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The Rise of Big Data Workloads 

•  Very high I/O and storage requirements 
–  Large-scale web and social graph mining  
–  Business analytics – “you may also like …” 
–  Large-scale “data science” 

•  Recent new approaches to “data deluge”: data 
intensive scalable computing (DISC) systems 
–  MapReduce, Hadoop, Dryad, … 
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Performance via scalability 
•  10,000+ node MapReduce clusters deployed 

– With impressive performance 
•  Example: Yahoo! Hadoop Cluster Sort 

–  3,452 nodes sorting 100TB in less than 3 hours 
•  But… 

–  Less Than 3 MB/sec per node 
– Single disk: ~100 MB/sec 

•  Not an isolated case 
– See “Efficiency Matters!”,  

SIGOPS 2010 
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Overcoming Inefficiency With  
Brute Force 

•  Just add more machines! 
–  But expensive, power-hungry 

mega-datacenters! 
•  What if we could go from  

3 MBps per node to 30? 
–  10x fewer machines 

accomplishing the  
same task 

–  or 10x higher throughput 
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TritonSort Goals 
•  Build a highly efficient DISC system that 

improves per-node efficiency by an order of 
magnitude vs. existing systems 
– Through balanced hardware and software 

•  Secondary goals: 
– Completely “off-the-shelf” components 
– Focus on I/O-driven workloads (“Big Data”) 
– Problems that don’t come close to fitting in RAM 
–  Initially sorting, but have since generalized 
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Outline 

•  Define hardware and software balance 
•  TritonSort design 

– Highlighting tradeoffs to achieve balance 
•  Evaluation with sorting as a case study 
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Building a “Balanced” System 
•  Balanced hardware drives 

all resources as close to 
100% as possible 
–  Removing any resource  

slows us down 
–  Limited by commodity 

configuration choices 
•  Balanced software fully 

exploits hardware resources 

7 



Hardware Selection 
•  Designed for I/O-heavy workloads 

– Not just sorting 
•  Static selection of resources: 

– Network/disk balance 
•  10 Gbps / 80 MBps ≈ 16 disks 

– CPU/disk balance 
•  2 disks / core = 8 cores 

– CPU/memory 
•  Originally ~1.5GB/core… later 3 GB/core 
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Resulting Hardware Platform 
52 Nodes: 
•  Xeon E5520, 8 cores  

(16 with hyperthreading) 
•  24 GB RAM 
•  16 7200 RPM hard drives 
•  10 Gbps NIC 
•  Cisco Nexus 5020  

10 Gbps switch 
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Software Architecture 
•  Staged, pipeline-oriented dataflow system 
•  Program expressed as digraph of stages 

– Data stored in buffers that move along edges 
– Stage’s work performed by worker threads 

•  Platform for experimentation 
– Easily vary: 

•  Stage implementation 
•  Size and quantity of buffers 
•  Worker threads per stage 
•  CPU and memory allocation to each stage 
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Why Sorting? 

•  Easy to describe 
•  Industrially applicable 
•  Uses all cluster resources 
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Current TritonSort Architecture 

•  External sort – two reads, two writes* 
– Don’t read and write to disk at same time 

•  Partition disks into input and output 

•  Two phases 
– Phase one: route tuples to appropriate  

on-disk partition (called a “logical disk”) on 
appropriate node 

– Phase two: sort all logical disks in parallel 
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* A. Aggarwal and J. S. Vitter. The input/output complexity 
of sorting and related problems. CACM, 1988. 



Architecture Phase One 
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Input Disks 

Reader Node 
Distributor Sender 



Architecture Phase One 
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Receiver LD 
Distributor Coalescer Writer 

Output Disks 
Disk 8 

Disk 7 

Disk 6 

Disk 5 

Disk 4 

Disk 3 

Disk 2 

Disk 1 

Linked list per partition 



Reader 
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•  100 MBps/disk * 8 disks = 800 MBps 
•  No computation, entirely I/O and memory 

operations 
– Expect most time spent in iowait 
– 8 reader workers, one per input disk 

 All reader workers co-scheduled on a single core 

Reader Node 
Distributor Sender 

Receiver L.D. 
Distributor Coalescer Writer 



NodeDistributor 
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•  Appends tuples onto a buffer per 
destination node 

•  Memory scan + hash per tuple 
•  300 MBps per worker 

– Need three workers to keep up with readers 

Reader Node 
Distributor Sender 

Receiver L.D. 
Distributor Coalescer Writer 



Sender & 
Receiver 
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•  800 MBps (from Reader) is 6.4 Gbps 
– All-to-all traffic 

•  Must keep downstream disks busy 
– Don’t let receive buffer get empty 
–  Implies strict socket send time bound 

•  Multiplex all senders on one core  
(single-threaded tight loop) 
– Visit every socket every 20 µs 
– Didn’t need epoll()/select() 

Reader Node 
Distributor Sender 

Receiver L.D. 
Distributor Coalescer Writer 



Balancing at Scale 
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Reader Node 
Distributor Sender 

Receiver L.D. 
Distributor Coalescer Writer 



Logical Disk 
Distributor 
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•  Data non-uniform and bursty at  
short timescales 
– Big buffers + burstiness = head-of-line blocking 
– Need to use all your memory all the time 

•  Solution: Read incoming data into smallest 
buffer possible, and form chains 

Reader Node 
Distributor Sender 

Receiver L.D. 
Distributor Coalescer Writer 



Coalescer & 
Writer 

21 

•  Copies tuples from LDBuffer chains into a 
single, sequential block of memory 

•  Longer chains = larger write before seeking  
= faster writes 
– Also, more memory needed for LDBuffers 

•  Buffer size limits maximum chain length 
– How big should this buffer be?  

Reader Node 
Distributor Sender 

Receiver L.D. 
Distributor Coalescer Writer 



Writer 
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Reader Node 
Distributor Sender 

Receiver L.D. 
Distributor Coalescer Writer 



Architecture Phase Two 

23 

Reader Sorter Writer 

Input Disks Output Disks 



Sort Benchmark Challenge 

•  Started in 1980s by Jim Gray, now run by 
a committee of volunteers 

•  Annual competition with many categories 
– GraySort: Sort 100 TB 

•  “Indy” variant 
– 10 byte key, 90 byte value 
– Uniform key distribution 
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How balanced are we? 
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Worker Type Workers Total Throughput 
(MBps) 

% Over  
Bottleneck 

Stage 

Reader 8 683 13% 
Node-Distributor 3 932 55% 
LD-Distributor 1 683 13% 
Coalescer 8 18,593 30,000% 
Writer 8 601 0% 
Reader 8 740 3.2% 
Sorter 4 1089 52% 
Writer 8 717 0% 



How balanced are we? 
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Phase 
Resource Utilization 

CPU Memory Network Disk 
Phase 

One 
25% 100% 50% 82% 

Phase 
Two 

50% 100% 0% 100% 



Scalability 
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Raw 100TB “Indy” Performance 
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Impact of Faster Disks  
•  7.2K RPM  15K RPM drives 
•  Smaller capacity means fewer LDs 
•  Examined effect of disk speed and # LDs 
•  Removing a bottleneck moves the bottleneck 

somewhere else 
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Intermediate 
Disk Speed 

(RPM) 

Logical Disks 
Per Physical 

Disk 

Phase One 
Throughput 

(MBps) 

Phase One 
Bottleneck 

Stage 

Average Write 
Size (MB) 

7200 315 69.81 Writer 12.6 
7200 158 77.89 Writer 14.0 

15000 158 79.73 LD Distributor 5.02 



Impact of Increased RAM 
•  Hypothesis that memory influences chain length, 

and thus write speed 
•  Doubling memory indeed increases chain length, 

but the effect on performance was minimal 
•  Increasing a non-bottleneck resource made it 

faster, but not by much 
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RAM Per Node  
(GB) 

Phase One Throughput 
(MBps) 

Average Write Size 
(MB) 

24 73.53 12.43 
48 76.43 19.21 



Future Work 
•  Generalization 

– We have a fast MapReduce implementation 
– Considering other applications and  

programming paradigms 
•  Automatic Tuning 

– Determine appropriate buffer size & count, # 
workers per stage for reasonable performance 
•  Different hardware 
•  Different workloads 
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TritonSort – Questions? 
•  Proof-of-concept 

balanced sorting system 
•  6x improvement in per-

node efficiency vs.  
previous record holder 

•  Current top speed:  
938 GB per minute 

•  Future Work: 
Generalization, 
Automation 
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http://tritonsort.eng.ucsd.edu/ 


