threads and processes, 
and has low intrusion and overhead. This paper describes 
HP Caliper for HP-UX, running on the IA-64 (Itanium) 
processor. It describes HP Caliper’s architecture and 
public interfaces, presents the dynamic instrumentation 
algorithm and details  experiences gathered and lessons 
learned during its implementation. 

2. Related Work 

This section describes related work as characterized by 
Cmelik and Keppel [5]. They present a list of over 45 
hardware emulators, “decode-and-dispatch” interpreters, 
“pre-decode” interpreters working on intermediate 
representations, static cross compilers, and dynamic cross 
compilers. These tools differ in support for kernel code, 
time of instrumentation, requirements for debug 
information, and support for signals and multithreaded 
programs. 

Many tools try to generalize static or dynamic 
instrumentation and create abstractions of machines, file 
formats, compiler code layouts and optimization 
strategies. These tools often come with additional 
generators for machine abstractions. 

Paradyn [9] is a performance measurement tool for 
parallel and distributed programs. It includes an abstract, 
machine independent, dynamic instrumentation API 
(DynInst), and provides precise performance data down to 
the procedure level. 

The Parallel Tools Consortium sponsors two related 
projects, the Performance API (PAPI) project and the 
Dynamic Probe Class Library (DPCL), the latter being 
based on Paradyn. 

Spike [6] is a profile-directed optimization system. It 
uses code-layout to improve cache behavior and hot-cold 
optimization to minimize the number of instructions 
executed on frequent paths through a program. Atom 
(Analysis Tools with OM) is a tool based on Om [14]. 
Atom NT is a set of tools built with the Spike library, 
including profilers, arc counters, and simulators for cache 
and branch prediction units. 

Some tools and libraries allow static instrumentation of  
binary executables. EEL [11] is a machine-independent 
library for editing executables and provides abstractions 
which allow tools to analyze and modify binary 

executables. Etch [13] is a tool which allows 
instrumentation of Win32/Intel executables. Tools based 
on Etch include call graph profilers and instruction 
execution analyzers. UQBT [4] is a retargetable and 
“resourceable” binary translator. Resourceable means that 
it accepts a binary from one of several platforms as input, 
which is then transformed to an intermediate 
representation and finally retargeted to several target 
machines. 

Rational’s Purify, Quantify, and PureCoverage [12] are 
systems which perform static instrumentation for error 
detection, run-time performance analysis, and coverage 
analysis. Intel’s Vtune is a low-level CPU sampler which 
allows detection of CPU bottlenecks and cache behavior. 

HP’s Aries [18] combines fast code interpretation with 
dynamic translation in order to execute PA-RISC 
applications transparently and accurately on IA-64 
systems running HP-UX.  

Previous work at HP’s dynamic instrumentation lab 
includes a callback driven dynamic instrumentation 
environment and dynamic optimizers for x86, PA-RISC, 
and IA64. A transparent dynamic optimizer named 
Dynamo is under development at the HP Laboratory in 
Cambridge. 

3. HP Caliper Architecture 

HP Caliper is physically organized as a shared object 
library with the Caliper API as its interface. A tool built 
with HP Caliper runs as a Developer Tool Process, 
controlling an Application Process via the operating 
system’s debug interface (e.g., ttrace on HP-UX or /proc 
on Linux). 
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Fig 1: HP Caliper Architecture 

Developer tools based on HP Caliper are physically 
split  into two parts, the user interface and the HP Caliper 
shared object (libcaliper.so). User interfaces can be stand-
alone scripts or integrated development environments 
(IDE). HP Caliper allows to inject an optional run-time 
library into the application process to record information, 



react on application events, and communicate with the 
developer tool.  

The shared object is HP Caliper’s main component. It 
contains support code, collectors, the Caliper API, and 
memory management routines. It integrates a Python 
interpreter and provides a default C main function.  

The HP Caliper API consists of a set of C function 
interfaces to the main architectural blocks of HP Caliper. 
The interfaces, although written in ANSI C, follow object-
oriented design principles and form a simple object model 
consisting of Measurement sets, Events, Processes, 
Configuration, Context and Collectors. These classes are 
described in the following  paragraphs. 

Measurement sets enable measurement specification 
and combination. Instrumentation-based measurements 
include function coverage and counting, basic block 
coverage and counting, arc counts, and call graphs. PMU- 
based global performance metrics include control 
speculation miss ratio, data speculation miss ratio, ALAT 
capacity miss ratio, data and instruction cache miss ratios, 
TLB miss ratios, and more. Statistics of branch 
mispredictions and branch taken ratios can be obtained. 

Event objects deal with application and user events and 
handle event queues. Typical program events include 
process creation and destruction, shared object loading and 
unloading, timer expiration, PMU counter overflow, and 
process termination.   

Process is a set of interfaces allowing creation of or 
attachment to a process as well as handling of process 
related events, such as signals. It allows controlling 
processes via the OS’s debug interface (e.g., ttrace or 
/proc). 

Configuration permits to parameterize HP Caliper and 
to set parameters such as initial size of shared memory 
blocks.  

Context allows HP Caliper to scale to large applications 
by narrowing down measurements in both time and space. 
A context’s three dimensions are:  

• Address - to include or exclude modules (DLLs), 
functions and address ranges 

• Time -  to schedule measurements 
• Event - to specify program actions for specific 

program events (e.g., fork / exec). 
A Collector is a tool built into HP Caliper that performs 

a special kind of measurement, for example, PMU 
sampling or instrumentation-based function counting. 
Collectors use the infrastructure offered by HP Caliper. 
Each collector adds an individual API to the HP Caliper  
API to interact with the developer tool. On the application 
side, support code for the instrumentation may be injected 
and each individual collector may inject additional private 
code. Data and control transfers between HP Caliper and 
an application use shared memory.  

The Caliper Support Library offers a framework of 
services and tools for dynamic instrumentation and 
sampling. These services include: 

• encoding and decoding of machine instructions to 
an intermediate representation (IR) with automatic 
fix-up of IP-relative branches.  

• handling of an executable’s ELF file, code and 
data segments, debug and unwind information, and 
function tables. 

• managing data exchange between HP Caliper and 
its monitored processes (e.g., for counters, events, 
or control instructions). 

• controlling a process with the debug and 
performance measurement interfaces (perfmon()). 

A developer tool communicates with HP Caliper via 
the Caliper API or via the integrated Python interpreter. 
This Python interpreter performs multiple tasks. It 
contains wrappers for all API functions and is used to 
interpret initialization and configuration scripts. The 
interpreter acts as the main interface for all command line 
tools and as the main shell for the integrated debugger cdb 
(described later). It can also be directly accessed from the 
graphical user interface and from the C main function. 
Currently, Python can not be used to describe probe code 
sequences at a high level. 

The API resides in a set of C header files, which are 
processed by SWIG [16] to generate Python wrapper code. 
The interpreter and the wrappers are included in the HP 
Caliper shared object. SWIG uses text templates to 
generate code and some templates had to be changed to 
make SWIG usable on a 64-bit processor with “new” data 
types like uint64_t.  

The generated wrapper code is very complex to use. 
Therefore, a Python class library was developed based on 
the SWIG-generated interfaces. These classes are more 
intuitive and serve as the main scripting interface to HP 
Caliper.  

This programming model was also felt to be too 
complex for simple and standardized tasks. This was 
especially true for novice users, since knowledge of the 
Caliper API and its object model was required. A further 
simplified model was developed which only considers the 
most basic user control requirements. In this model, only a 
few variables can be assigned before a measurement starts, 
and all other details are hidden. For example, these 
variables include the name of the application to be 
monitored and the type of measurement to be performed. 

Tools using HP Caliper can access the C API, the 
Python SWIG-generated functions, the Python class 
library, the simplified layer or operate HP Caliper from an 
IDE. Other language interfaces, such as C++ or Java, can 
be added on top of the C API. 

A small and simple driver is sufficient in order to 
perform useful work with the HP Caliper shared object. 
All such a command-line driver does is analyzing its 
parameters in order to find arguments specifying a script 
file and finally running this script. 

 



 

 
An arc counter standalone tool is written in roughly 20 

lines of Python code. (The following code snippet is 
simplified for clarity): 

  
#!./caliper
import caliper, os, sys
try:
# Create process and load executable

test_exec = os.path.abspath(sys.argv[1])
proc = caliper.process()

proc.load(test_exec,
sys.argv[1:],
["PATH=."])

# Create context
context = caliper.context(proc)

# Create collector: arc_counter
arc_count = caliper.arc_count(context)

# Run the measurement
establish_measurement()

# Retrieve counters and generate report
fout = open(test_exec + ".pbo", "w");
arc_count.report(fout)
fout.close()

except:
... 

 
 

A control file in the simplified model looks like: 
 
# specify applicatioin
application = “a.out”

# specify output file
pbo_out = “flow.dat”

# run collector
collect(pbo)

4. Dynamic Instrumentation 

This section explains HP Caliper’s dynamic 
instrumentation algorithm. It briefly discusses, why it can 
be characterized as a lazy algorithm before it finally 

outlines the experiences gathered during its 
implementation and testing. 

One of the major benefits of dynamic instrumentation, 
as opposed to static instrumentation, is scalability. 
According to the 80:20 rule (in a typical program, 80 
percent of the runtime is spent in 20 percent of the code), 
only a small fraction of an executable system has to be 
instrumented in order to detect the most significant parts 
of a program.  

Dynamic instrumentation can be performed in a variety 
of ways. The two strategies we considered for generating 
probe code were to either make use of trampolines (out-of-
line), or inline and relocate probe code (in-line).  

As an example, an out-of-line instrumentation strategy 
may perform code transformations like the following in 
order to perform function counting. A given function foo’s 
entry point may look like this in IA-64 assembly:  

 
foo:: 
  alloc         r33=ar.pfs,0,11,1,0 
  addl          r9=-2944,r1 
  addl          r8=-2936,r1 
foo’:: 
  . . . 
 

The out-of-line strategy will instrument foo’s entry 
point with a long branch to a trampoline that executes the 
original instruction, plus some additional code to update 
an invocation counter.  

 
foo:: 
  nop.m 
  brl   trampoline 
foo’:: 
  . . . 

 
trampoline:: 
// save state, create free register rx 
  . . . 
 
// execute original instructions 
  alloc         r33=ar.pfs,0,11,1,0 
  addl          r9=-2944,r1 
  addl          r8=-2936,r1 
 
 
// perform additional tasks 
// update a counter for this function 
 
  movl rx, addr-of-counter 
  fetchadd [rx], 1 
 
// restore state 
  . . . 
 
// return to original code. 
  brl  foo’     
 

There are, of course, many possibilities for encoding, 
reaching, and returning from the actual trampoline code. 
Care must be taken for code with branch instructions in 
the first bundle of a function. Trampoline code and 
original code may be farther apart than the 25-bit encoded 
relative address offsets of the IA-64 allow. Therefore, long 
branches have to be used. 

C Api

SWIG-Generated Wrappers

libcaliper.so

Python Class Library

Simplified Model

Python Command-Line ToolC/C++ Tool



This strategy has several advantages. If all of the probe 
code is placed out-of-line and the instrumented 
instructions branch to it and back, then the counting code 
will not cause any wrinkles in the address space of the 
original application. Thus, all branches would continue to 
reach their designated targets. It is also easy to combine 
multiple instrumentations simply by cascading 
trampolines. 

The other major strategy for probe code generation is to 
inline and relocate code. The above code snippet for 
function foo would then be transformed into the following: 

 
foo_instrumented:: 
 
// modified alloc instruction to  
// generate free register 
  alloc         r33=ar.pfs,0,12,1,0 
 
// perform additional tasks,  
// update a counter for this function 
 
  movl r45, addr-of-counter 
  fetchadd [r45], 1 
 
  addl          r9=-2944,r1 
  addl          r8=-2936,r1 
 
This strategy leads to more compact code, less 

intrusion, and better performance. It does, however, come 
at a price.  

Insertion of probe code changes the relative offsets in a 
code stream and  requires lookup of indirect branches (in a 
translation table) whose target cannot be determined by 
the instrumenter. Combining different instrumentations 
and probe code is not as easy as it is in the well-defined, 
sand-box style trampoline approach.  

Susan L. Graham, et. al. [8] investigated the relative 
overhead associated with the inline and out-of-line 
instrumentation strategies and found the overhead to be 
34% for inline and 112% for out-of-line strategies. The 
transformation overhead is computed as the run-time of all 
code that is added to the application in order to support the 
primary probe code, without including the probe code 
itself. The benchmark included spec programs such as 
compress, gcc, li, sc, espresso, and more. 

The use of long branches had to be minimized for 
another reason. The first versions of the IA-64 only 
emulate the long branch, which causes additional run-time 
performance impacts. A trampoline-based instrumentation 
approach with out-of-line branches made heavy use of 
long branches and was therefore disregarded in favor of 
the current in-line approach.  

Preliminary measurements on HP-UX showed that the 
overhead of a long call branch, compared to a short call 
branch, is approximately 100 to 300 cycles.  This number 
was considered to be small for an emulated instruction and 
permitted us to use the long branch instruction 
“occasionally” in the algorithm. 

The inlining relocation method is faster even without 
considering the extra cost of an emulated long branch 
instruction. This justified our algorithmic decision in the 

light of an upcoming, hardware-supported long branch 
instruction. 

4.1 Algorithm 

HP Caliper’s approach works at the granularity level of 
functions, which are always instrumented as a whole. 
Probes are inlined into functions and instrumented 
functions are relocated.  

The dynamic instrumentation algorithm performs the 
following five steps, which are encapsulated in the Caliper 
API: 

1.  Attach and Inject:  HP Caliper identifies an 
executable or an already running process. It attaches to a 
process using the HP-UX ttrace system call. The process 
stops and transfers control to HP Caliper, which injects 
code into the process which allocates shared memory and 
optionally adds run-time libraries for dynamic 
instrumentation. 

2. Function Discovery: Function entry points are 
identified by analysis of the unwind information tables 
(sometimes called exception tables), the procedure lookup 
tables, and the symbol table. Unlike a debugger, HP 
Caliper does not depend on debug information in order to 
perform this step. The analysis may still miss some 
function entry points because of a lack of unwind 
information and symbolic information. However, these 
functions are discovered dynamically. Whenever a call 
target cannot be found in the internal function dictionary 
during instrumentation, a break is inserted at the target 
address of a call branch, assuming it to be a function entry 
point.   

3. Static Break Insertion:  Every function’s entry point 
is patched with a break instruction. 

4. Run under Dynamic Instrumentation: Control is 
transferred back to the process. The process runs until it 
hits one of the inserted break instructions at the entry point 
of a function. Since the process is controlled by ttrace, 
control transfers to HP Caliper and the instrumentation 
process begins at the current function.  

The function is analyzed for instrumentability, probe 
codes are inlined into the function, IP-relative references 
are updated, counters are created, and an instrumented 
version of the function is moved to shared memory. The 
original function’s entry point is patched with a long 
branch instruction to its instrumented version. Break 
instructions are inserted at function external IP-relative 
branches, whose targets have not yet been instrumented or 
have not been identified by function discovery. 

After instrumentation, control transfers to the 
instrumented function, which continues to run until it hits 
the next break instruction. Control will again transfer to 
HP Caliper and the dynamic instrumentation process is 
resumed. 

5. Output: Upon process termination or user request, 
control  again transfers to HP Caliper. Statistics, counters, 
and other measurement results are now retrieved and 



output into one of the integrated, collector-specific formats 
or via user-defined, script-based output routines. 

This dynamic instrumentation algorithm could 
rightfully be characterized as a lazy instrumentation 
algorithm. If a program were to consist of only one, 
presumably huge, function F, the algorithm would 
instrument the whole program at once after reaching F’s 
entry point. No code transformations that depend on 
information only available at run-time are performed. 

Programs consisting of only one function, however, are 
not a standard case in today’s computing environments, 
right the opposite is true! The instrumentation sequence 
also depends on the dynamic control flow of a program 
and can be changed interactively or via the definition of 
context. We, therefore, continue to use the term “dynamic 
instrumentation” to describe this algorithm. 

Without further explanation we would like to mention 
another property of this algorithm, the possibility to mix 
instrumented and non-instrumented code without hurting 
program correctness.  

4.2 Experiences 

This section describes the most important experiences 
gathered and lessons learned during implementation and 
debugging of this algorithm for HP-UX. 

The IA-64 contains a high performance register stack 
engine (RSE) which helps to minimize the cost of creating 
a call frame and a function call by maintaining a separate 
register stack. If a programming model requires consistent 
unwinding of the stack, e.g. during a C++ exception, both 
program stack and register stack have to be unwound.  

For every region in a program, unwind information is 
generated and stored in the text segment for fast access. 
The presence of unwind information is a requirement by 
the IA-64 runtime software architecture [10].  If code 
motion happens during instrumentation, the unwind 
information must be dynamically updated. This is no easy 
task, since regions get modified by probe code inlining. 
Unwind information updating is not yet fully resolved and 
blocks HP Caliper from being used for analysis of C++ 
programs which make use of C++ exceptions. 

Compilers frequently translate a C/C++ switch 
statement into an indirect branch based on a branch table 
located in the code segment. HP’s compilers place branch 
tables in a read-only data section of the text segment. It is 
generally impossible for a binary code analyzer to decide 
whether a given address contains data (such as an entry of 
a branch table) or real code. Some algorithms exist to 
identify branch tables and, for some code generation 
schemes, this problem can always be solved [3,17]. 

 HP Caliper uses compiler-generated annotations 
residing in an executable’s ELF file to identify these 
tables. If a branch table has been identified, the table 
entries are patched so they point to their corresponding 
instrumented target addresses. Whenever an indirect 
branch is executed based on an unmodified branch table, it 

will go to a function’s non-instrumented version. Although 
the program maintains correctness, the resulting counter 
values become imprecise.  

Because of this, HP Caliper’s precision depends on the 
presence of annotations. Annotations are linked to the 
unwind information for a given region and as long as the 
executable contains unwind information, the 
corresponding annotations can be found. 

The foremost requirement for binary instrumentation is, 
of course, to preserve the program semantics at any given 
time. Probe code needs free registers and earlier 
approaches required the compiler to reserve registers for 
special use of a post link-time tools. This is again a topic 
of a recent discussions in the industry and certainly is a 
most convenient approach. However, the compiler group 
soon experienced register pressure and, consequently, this 
approach was skipped.  

HP Caliper now uses a staged method to find free 
registers. Free registers are first identified with the 
assistance of compiler generated annotations. If no 
annotations are found, free registers are created by 
increasing the number of stacked output registers of a 
function by modifying a function’s dominating alloc 
instruction. This will fail if  the function doesn’t have an 
alloc instruction, has multiple alloc instructions or because 
the alloc instruction already allocates all the stacked 
registers. In such a case, explicitly spilling/filling to the 
program stack is necessary. 

Multithreaded  applications presented a new kind of 
challenge for HP Caliper. Insertion of an instruction (e.g., 
a long branch instruction), turned out to be more 
complicated than expected. The IA-64 bundle size is 16 
bytes, but load and store instructions only operate on a 
maximum of 8 bytes. This means that two store 
instructions are necessary to update a bundle. In 
multithreaded applications, there are two potentially 
hazardous scenarios. It is possible that a thread could hit a 
bundle while being in the middle of it’s update process, 
thus executing a half-deployed instruction with an invalid 
instruction template field, which will result in a signal. Or, 
a thread could have been stalled on slot 1 or slot 2 of a 
bundle, waking up on a changed instruction, again 
resulting in incorrect program behavior. 

The latter scenario has been solved in HP Caliper using 
a  sequence of update steps. The first problem requires the 
installation of a signal handler for invalid template 
exceptions. This has not been implemented yet.  

To date, HP Caliper simply halts all threads in the 
target application while performing an instruction update. 
While guaranteeing correct program behavior, this method 
slows down execution speed, especially on multi-
processor systems. For this reason it will later be changed 
to a method with full support for multithreading. 

The IA-64 supports call shadows where two branches 
are located in one bundle as in this example: 

 
      nop.m     0 
 (p6) br.call.dptk.few  .-0x150  
      br.call.sptk.few  .-0x410;; // shadowed 



   

If the predicate register p6 is set to 1 then the first 
branch instruction is executed. Since branch targets and 
return address are always full bundle addresses on the IA-
64, the second branch will never be executed.  

If this instruction sequence is instrumented and 
counting code is inserted, then the original instructions get 
dispersed  across multiple bundles, changing the implicit 
logic of the call shadow that supressed the second branch. 
Thus, HP Caliper performs an additional search for call 
shadows and alters the instrumentation sequences 
accordingly. 

Break instructions are used in a similar, but conflicting 
way by both HP Caliper and debuggers, making it 
impossible to debug a HP Caliper-controlled application. 
Therefore we integrated debugging functionality into HP 
Caliper and named the driver for this functionality cdb 
(Caliper Debugger). This feature became invaluable for 
identifying program flaws, invalid probe code sequences, 
kernel bugs and forgotten stop bits all over the 
instrumented code. 

Cdb makes use of the integrated Python interpreter to 
display a prompt, to parse commands, and to perform 
actions accordingly. It supports insertion of break points, 
single stepping, disassembly of original and instrumented 
code, dumping of data and registers, and more. HP Caliper 
allows falling back to a cdb prompt whenever an 
unexpected situation or signal occurs.  

Scripting languages such as Python typically have 
powerful support for socket communications of some 
kind. It was easy for us to offer a remote interface to cdb. 
This proved to be valuable during debugging of 
applications which  expect input from stdin via 
redirection. The implementation of this remote 
functionality is concise and simple.  

HP Caliper also has some limitations. Instrumentation  
does not work with dynamically generated code, with 
programs that internally change between little-endian and 
big-endian or with programs that use IP-aware signal 
handlers. It is also possible to create assembler code 
sequences where instrumentation will fail, for example 
code  performing label arithmetic. However, such 
sequences are rarely used, if at all. 

At the time of this writing, HP Caliper is able to 
successfully instrument the first ten Spec2000 benchmark 
programs (164.gzip, 175.vpr, 181.mcf, 197.parser, 
168.wupwise and more) to perform function coverage 
analysis, function counting and arc counting on IP-relative 
call branches as well as hazard checking for predicates 

4.3 Case Study: Predicate Hazard Checking 

Predicate hazard checking is an interesting application 
of the HP Caliper framework and is presented here as a 
case study.  

The HP compiler optimization group developed an 
algorithm where instructions are placed in the same issue 

group, although they may have a resource conflict, as in 
the following bundle with a read-after-write conflict: 

 
       nop.m 
 (p35) addl  r14=0x40784634,r0  // write r14 
 (p36) ld4.s r15=[r14]          // read  r14 
 

The instructions, however, are predicated. If it can be  
guaranteed that the predicates are never 1 at the same 
time, then this is a powerful optimization technique. 

In order to verify the algorithm, the optimization group 
uses a static tool to read in ELF executables and to output 
potential hazards as tuples <hazard address, predicate 
register, predicate register>. Hundreds and thousands of 
potential hazards are indicated by the static tool. This 
information is then manually checked against 
disassembled code and run through other static analyzers. 

Still, there had to be some form of dynamic  
verification. If one single occurring hazard was found, it 
was proven that the algorithm had a flaw for a given input 
stream. 

In order to support our compiler optimization team, we 
wrote a collector which reads in the output of the static 
hazard analyzer and instruments functions containing  
potential hazards. The probe code sequences check 
whether or not two indicated predicate registers are both 
set to one at a questionable address and increase a counter 
for this hazardous case. If a single counter has a value of 
one or greater, an actual hazard has been found. 

Implementing this collector was a straightforward 
operation, because all major building blocks like counter 
management, function discovery, probe code generation, 
insertion and handling of break instruction were already in 
place. The tasks to perform for hazard checking were more 
or less to define an input format and reader for the hazard 
file and the layout and implementation of the probe code 
sequences. We have been able to identify hazards and 
helped the optimizer group to improve their algorithms.  

5. Future Work 

HP Caliper will be ported to Linux on IA64 processors 
and to HP-UX on PA-RISC.  

What are the IA-64 specific features used by HP 
Caliper that will complicate porting it to PA-RISC? The 
ISA of both processors is fairly similar and the success of  
HP’s Aries emulator running PA-RISC applications on 
IA-64 demonstrates this. There are however two main 
problem areas: 

• There is no PMU or equivalent hardware on PA-
RISC. It is therefore expected that HP Caliper for 
PA-RISC will focus on binary code 
instrumentation. 

• HP Caliper exploits two instructions unique to the 
IA-64, the long branch instruction brl and the 
memory access synchronizing fetchadd 
instruction for counter updates. For both 
instructions there is no equivalent on PA-RISC, 



and workarounds for their usage must be 
developed. 

No problems caused by operating system dependencies 
are expected. Although the debug and perfmon interfaces 
of  HP-UX and Linux differ, their capabilities are both  
similar and powerful enough to allow HP Caliper to be 
ported 

In order to fully support analysis of C++ programs 
making use of exceptions, the dynamic updating of 
unwind information will be developed soon. 

An optional Caliper Agent above the Caliper API is 
under development. This agent routes API calls between 
the developer tool and the HP Caliper shared object, 
enabling a HP Caliper for distributed systems. The agent 
uses remote procedure calls (RPC) based on code 
generated from Caliper’s API header files. 

More tools will be developed on top of the 
instrumentation framework. In particular, these will 
include basic block related tools and API checkers such as 
a memory leak detection tool and a pthread correctness 
checker. Caliper’s design will also change slightly to 
enable dynamic loading of collectors. 

One of the more interesting challenges for the future is 
dynamic code transformation, e.g., optimization. Light- 
weight sampling will identify hot traces and dynamic 
instrumentation will optimize a program using this 
information. The optimizations may further adapt 
themselves as the characteristics of input data sets change. 
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