
HP Caliper – An Architecture for Performance Analysis Tools

Robert Hundt
Hewlett-Packard Company

robert_hundt@hp.com

Abstract

HP Caliper is an architecture for software developer
tools that deal with executable (binary) programs. It
provides a common framework that allows building of a
wide variety of tools for doing performance analysis,
profiling, coverage analysis, correctness checking, and
testing. HP Caliper uses a technology known as dynamic
instrumentation, which allows program instructions to be
changed on-the-fly with instrumentation probes. Dynamic
instrumentation makes HP Caliper easy to use: It requires
no special preparation of an application, supports shared
libraries, collects data for multiple threads, and has low
intrusion and overhead. This paper describes HP Caliper
for HP-UX, running on the IA-64 (Itanium) processor. It
describes Caliper’s architecture, dynamic instrumentation
algorithm, and the experiences gathered during its
implementation.

1. Introduction

The IA-64 processor’s instruction set architecture (ISA)
offers an impressive set of architectural features which
explicitly create synergy between compilers and the
processor [10]. The IA-64 groups up to three instructions
in bundles for execution in parallel and can issue multiple
bundles per clock. The architecture provides 128 integer
registers, 128 floating point registers, 64 1-bit predicate
registers, and 8 branch registers. Both control and data
speculation are supported, as well as predication to
eliminate branches, software pipelining of loops, and
branch prediction.

These processor features enable powerful program
optimizations. However, their efficiency depends on the
dynamic run-time behavior of a given program, which can
only be guessed by a static compiler. Additionally, modern
software paradigms emphasize distributed systems,
component-based modularization and object-oriented
designs. This further prevents compilers from optimization
and analysis on a global scope.

Over the last years, the computing community has
developed a strong set of tools and methods used to

analyze and monitor run-time behavior of a program.
Statistical sampling and binary instrumentation are two of
the major techniques.

Statistical sampling is typically performed by taking
periodic snapshots of the program state, e.g., its instruction
pointer (IP). Sampling is considered to be light-weight,
non-intrusive, and imprecise. It imposes low overhead on
a program’s run-time performance and can be used for
time-critical experiments. However, measurements are
statistical samples and have errors. Without special
hardware support, due to super-scalar issues, deep
pipelining, and out-of-order instruction completion, a
sampled IP may not be related to the instruction address
that caused a particular sampling event. Some
architectures introduce a varying offset to the IP at a
particular sampling event [2, 10].

The IA-64’s performance measurement unit (PMU)
offers programmable CPU event counters, event address
registers (EAR), and a branch trace buffer (BTB). The
PMU supports a set of over 150 event types, allowing a
wide range of system analysis tasks [10], such as analysis
of cache misses, translation look-aside buffer (TLB)
misses, or instruction cycles. When such a hardware
counter overflows, it is possible to precisely link events to
an instruction address with help of the event address
registers (EAR).

Dynamic binary instrumentation allows program
instructions to be changed on-the-fly and leads to a whole
class of more precise results. Measurements such as basic-
block coverage and function invocation counting are
accurate. Since the binary code of a program is modified,
all interactions with the processor and operating system
may change significantly, for example a program’s cache
and paging behavior. Instrumentation is therefore
considered to be intrusive. Due to additional instructions,
execution time can slow down anywhere from some
percent to factors like 2x or 4x. Dynamic instrumentation,
as opposed to static instrumentation, is performed at run-
time of a program and only instruments those parts of an
executable that are actually executed. This minimizes the
overhead imposed by the instrumentation process itself.

Tools based on dynamic instrumentation require no
special preparation of an executable, like many other tools
for performance analysis and tuning do. Such treatment
could be recompilation with a special compiler flag, or a
modified link process before or during program start. A
good example is profile-based optimization (PBO). There,
a program must be recompiled with a special flag to insert
counting code in the program and to output a trace profile
at the end of the program run. Feeding this profile back

into the compiler allows combining of static analysis and
runtime information and to generate a highly optimized
application for a representative set of input data. This data
combination also requires another compiler flag to be
used. PBO generates efficient code, but is complicated to
use, especially for large-scale software systems. It has not
been widely accepted by the software industry.

HP Caliper (or Caliper for short) integrates PMU
supported sampling and fast dynamic instrumentation. It
offers a framework for performance analysis tools for
binary executables and requires no special preparation or
recompilation of these binaries. It supports shared
libraries, collects data for multiple threads and processes,
and has low intrusion and overhead. This paper describes
HP Caliper for HP-UX, running on the IA-64 (Itanium)
processor. It describes HP Caliper’s architecture and
public interfaces, presents the dynamic instrumentation
algorithm and details experiences gathered and lessons
learned during its implementation.

2. Related Work

This section describes related work as characterized by
Cmelik and Keppel [5]. They present a list of over 45
hardware emulators, “decode-and-dispatch” interpreters,
“pre-decode” interpreters working on intermediate
representations, static cross compilers, and dynamic cross
compilers. These tools differ in support for kernel code,
time of instrumentation, requirements for debug
information, and support for signals and multithreaded
programs.

Many tools try to generalize static or dynamic
instrumentation and create abstractions of machines, file
formats, compiler code layouts and optimization
strategies. These tools often come with additional
generators for machine abstractions.

Paradyn [9] is a performance measurement tool for
parallel and distributed programs. It includes an abstract,
machine independent, dynamic instrumentation API
(DynInst), and provides precise performance data down to
the procedure level.

The Parallel Tools Consortium sponsors two related
projects, the Performance API (PAPI) project and the
Dynamic Probe Class Library (DPCL), the latter being
based on Paradyn.

Spike [6] is a profile-directed optimization system. It
uses code-layout to improve cache behavior and hot-cold
optimization to minimize the number of instructions
executed on frequent paths through a program. Atom
(Analysis Tools with OM) is a tool based on Om [14].
Atom NT is a set of tools built with the Spike library,
including profilers, arc counters, and simulators for cache
and branch prediction units.

Some tools and libraries allow static instrumentation of
binary executables. EEL [11] is a machine-independent
library for editing executables and provides abstractions
which allow tools to analyze and modify binary

executables. Etch [13] is a tool which allows
instrumentation of Win32/Intel executables. Tools based
on Etch include call graph profilers and instruction
execution analyzers. UQBT [4] is a retargetable and
“resourceable” binary translator. Resourceable means that
it accepts a binary from one of several platforms as input,
which is then transformed to an intermediate
representation and finally retargeted to several target
machines.

Rational’s Purify, Quantify, and PureCoverage [12] are
systems which perform static instrumentation for error
detection, run-time performance analysis, and coverage
analysis. Intel’s Vtune is a low-level CPU sampler which
allows detection of CPU bottlenecks and cache behavior.

HP’s Aries [18] combines fast code interpretation with
dynamic translation in order to execute PA-RISC
applications transparently and accurately on IA-64
systems running HP-UX.

Previous work at HP’s dynamic instrumentation lab
includes a callback driven dynamic instrumentation
environment and dynamic optimizers for x86, PA-RISC,
and IA64. A transparent dynamic optimizer named
Dynamo is under development at the HP Laboratory in
Cambridge.

3. HP Caliper Architecture

HP Caliper is physically organized as a shared object
library with the Caliper API as its interface. A tool built
with HP Caliper runs as a Developer Tool Process,
controlling an Application Process via the operating
system’s debug interface (e.g., ttrace on HP-UX or /proc
on Linux).

C
ol

le
ct

or
 1

 (T
)

Shared
Memory

. . .

Support (T)

Local
Memory

Caliper API

Main

Python

Developer
Tool

User
Interface

Shared
Object

Developer Tool
Process

Shared
Memory

Local
Memory

Support (A)

Injected
Object

. . .

Application Process

Application
Program

Control

Commands

C
ol

le
ct

or
 2

 (T
)

C
ol

le
ct

or
 1

 (A
)

C
ol

le
ct

or
 2

 (A
)

Config Script

Fig 1: HP Caliper Architecture

Developer tools based on HP Caliper are physically
split into two parts, the user interface and the HP Caliper
shared object (libcaliper.so). User interfaces can be stand-
alone scripts or integrated development environments
(IDE). HP Caliper allows to inject an optional run-time
library into the application process to record information,

react on application events, and communicate with the
developer tool.

The shared object is HP Caliper’s main component. It
contains support code, collectors, the Caliper API, and
memory management routines. It integrates a Python
interpreter and provides a default C main function.

The HP Caliper API consists of a set of C function
interfaces to the main architectural blocks of HP Caliper.
The interfaces, although written in ANSI C, follow object-
oriented design principles and form a simple object model
consisting of Measurement sets, Events, Processes,
Configuration, Context and Collectors. These classes are
described in the following paragraphs.

Measurement sets enable measurement specification
and combination. Instrumentation-based measurements
include function coverage and counting, basic block
coverage and counting, arc counts, and call graphs. PMU-
based global performance metrics include control
speculation miss ratio, data speculation miss ratio, ALAT
capacity miss ratio, data and instruction cache miss ratios,
TLB miss ratios, and more. Statistics of branch
mispredictions and branch taken ratios can be obtained.

Event objects deal with application and user events and
handle event queues. Typical program events include
process creation and destruction, shared object loading and
unloading, timer expiration, PMU counter overflow, and
process termination.

Process is a set of interfaces allowing creation of or
attachment to a process as well as handling of process
related events, such as signals. It allows controlling
processes via the OS’s debug interface (e.g., ttrace or
/proc).

Configuration permits to parameterize HP Caliper and
to set parameters such as initial size of shared memory
blocks.

Context allows HP Caliper to scale to large applications
by narrowing down measurements in both time and space.
A context’s three dimensions are:

• Address - to include or exclude modules (DLLs),
functions and address ranges

• Time - to schedule measurements
• Event - to specify program actions for specific

program events (e.g., fork / exec).
A Collector is a tool built into HP Caliper that performs

a special kind of measurement, for example, PMU
sampling or instrumentation-based function counting.
Collectors use the infrastructure offered by HP Caliper.
Each collector adds an individual API to the HP Caliper
API to interact with the developer tool. On the application
side, support code for the instrumentation may be injected
and each individual collector may inject additional private
code. Data and control transfers between HP Caliper and
an application use shared memory.

The Caliper Support Library offers a framework of
services and tools for dynamic instrumentation and
sampling. These services include:

• encoding and decoding of machine instructions to
an intermediate representation (IR) with automatic
fix-up of IP-relative branches.

• handling of an executable’s ELF file, code and
data segments, debug and unwind information, and
function tables.

• managing data exchange between HP Caliper and
its monitored processes (e.g., for counters, events,
or control instructions).

• controlling a process with the debug and
performance measurement interfaces (perfmon()).

A developer tool communicates with HP Caliper via
the Caliper API or via the integrated Python interpreter.
This Python interpreter performs multiple tasks. It
contains wrappers for all API functions and is used to
interpret initialization and configuration scripts. The
interpreter acts as the main interface for all command line
tools and as the main shell for the integrated debugger cdb
(described later). It can also be directly accessed from the
graphical user interface and from the C main function.
Currently, Python can not be used to describe probe code
sequences at a high level.

The API resides in a set of C header files, which are
processed by SWIG [16] to generate Python wrapper code.
The interpreter and the wrappers are included in the HP
Caliper shared object. SWIG uses text templates to
generate code and some templates had to be changed to
make SWIG usable on a 64-bit processor with “new” data
types like uint64_t.

The generated wrapper code is very complex to use.
Therefore, a Python class library was developed based on
the SWIG-generated interfaces. These classes are more
intuitive and serve as the main scripting interface to HP
Caliper.

This programming model was also felt to be too
complex for simple and standardized tasks. This was
especially true for novice users, since knowledge of the
Caliper API and its object model was required. A further
simplified model was developed which only considers the
most basic user control requirements. In this model, only a
few variables can be assigned before a measurement starts,
and all other details are hidden. For example, these
variables include the name of the application to be
monitored and the type of measurement to be performed.

Tools using HP Caliper can access the C API, the
Python SWIG-generated functions, the Python class
library, the simplified layer or operate HP Caliper from an
IDE. Other language interfaces, such as C++ or Java, can
be added on top of the C API.

A small and simple driver is sufficient in order to
perform useful work with the HP Caliper shared object.
All such a command-line driver does is analyzing its
parameters in order to find arguments specifying a script
file and finally running this script.

An arc counter standalone tool is written in roughly 20

lines of Python code. (The following code snippet is
simplified for clarity):

#!./caliper
import caliper, os, sys
try:
Create process and load executable

test_exec = os.path.abspath(sys.argv[1])
proc = caliper.process()

proc.load(test_exec,
sys.argv[1:],
["PATH=."])

Create context
context = caliper.context(proc)

Create collector: arc_counter
arc_count = caliper.arc_count(context)

Run the measurement
establish_measurement()

Retrieve counters and generate report
fout = open(test_exec + ".pbo", "w");
arc_count.report(fout)
fout.close()

except:
...

A control file in the simplified model looks like:

specify applicatioin
application = “a.out”

specify output file
pbo_out = “flow.dat”

run collector
collect(pbo)

4. Dynamic Instrumentation

This section explains HP Caliper’s dynamic
instrumentation algorithm. It briefly discusses, why it can
be characterized as a lazy algorithm before it finally

outlines the experiences gathered during its
implementation and testing.

One of the major benefits of dynamic instrumentation,
as opposed to static instrumentation, is scalability.
According to the 80:20 rule (in a typical program, 80
percent of the runtime is spent in 20 percent of the code),
only a small fraction of an executable system has to be
instrumented in order to detect the most significant parts
of a program.

Dynamic instrumentation can be performed in a variety
of ways. The two strategies we considered for generating
probe code were to either make use of trampolines (out-of-
line), or inline and relocate probe code (in-line).

As an example, an out-of-line instrumentation strategy
may perform code transformations like the following in
order to perform function counting. A given function foo’s
entry point may look like this in IA-64 assembly:

foo::
 alloc r33=ar.pfs,0,11,1,0
 addl r9=-2944,r1
 addl r8=-2936,r1
foo’::
 . . .

The out-of-line strategy will instrument foo’s entry
point with a long branch to a trampoline that executes the
original instruction, plus some additional code to update
an invocation counter.

foo::
 nop.m
 brl trampoline
foo’::
 . . .

trampoline::
// save state, create free register rx
 . . .

// execute original instructions
 alloc r33=ar.pfs,0,11,1,0
 addl r9=-2944,r1
 addl r8=-2936,r1

// perform additional tasks
// update a counter for this function

 movl rx, addr-of-counter
 fetchadd [rx], 1

// restore state
 . . .

// return to original code.
 brl foo’

There are, of course, many possibilities for encoding,
reaching, and returning from the actual trampoline code.
Care must be taken for code with branch instructions in
the first bundle of a function. Trampoline code and
original code may be farther apart than the 25-bit encoded
relative address offsets of the IA-64 allow. Therefore, long
branches have to be used.

C Api

SWIG-Generated Wrappers

libcaliper.so

Python Class Library

Simplified Model

Python Command-Line ToolC/C++ Tool

This strategy has several advantages. If all of the probe
code is placed out-of-line and the instrumented
instructions branch to it and back, then the counting code
will not cause any wrinkles in the address space of the
original application. Thus, all branches would continue to
reach their designated targets. It is also easy to combine
multiple instrumentations simply by cascading
trampolines.

The other major strategy for probe code generation is to
inline and relocate code. The above code snippet for
function foo would then be transformed into the following:

foo_instrumented::

// modified alloc instruction to
// generate free register
 alloc r33=ar.pfs,0,12,1,0

// perform additional tasks,
// update a counter for this function

 movl r45, addr-of-counter
 fetchadd [r45], 1

 addl r9=-2944,r1
 addl r8=-2936,r1

This strategy leads to more compact code, less

intrusion, and better performance. It does, however, come
at a price.

Insertion of probe code changes the relative offsets in a
code stream and requires lookup of indirect branches (in a
translation table) whose target cannot be determined by
the instrumenter. Combining different instrumentations
and probe code is not as easy as it is in the well-defined,
sand-box style trampoline approach.

Susan L. Graham, et. al. [8] investigated the relative
overhead associated with the inline and out-of-line
instrumentation strategies and found the overhead to be
34% for inline and 112% for out-of-line strategies. The
transformation overhead is computed as the run-time of all
code that is added to the application in order to support the
primary probe code, without including the probe code
itself. The benchmark included spec programs such as
compress, gcc, li, sc, espresso, and more.

The use of long branches had to be minimized for
another reason. The first versions of the IA-64 only
emulate the long branch, which causes additional run-time
performance impacts. A trampoline-based instrumentation
approach with out-of-line branches made heavy use of
long branches and was therefore disregarded in favor of
the current in-line approach.

Preliminary measurements on HP-UX showed that the
overhead of a long call branch, compared to a short call
branch, is approximately 100 to 300 cycles. This number
was considered to be small for an emulated instruction and
permitted us to use the long branch instruction
“occasionally” in the algorithm.

The inlining relocation method is faster even without
considering the extra cost of an emulated long branch
instruction. This justified our algorithmic decision in the

light of an upcoming, hardware-supported long branch
instruction.

4.1 Algorithm

HP Caliper’s approach works at the granularity level of
functions, which are always instrumented as a whole.
Probes are inlined into functions and instrumented
functions are relocated.

The dynamic instrumentation algorithm performs the
following five steps, which are encapsulated in the Caliper
API:

1. Attach and Inject: HP Caliper identifies an
executable or an already running process. It attaches to a
process using the HP-UX ttrace system call. The process
stops and transfers control to HP Caliper, which injects
code into the process which allocates shared memory and
optionally adds run-time libraries for dynamic
instrumentation.

2. Function Discovery: Function entry points are
identified by analysis of the unwind information tables
(sometimes called exception tables), the procedure lookup
tables, and the symbol table. Unlike a debugger, HP
Caliper does not depend on debug information in order to
perform this step. The analysis may still miss some
function entry points because of a lack of unwind
information and symbolic information. However, these
functions are discovered dynamically. Whenever a call
target cannot be found in the internal function dictionary
during instrumentation, a break is inserted at the target
address of a call branch, assuming it to be a function entry
point.

3. Static Break Insertion: Every function’s entry point
is patched with a break instruction.

4. Run under Dynamic Instrumentation: Control is
transferred back to the process. The process runs until it
hits one of the inserted break instructions at the entry point
of a function. Since the process is controlled by ttrace,
control transfers to HP Caliper and the instrumentation
process begins at the current function.

The function is analyzed for instrumentability, probe
codes are inlined into the function, IP-relative references
are updated, counters are created, and an instrumented
version of the function is moved to shared memory. The
original function’s entry point is patched with a long
branch instruction to its instrumented version. Break
instructions are inserted at function external IP-relative
branches, whose targets have not yet been instrumented or
have not been identified by function discovery.

After instrumentation, control transfers to the
instrumented function, which continues to run until it hits
the next break instruction. Control will again transfer to
HP Caliper and the dynamic instrumentation process is
resumed.

5. Output: Upon process termination or user request,
control again transfers to HP Caliper. Statistics, counters,
and other measurement results are now retrieved and

output into one of the integrated, collector-specific formats
or via user-defined, script-based output routines.

This dynamic instrumentation algorithm could
rightfully be characterized as a lazy instrumentation
algorithm. If a program were to consist of only one,
presumably huge, function F, the algorithm would
instrument the whole program at once after reaching F’s
entry point. No code transformations that depend on
information only available at run-time are performed.

Programs consisting of only one function, however, are
not a standard case in today’s computing environments,
right the opposite is true! The instrumentation sequence
also depends on the dynamic control flow of a program
and can be changed interactively or via the definition of
context. We, therefore, continue to use the term “dynamic
instrumentation” to describe this algorithm.

Without further explanation we would like to mention
another property of this algorithm, the possibility to mix
instrumented and non-instrumented code without hurting
program correctness.

4.2 Experiences

This section describes the most important experiences
gathered and lessons learned during implementation and
debugging of this algorithm for HP-UX.

The IA-64 contains a high performance register stack
engine (RSE) which helps to minimize the cost of creating
a call frame and a function call by maintaining a separate
register stack. If a programming model requires consistent
unwinding of the stack, e.g. during a C++ exception, both
program stack and register stack have to be unwound.

For every region in a program, unwind information is
generated and stored in the text segment for fast access.
The presence of unwind information is a requirement by
the IA-64 runtime software architecture [10]. If code
motion happens during instrumentation, the unwind
information must be dynamically updated. This is no easy
task, since regions get modified by probe code inlining.
Unwind information updating is not yet fully resolved and
blocks HP Caliper from being used for analysis of C++
programs which make use of C++ exceptions.

Compilers frequently translate a C/C++ switch
statement into an indirect branch based on a branch table
located in the code segment. HP’s compilers place branch
tables in a read-only data section of the text segment. It is
generally impossible for a binary code analyzer to decide
whether a given address contains data (such as an entry of
a branch table) or real code. Some algorithms exist to
identify branch tables and, for some code generation
schemes, this problem can always be solved [3,17].

 HP Caliper uses compiler-generated annotations
residing in an executable’s ELF file to identify these
tables. If a branch table has been identified, the table
entries are patched so they point to their corresponding
instrumented target addresses. Whenever an indirect
branch is executed based on an unmodified branch table, it

will go to a function’s non-instrumented version. Although
the program maintains correctness, the resulting counter
values become imprecise.

Because of this, HP Caliper’s precision depends on the
presence of annotations. Annotations are linked to the
unwind information for a given region and as long as the
executable contains unwind information, the
corresponding annotations can be found.

The foremost requirement for binary instrumentation is,
of course, to preserve the program semantics at any given
time. Probe code needs free registers and earlier
approaches required the compiler to reserve registers for
special use of a post link-time tools. This is again a topic
of a recent discussions in the industry and certainly is a
most convenient approach. However, the compiler group
soon experienced register pressure and, consequently, this
approach was skipped.

HP Caliper now uses a staged method to find free
registers. Free registers are first identified with the
assistance of compiler generated annotations. If no
annotations are found, free registers are created by
increasing the number of stacked output registers of a
function by modifying a function’s dominating alloc
instruction. This will fail if the function doesn’t have an
alloc instruction, has multiple alloc instructions or because
the alloc instruction already allocates all the stacked
registers. In such a case, explicitly spilling/filling to the
program stack is necessary.

Multithreaded applications presented a new kind of
challenge for HP Caliper. Insertion of an instruction (e.g.,
a long branch instruction), turned out to be more
complicated than expected. The IA-64 bundle size is 16
bytes, but load and store instructions only operate on a
maximum of 8 bytes. This means that two store
instructions are necessary to update a bundle. In
multithreaded applications, there are two potentially
hazardous scenarios. It is possible that a thread could hit a
bundle while being in the middle of it’s update process,
thus executing a half-deployed instruction with an invalid
instruction template field, which will result in a signal. Or,
a thread could have been stalled on slot 1 or slot 2 of a
bundle, waking up on a changed instruction, again
resulting in incorrect program behavior.

The latter scenario has been solved in HP Caliper using
a sequence of update steps. The first problem requires the
installation of a signal handler for invalid template
exceptions. This has not been implemented yet.

To date, HP Caliper simply halts all threads in the
target application while performing an instruction update.
While guaranteeing correct program behavior, this method
slows down execution speed, especially on multi-
processor systems. For this reason it will later be changed
to a method with full support for multithreading.

The IA-64 supports call shadows where two branches
are located in one bundle as in this example:

 nop.m 0
 (p6) br.call.dptk.few .-0x150
 br.call.sptk.few .-0x410;; // shadowed

If the predicate register p6 is set to 1 then the first
branch instruction is executed. Since branch targets and
return address are always full bundle addresses on the IA-
64, the second branch will never be executed.

If this instruction sequence is instrumented and
counting code is inserted, then the original instructions get
dispersed across multiple bundles, changing the implicit
logic of the call shadow that supressed the second branch.
Thus, HP Caliper performs an additional search for call
shadows and alters the instrumentation sequences
accordingly.

Break instructions are used in a similar, but conflicting
way by both HP Caliper and debuggers, making it
impossible to debug a HP Caliper-controlled application.
Therefore we integrated debugging functionality into HP
Caliper and named the driver for this functionality cdb
(Caliper Debugger). This feature became invaluable for
identifying program flaws, invalid probe code sequences,
kernel bugs and forgotten stop bits all over the
instrumented code.

Cdb makes use of the integrated Python interpreter to
display a prompt, to parse commands, and to perform
actions accordingly. It supports insertion of break points,
single stepping, disassembly of original and instrumented
code, dumping of data and registers, and more. HP Caliper
allows falling back to a cdb prompt whenever an
unexpected situation or signal occurs.

Scripting languages such as Python typically have
powerful support for socket communications of some
kind. It was easy for us to offer a remote interface to cdb.
This proved to be valuable during debugging of
applications which expect input from stdin via
redirection. The implementation of this remote
functionality is concise and simple.

HP Caliper also has some limitations. Instrumentation
does not work with dynamically generated code, with
programs that internally change between little-endian and
big-endian or with programs that use IP-aware signal
handlers. It is also possible to create assembler code
sequences where instrumentation will fail, for example
code performing label arithmetic. However, such
sequences are rarely used, if at all.

At the time of this writing, HP Caliper is able to
successfully instrument the first ten Spec2000 benchmark
programs (164.gzip, 175.vpr, 181.mcf, 197.parser,
168.wupwise and more) to perform function coverage
analysis, function counting and arc counting on IP-relative
call branches as well as hazard checking for predicates

4.3 Case Study: Predicate Hazard Checking

Predicate hazard checking is an interesting application
of the HP Caliper framework and is presented here as a
case study.

The HP compiler optimization group developed an
algorithm where instructions are placed in the same issue

group, although they may have a resource conflict, as in
the following bundle with a read-after-write conflict:

 nop.m
 (p35) addl r14=0x40784634,r0 // write r14
 (p36) ld4.s r15=[r14] // read r14

The instructions, however, are predicated. If it can be
guaranteed that the predicates are never 1 at the same
time, then this is a powerful optimization technique.

In order to verify the algorithm, the optimization group
uses a static tool to read in ELF executables and to output
potential hazards as tuples <hazard address, predicate
register, predicate register>. Hundreds and thousands of
potential hazards are indicated by the static tool. This
information is then manually checked against
disassembled code and run through other static analyzers.

Still, there had to be some form of dynamic
verification. If one single occurring hazard was found, it
was proven that the algorithm had a flaw for a given input
stream.

In order to support our compiler optimization team, we
wrote a collector which reads in the output of the static
hazard analyzer and instruments functions containing
potential hazards. The probe code sequences check
whether or not two indicated predicate registers are both
set to one at a questionable address and increase a counter
for this hazardous case. If a single counter has a value of
one or greater, an actual hazard has been found.

Implementing this collector was a straightforward
operation, because all major building blocks like counter
management, function discovery, probe code generation,
insertion and handling of break instruction were already in
place. The tasks to perform for hazard checking were more
or less to define an input format and reader for the hazard
file and the layout and implementation of the probe code
sequences. We have been able to identify hazards and
helped the optimizer group to improve their algorithms.

5. Future Work

HP Caliper will be ported to Linux on IA64 processors
and to HP-UX on PA-RISC.

What are the IA-64 specific features used by HP
Caliper that will complicate porting it to PA-RISC? The
ISA of both processors is fairly similar and the success of
HP’s Aries emulator running PA-RISC applications on
IA-64 demonstrates this. There are however two main
problem areas:

• There is no PMU or equivalent hardware on PA-
RISC. It is therefore expected that HP Caliper for
PA-RISC will focus on binary code
instrumentation.

• HP Caliper exploits two instructions unique to the
IA-64, the long branch instruction brl and the
memory access synchronizing fetchadd
instruction for counter updates. For both
instructions there is no equivalent on PA-RISC,

and workarounds for their usage must be
developed.

No problems caused by operating system dependencies
are expected. Although the debug and perfmon interfaces
of HP-UX and Linux differ, their capabilities are both
similar and powerful enough to allow HP Caliper to be
ported

In order to fully support analysis of C++ programs
making use of exceptions, the dynamic updating of
unwind information will be developed soon.

An optional Caliper Agent above the Caliper API is
under development. This agent routes API calls between
the developer tool and the HP Caliper shared object,
enabling a HP Caliper for distributed systems. The agent
uses remote procedure calls (RPC) based on code
generated from Caliper’s API header files.

More tools will be developed on top of the
instrumentation framework. In particular, these will
include basic block related tools and API checkers such as
a memory leak detection tool and a pthread correctness
checker. Caliper’s design will also change slightly to
enable dynamic loading of collectors.

One of the more interesting challenges for the future is
dynamic code transformation, e.g., optimization. Light-
weight sampling will identify hot traces and dynamic
instrumentation will optimize a program using this
information. The optimizations may further adapt
themselves as the characteristics of input data sets change.

6. Acknowledgements

HP Caliper is the result of a strong team effort within
HP. Thanks to Dave Babcock, Eric Gouriou and German
Rivera for their contributions. Special thanks to Umesh
Krishnaswamy, Vinodha Ramasamy and Thomas Lofgren
for their additional feedback and help during my writing
of this paper.

I would also like to thank the anonymous reviewers for
their invaluable feedback.

References

[1] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques, and Tools (Mass.: Addison-Wesley, 1985).

[2] J. Anderson et al., "Continuous Profiling: Where Have All
the Cycles Gone?" Proceedings of the Sixteenth ACM
Symposium on Operating System Principles, Saint-Malo,
France (October 1997): 1–14.

[3] Chrstina Cifuentes, Antoine Fraboulet “Intraprocedural
Slicing of Binary Executables”, University of Queensland,
Australia.

[4] Chrstina Cifuentes, Mike van Emmerik “UQBT – A
Resourceable and Retargetable Binary Translator”,
University of Queensland, Australia (December 1999)

[5] Robert F. Cmelik and David Keppel, “Shade: A Fast
Instruction-Set Simulator for Execution Profiling”, Sun
Micosystems Laboratories, Incorporated, and the University

of Washington, technical report SMLI 93-12 and UWCSE
93-06-06, 1993

[6] R. Cohn, D. Goodwin, P. G. Lowney, “Optimizing Alpha
Executables on Windows NT with Spike”, Digital Technical
Journal 9, 4

[7] R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin, "Spike:
An Optimizer for Alpha/NT Executables," The USENIX
Windows NT Workshop Proceedings, Seattle, Wash.
(August 1997): 17–24.

[8] Susan L. Graham, Steven Lucco, Robert Wahbe,
“Adaptable Binary Programs”, Usenix 1995

[9] Jeffrey K. Hollingsworth, Barton P. Miller, "Dynamic
Instrumentation API”, Journal, University of Wisconsin,
1996.

[10] Intel Corperation “IA-64 Application Developer’s
Architecture Guide”, May 1999

[11] J.R. Larus and E. Schnarr “EEL: Machine Independent
Executable Editing. In SIGPLAN Conference on
Programming Languages, Design and Implementation,
pages 291-300, June 1995

[12] Rational Software Cooperation. Product documentation for
Purify, Quantify and PureCoverage.

[13] Ted Romer et al. “Instrumentation and Optimization of
Win32/Intel Executables using Etch”, Usenix Windows NT
Workshop 1997

[14] A. Srivastava and David W. Wall. A Practical System for
Intermodule Code Optimization at Link-Time. Journal of
Programming Language, 1(1), pp 1-18, March 1993.

[15] A. Srivastava and A. Eustace, "ATOM: A System for
Building Customized Program Analysis Tools,"
Proceedings of the ACM SIGPLAN’94 Conference on
Programming Language Design and Implementation,
Orlando, Fla. (June 1994): 196–205.

[16] SWIG – Simplified Wrapper and Interface Generator, Dave
Beazley et al., University of Utah, Open Source Project at
http://www.swig.org

[17] M. Weiser “Program Slicing”. IEEE Transactions on
Software Engineering, SE-10(4):352-257, July 1984

[18] Cindy Zheng, Carol Thompson “PA-RISC to IA-64:
Transparent Execution, No Recompilation”, IEEE
Computer Society Cover Feature, 3/2000

