
TritonSort
A Balanced Large-Scale

Sorting System
Alex Rasmussen, George Porter, Michael Conley,

Radhika Niranjan Mysore, Amin Vahdat (UCSD)
Harsha V. Madhyastha (UC Riverside)

Alexander Pucher (Vienna University of Technology)

The Rise of Big Data Workloads

•  Very high I/O and storage requirements
–  Large-scale web and social graph mining
–  Business analytics – “you may also like …”
–  Large-scale “data science”

•  Recent new approaches to “data deluge”: data
intensive scalable computing (DISC) systems
–  MapReduce, Hadoop, Dryad, …

2

Performance via scalability
•  10,000+ node MapReduce clusters deployed

– With impressive performance
•  Example: Yahoo! Hadoop Cluster Sort

–  3,452 nodes sorting 100TB in less than 3 hours
•  But…

–  Less Than 3 MB/sec per node
– Single disk: ~100 MB/sec

•  Not an isolated case
– See “Efficiency Matters!”,

SIGOPS 2010

3

Overcoming Inefficiency With
Brute Force

•  Just add more machines!
–  But expensive, power-hungry

mega-datacenters!
•  What if we could go from

3 MBps per node to 30?
–  10x fewer machines

accomplishing the
same task

–  or 10x higher throughput

4

TritonSort Goals
•  Build a highly efficient DISC system that

improves per-node efficiency by an order of
magnitude vs. existing systems
– Through balanced hardware and software

•  Secondary goals:
– Completely “off-the-shelf” components
– Focus on I/O-driven workloads (“Big Data”)
– Problems that don’t come close to fitting in RAM
–  Initially sorting, but have since generalized

5

Outline

•  Define hardware and software balance
•  TritonSort design

– Highlighting tradeoffs to achieve balance
•  Evaluation with sorting as a case study

6

Building a “Balanced” System
•  Balanced hardware drives

all resources as close to
100% as possible
–  Removing any resource

slows us down
–  Limited by commodity

configuration choices
•  Balanced software fully

exploits hardware resources

7

Hardware Selection
•  Designed for I/O-heavy workloads

– Not just sorting
•  Static selection of resources:

– Network/disk balance
•  10 Gbps / 80 MBps ≈ 16 disks

– CPU/disk balance
•  2 disks / core = 8 cores

– CPU/memory
•  Originally ~1.5GB/core… later 3 GB/core

8

Resulting Hardware Platform
52 Nodes:
•  Xeon E5520, 8 cores

(16 with hyperthreading)
•  24 GB RAM
•  16 7200 RPM hard drives
•  10 Gbps NIC
•  Cisco Nexus 5020

10 Gbps switch

9

Software Architecture
•  Staged, pipeline-oriented dataflow system
•  Program expressed as digraph of stages

– Data stored in buffers that move along edges
– Stage’s work performed by worker threads

•  Platform for experimentation
– Easily vary:

•  Stage implementation
•  Size and quantity of buffers
•  Worker threads per stage
•  CPU and memory allocation to each stage

10

Why Sorting?

•  Easy to describe
•  Industrially applicable
•  Uses all cluster resources

11

Current TritonSort Architecture

•  External sort – two reads, two writes*
– Don’t read and write to disk at same time

•  Partition disks into input and output

•  Two phases
– Phase one: route tuples to appropriate

on-disk partition (called a “logical disk”) on
appropriate node

– Phase two: sort all logical disks in parallel

12

* A. Aggarwal and J. S. Vitter. The input/output complexity
of sorting and related problems. CACM, 1988.

Architecture Phase One

13

Input Disks

Reader Node
Distributor Sender

Architecture Phase One

14

Receiver LD
Distributor Coalescer Writer

Output Disks
Disk 8

Disk 7

Disk 6

Disk 5

Disk 4

Disk 3

Disk 2

Disk 1

Linked list per partition

Reader

15

•  100 MBps/disk * 8 disks = 800 MBps
•  No computation, entirely I/O and memory

operations
– Expect most time spent in iowait
– 8 reader workers, one per input disk

 All reader workers co-scheduled on a single core

Reader Node
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer

NodeDistributor

16

•  Appends tuples onto a buffer per
destination node

•  Memory scan + hash per tuple
•  300 MBps per worker

– Need three workers to keep up with readers

Reader Node
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer

Sender &
Receiver

17

•  800 MBps (from Reader) is 6.4 Gbps
– All-to-all traffic

•  Must keep downstream disks busy
– Don’t let receive buffer get empty
–  Implies strict socket send time bound

•  Multiplex all senders on one core
(single-threaded tight loop)
– Visit every socket every 20 µs
– Didn’t need epoll()/select()

Reader Node
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer

Balancing at Scale

18

t1 t0

Logical Disk
Distributor

19

t0 t1 t2

0

1

N
…

H(t0) = 1 H(t1) = N

12.8 KB

Reader Node
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer

Logical Disk
Distributor

20

•  Data non-uniform and bursty at
short timescales
– Big buffers + burstiness = head-of-line blocking
– Need to use all your memory all the time

•  Solution: Read incoming data into smallest
buffer possible, and form chains

Reader Node
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer

Coalescer &
Writer

21

•  Copies tuples from LDBuffer chains into a
single, sequential block of memory

•  Longer chains = larger write before seeking
= faster writes
– Also, more memory needed for LDBuffers

•  Buffer size limits maximum chain length
– How big should this buffer be?

Reader Node
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer

Writer

22

Reader Node
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer

Architecture Phase Two

23

Reader Sorter Writer

Input Disks Output Disks

Sort Benchmark Challenge

•  Started in 1980s by Jim Gray, now run by
a committee of volunteers

•  Annual competition with many categories
– GraySort: Sort 100 TB

•  “Indy” variant
– 10 byte key, 90 byte value
– Uniform key distribution

24

How balanced are we?

25

Worker Type Workers Total Throughput
(MBps)

% Over
Bottleneck

Stage

Reader 8 683 13%
Node-Distributor 3 932 55%
LD-Distributor 1 683 13%
Coalescer 8 18,593 30,000%
Writer 8 601 0%
Reader 8 740 3.2%
Sorter 4 1089 52%
Writer 8 717 0%

How balanced are we?

26

Phase
Resource Utilization

CPU Memory Network Disk
Phase

One
25% 100% 50% 82%

Phase
Two

50% 100% 0% 100%

Scalability

27

Raw 100TB “Indy” Performance

28

0

0.0025

0.005

0.0075

0.01

0.0125

0.015

0.0175

0.02

Prev. Record Holder TritonSort

Pe
rf

or
m

an
ce

 p
er

 N
od

e

(T
B

 p
er

 m
in

ut
e)

0.938 TB per minute

52 nodes

0.564 TB per minute
195 nodes

6X

Impact of Faster Disks
•  7.2K RPM 15K RPM drives
•  Smaller capacity means fewer LDs
•  Examined effect of disk speed and # LDs
•  Removing a bottleneck moves the bottleneck

somewhere else

29

Intermediate
Disk Speed

(RPM)

Logical Disks
Per Physical

Disk

Phase One
Throughput

(MBps)

Phase One
Bottleneck

Stage

Average Write
Size (MB)

7200 315 69.81 Writer 12.6
7200 158 77.89 Writer 14.0

15000 158 79.73 LD Distributor 5.02

Impact of Increased RAM
•  Hypothesis that memory influences chain length,

and thus write speed
•  Doubling memory indeed increases chain length,

but the effect on performance was minimal
•  Increasing a non-bottleneck resource made it

faster, but not by much

30

RAM Per Node
(GB)

Phase One Throughput
(MBps)

Average Write Size
(MB)

24 73.53 12.43
48 76.43 19.21

Future Work
•  Generalization

– We have a fast MapReduce implementation
– Considering other applications and

programming paradigms
•  Automatic Tuning

– Determine appropriate buffer size & count, #
workers per stage for reasonable performance
•  Different hardware
•  Different workloads

31

TritonSort – Questions?
•  Proof-of-concept

balanced sorting system
•  6x improvement in per-

node efficiency vs.
previous record holder

•  Current top speed:
938 GB per minute

•  Future Work:
Generalization,
Automation

32

http://tritonsort.eng.ucsd.edu/

