
Airavat: Security and Privacy for MapReduce

Indrajit Roy Srinath T.V. Setty Ann Kilzer Vitaly Shmatikov Emmett Witchel

The University of Texas at Austin

{indrajit, srinath, akilzer, shmat, witchel}@cs.utexas.edu

Abstract

We present Airavat, a MapReduce-based system which

provides strong security and privacy guarantees for dis-

tributed computations on sensitive data. Airavat is a

novel integration of mandatory access control and differ-

ential privacy. Data providers control the security policy

for their sensitive data, including a mathematical bound

on potential privacy violations. Users without security

expertise can perform computations on the data, but Aira-

vat confines these computations, preventing information

leakage beyond the data provider’s policy.

Our prototype implementation demonstrates the flexi-

bility of Airavat on several case studies. The prototype is

efficient, with run times on Amazon’s cloud computing

infrastructure within 32% of a MapReduce system with

no security.

1 Introduction

Cloud computing involves large-scale, distributed com-

putations on data from multiple sources. The promise of

cloud computing is based in part on its envisioned ubiq-

uity: Internet users will contribute their individual data

and obtain useful services from the cloud. For example,

targeted advertisements can be created by mining a user’s

clickstream, while health-care applications of the future

may use an individual’s DNA sequence to tailor drugs

and personalized medical treatments. Cloud computing

will fulfill this vision only if it supports flexible compu-

tations while guaranteeing security and privacy for the in-

put data. To balance the competing goals of a permissive

programming model and the need to prevent information

leaks, the untrusted code should be confined [30].

Contributors of data to cloud-based computations face

several threats to their privacy. For example, consider a

medical patient who is deciding whether to participate in

a large health-care study. First, she may be concerned

that a careless or malicious application operating on her

data as part of the study may expose it—for instance, by

writing it into a world-readable file which will then be

indexed by a search engine. Second, she may be con-

cerned that even if all computations are done correctly

and securely, the result itself, e.g., aggregate health-care

statistics computed as part of the study, may leak sensi-

tive information about her personal medical record.

Traditional approaches to data privacy are based on

syntactic anonymization, i.e., removal of “personally

identifiable information” such as names, addresses, and

Social Security numbers. Unfortunately, anonymiza-

tion does not provide meaningful privacy guarantees.

High-visibility privacy fiascoes recently resulted from

public releases of anonymized individual data, includ-

ing AOL search logs [22] and the movie-rating records

of Netflix subscribers [41]. The datasets in question

were released to support legitimate data-mining and

collaborative-filtering research, but naı̈ve anonymization

was easy to reverse in many cases. These events motivate

a new approach to protecting data privacy.

One of the challenges of bringing security to cloud

computing is that users and developers want to spend as

little mental effort and system resources on security as

possible. Completely novel APIs, even if secure, are un-

likely to gain wide acceptance. Therefore, a key research

question is how to design a practical system that (1) en-

ables efficient distributed computations, (2) supports a

familiar programming model, and (3) provides precise,

rigorous privacy and security guarantees to data owners,

even when the code performing the computation is un-

trusted. In this paper, we aim to answer this question.

Mandatory access control (MAC) is a useful building

block for securing distributed computations. MAC-based

operating systems, both traditional [26, 33, 37] and recent

variants based on decentralized information flow con-

trol [45, 49, 51], enforce a single access control policy

for the entire system. This policy, which cannot be over-

ridden by users, prevents information leakage via storage

channels such as files, sockets, and program names.

Access control alone does not achieve end-to-end pri-

vacy in cloud computing environments, where the input

data may originate from multiple sources. The output

of the computation may leak sensitive information about

the inputs. Since the output generally depends on all in-

put sources, mandatory access control requires that only

someone who has access rights to all inputs should have

access rights to the output; enforcing this requirement

would render the output unusable for most purposes. To

be useful, the output of an aggregate computation must

be “declassified,” but only when it is safe to do so, i.e.,

when it does not reveal too much information about any

single input. Existing access control mechanisms simply

delegate this declassification decision to the implementor.

In the case of untrusted code, there is no guarantee that

the output of the computation does not reveal sensitive

1

information about the inputs.

In this paper, we present Airavat,1 a system for dis-

tributed computations which provides end-to-end confi-

dentiality, integrity, and privacy guarantees using a com-

bination of mandatory access control and differential pri-

vacy. Airavat is based on the popular MapReduce frame-

work, thus its interface and programming model are al-

ready familiar to developers. Differential privacy is a new

methodology for ensuring that the output of aggregate

computations does not violate the privacy of individual

inputs [11]. It provides a mathematically rigorous basis

for declassifying data in a mandatory access control sys-

tem. Differential privacy mechanisms add some random

noise to the output of a computation, usually with only a

minor impact on the computation’s accuracy.

Our contributions. We describe the design and imple-

mentation of Airavat. Airavat enables the execution of

trusted and untrusted MapReduce computations on sen-

sitive data, while assuring comprehensive enforcement

of data providers’ privacy policies. To prevent infor-

mation leaks through system resources, Airavat runs on

SELinux [37] and adds SELinux-like mandatory access

control to the MapReduce distributed file system. To pre-

vent leaks through the output of the computation, Aira-

vat enforces differential privacy using modifications to

the Java Virtual Machine and the MapReduce framework.

Access control and differential privacy are synergistic: if

a MapReduce computation is differentially private, the

security level of its result can be safely reduced.

To show the practicality of Airavat, we carry out sev-

eral substantial case studies. These focus on privacy-

preserving data-mining and data-analysis algorithms,

such as clustering and classification. The Airavat proto-

type for these experiments is based on the Hadoop frame-

work [2], executing in Amazon’s EC2 compute cloud en-

vironment. In our experiments, Airavat produced accu-

rate, yet privacy-preserving answers with runtimes within

32% of conventional MapReduce.

Airavat provides a practical basis for secure, privacy-

preserving, large-scale, distributed computations. Poten-

tial applications include a wide variety of cloud-based

computing services with provable privacy guarantees, in-

cluding genomic analysis, outsourced data mining, and

clickstream-based advertising.

2 System overview

Airavat enables the execution of potentially untrusted

data-mining and data-analysis code on sensitive data. Its

objective is to accurately compute general or aggregate

features of the input dataset without leaking information

about specific data items.

1The all-powerful king elephant in Indian mythology, known as the

elephant of the clouds.

Figure 1: High-level architecture of Airavat.

As a motivating scenario, consider an online retailer,

BigShop, which holds a large database of customer trans-

actions. For now, assume that all records in the database

have the form 〈customer, order, date〉, with only one

record per customer. A machine learning expert, Bob,

pays BigShop to mine the data for certain transaction pat-

terns. BigShop loads the data into the Hadoop framework

and Bob writes the MapReduce code to analyze it.

Such computations are commonly used for targeted ad-

vertising and customer relationship management, but we

will keep the example simple for clarity and assume that

Bob wants to find the total number of orders placed on a

particular date D. He writes a mapper that looks at each

record and emits the key/value pair 〈K, order〉 if the date

on the record is D. Here, K is a string constant. The

reducer simply sums up the values associated with each

key K and outputs the result.

The main risk for BigShop in this scenario is the fact

that Bob’s code is untrusted and can therefore be uninten-

tionally buggy or even actively malicious. Because Bob’s

mapper has direct access to BigShop’s proprietary trans-

action records, it can store parts of these data in a file

which will be later accessed by Bob, or it can send them

over the network. Such a leak would put BigShop at a

commercial disadvantage and may also present a serious

reputational risk if individual BigShop transactions were

made public without the consent of the customer.

The output of the computation may also leak informa-

tion. For example, Bob’s mapper may signal the presence

(or absence) of a certain customer in the input dataset by

manipulating the order count for a particular day: if the

record of this customer is in the dataset, the mapper out-

puts an order count of 1 million; otherwise, it outputs

zero. Clearly, the result of the computation in this case

violates the privacy of the customer in question.

2.1 Architecture of Airavat

The three main entities in our model are (1) the data

provider (BigShop, in our motivating example), (2) the

computation provider (Bob, sometimes referred to as a

user making a query), and (3) the computation frame-

2

work (Airavat). We aim to prevent malicious computa-

tion providers from violating the privacy policy of the

data provider(s) by leaking information about individual

data items.

Computation providers write their code in the famil-

iar MapReduce paradigm, while data providers specify

the parameters of their privacy policies. We relieve data

providers of the need to audit computation providers’

code for privacy compliance.

Figure 1 gives an overview of the Airavat architec-

ture. Airavat consists of modifications to the MapRe-

duce framework, the distributed file system, and the Java

virtual machine with SELinux as the underlying operat-

ing system. Airavat uses SELinux’s mandatory access

control to ensure that untrusted code does not leak in-

formation via system resources, including network con-

nections, pipes, or other storage channels such as names

of running processes. To prevent information leakage

through the output of the computation, Airavat relies on

a differential privacy mechanism [11].

Data providers put access control labels on their data

and upload them to Airavat. Airavat ensures that the re-

sult of a computation is labeled with the union of all input

labels. A data provider, D, can set the declassify flag (DF

in Table 1) to true if he wants Airavat to remove his label

from the output when it is safe to do so. If the flag is set,

Airavat removes D’s label if and only if the computation

is differentially private. Data providers must also create

a privacy policy by setting the value of several privacy

parameters (explained in Section 4).

The computation provider must write his code in the

Airavat programming model, which is close to standard

MapReduce. The sensitivity of the function being com-

puted determines the amount of perturbation that will be

applied to the output to ensure differential privacy (§ 4).

Therefore, in Airavat the computation provider must sup-

ply an upper bound on the sensitivity of his computa-

tion by specifying the range of possible values that his

mapper code may output. Airavat then ensures that the

code never outputs values outside the declared range and

perturbs those within the range so as to ensure privacy

(§ 5.1). If malicious or incorrect code tries to output a

value outside its declared range, the enforcement mecha-

nism guarantees that no privacy breach will occur, but the

results of the computation may no longer be accurate.

Apart from specifying the parameters mentioned

above, neither the data provider, nor the computation

provider needs to understand the intricacies of differen-

tial privacy and its enforcement.

2.2 Trusted computing base of Airavat

Airavat trusts the cloud provider and the cloud-

computing infrastructure. It assumes that SELinux cor-

rectly implements MAC and relies on the MAC features

Participant Input

Data provider

Labeled data (DB)

Declassify flag (DF)

Privacy parameters (ǫ, δ)

Privacy budget (PB)

Code to determine privacy groups* (PG)

Computation provider

Mapper range (Mmin,Mmax)

(user making a query)

Independent mapper code (Map)

Number of outputs (N)

Code to determine partitions* (PC)

Map of partition to output* (PM)

Max keys output for any privacy group*

(n)

Airavat

Trusted reducer code (Red)

Modified MapReduce (MMR)

Modified distributed file system (MDFS)

SELinux policy (SE)

Table 1: Parameters and components provided by different par-

ticipants. Optional parameters are starred.

added to the MapReduce distributed file system, as well

as on the (modified) Java virtual machine to enforce cer-

tain properties of the untrusted mapper code (see Sec-

tion 5.3). Airavat includes trusted implementations of

several reducer functions.

We assume that the adversary is a malicious computa-

tion provider who has full control over the mapper code

supplied to Airavat. The adversary may attempt to ac-

cess the input, intermediate, and output files created by

this code, or to reconstruct the values of individual inputs

from the result of the computation.

2.3 Limitations of Airavat

Airavat cannot confine every computation performed by

untrusted code. For example, a MapReduce computa-

tion may output key/value pairs. Keys are text strings

that provide a storage channel for malicious mappers. In

general, Airavat cannot guarantee privacy for computa-

tions which output keys produced by untrusted mappers.

In many cases, privacy can be achieved by requiring the

computation provider to declare the key in advance and

then using Airavat to compute the corresponding value in

a differentially private way.

MapReduce computations that necessarily output keys

require trusted mappers. For example, printing the top

K items sold in a store involves printing item names.

Because a malicious mapper can use a name to encode

information about individual inputs, this computation re-

quires trusted mappers. By contrast, the number of iPods

sold can be calculated using an untrusted mapper because

the key (“iPod” in this case) is known prior to the answer

being released. (See Section 5 for details.)

3 MapReduce and MAC

Table 1 lists the components of the system contributed by

the data provider(s), computation provider(s), and Aira-

vat. The following discussion explains entries in the table

3

in the context of MapReduce computations, mandatory

access control, or differential privacy. We place a bold

label in the text to indicate that the discussion is about a

particular row in the table.

3.1 MapReduce

MapReduce [9] is a framework for performing data-

intensive computations in parallel on commodity com-

puters. A MapReduce computation reads input files from

a distributed file system which splits the file into multi-

ple chunks. Each chunk is assigned to a mapper which

reads the data, performs some computation, and outputs

a list of key/value pairs. In the next phase, reducers com-

bine the values belonging to each distinct key according

to some function and write the result into an output file.

The framework ensures fault-tolerant execution of map-

pers and reducers while scheduling them in parallel on

any machine (node) in the system. In MapReduce, com-

biners are an optional processing stage before the reduce

phase. They are a performance optimization, so for sim-

plicity, we defer them to future work. Airavat secures the

execution of untrusted mappers (Map) using a MAC OS

(SE), as well as modifications to the MapReduce frame-

work (MMR) and distributed file system (MDFS).

3.2 Mandatory access control

Mandatory access control (MAC) assigns security at-

tributes to system resources and uses these attributes

to constrain the interaction of subjects (e.g., processes)

with objects (e.g., files). In contrast to discretionary ac-

cess control (e.g., UNIX permissions), MAC systems (1)

check permissions on every operation and transitively en-

force access restrictions (e.g., processes that access se-

cret data cannot write non-secret files) and (2) enforce

access rules specified by the system administrator at all

times, without user override. MAC systems include

mainstream implementations such as SELinux [37] and

AppArmor [1] which appear in Linux distributions, as

well as research prototypes [45, 49, 51] which imple-

ment a MAC security model called decentralized infor-

mation flow control (DIFC). Our current implementation

uses SELinux because it is a mature system that provides

sufficient functionality to enforce Airavat’s security poli-

cies.

SELinux divides subjects and objects into groups

called domains or types. The domain is part of the se-

curity attribute of system resources. A domain can be

thought of as a sandbox which constrains the permissions

of the process. For example, the system administrator

may specify that a given domain can only access files be-

longing to certain domains. In SELinux, one can specify

rules that govern transition from one domain to another.

Generally, a transition occurs by executing a program de-

clared as the entry point for a domain.

In SELinux, users are assigned roles. A role governs

the permissions granted to the user by determining which

domains he can access. For example, the system admin-

istrator role (sysadm r) has permissions to access the

ifconfig t domain and can perform operations on the

network interface. In SELinux, access decisions are de-

clared in a policy file which is customized and config-

ured by the system administrator. The Airavat-specific

SELinux policy to enforce mandatory access control and

declassification (SE, DF) is described in Section 6.

4 Differential privacy

The objective of Airavat is to enable large-scale compu-

tation on data items that originate from different sources

and belong to different owners. The fundamental ques-

tion of what it means for a computation to preserve the

privacy of its inputs has been the subject of much research

(see Section 9).

Airavat uses the recently developed framework of dif-

ferential privacy [11, 12, 13, 14] to answer this question.

Intuitively, a computation on a set of inputs is differen-

tially private if, for any possible input item, the proba-

bility that the computation produces a given output does

not depend much on whether this item is included in the

input dataset or not. Formally, a computation F satisfies

(ǫ, δ)-differential privacy [15] (where ǫ and δ are privacy

parameters) if, for all datasets D and D′ whose only dif-

ference is a single item which is present in D but not D′,

and for all outputs S ⊆ Range(F),

Pr[F(D) ∈ S] ≤ exp(ǫ) × Pr[F(D′) ∈ S] + δ

Another intuitive way to understand this definition is as

follows. Given the output of the computation, one cannot

tell if any specific data item was used as part of the input

because the probability of producing this output would

have been the same even without that item. Not being

able to tell whether the item was used at all in the com-

putation precludes learning any useful information about

it from the computation’s output alone.

The computation F must be randomized to achieve

privacy (probability in the above definition is taken over

the randomness of F). Deterministic computations are

made privacy-preserving by adding random noise to their

outputs. The privacy parameter ǫ controls the tradeoff be-

tween the accuracy of the output and the probability that

it leaks information about any individual input.

The purpose of the δ parameter is to relax the multi-

plicative definition of privacy for certain kinds of com-

putation. Consider TOPWORDS, which calculates the fre-

quency of words in a corpus and outputs the top 10 words.

Let D and D′ be two large corpora; the only differ-

ence is that D contains a single instance of the word

“sesquipedalophobia,” while D′ does not. The proba-

bility that TOPWORDS outputs “sesquipedalophobia” is

very small on input D and zero on input D′. The mul-

4

tiplicative bound on the ratio between these probabilities

required by differential privacy cannot be achieved (since

one of the probabilities is zero), but the absolute differ-

ence is very small. The purpose of δ in the definition is

to allow a small absolute difference in probabilities. In

many of the computations considered in this paper, this

situation does not arise and δ can be safely set to 0.

In Section 9, we discuss why differential privacy is the

“right” concept of privacy for cloud computing. The most

important feature of differential privacy is that it does not

make any assumptions about the adversary. When satis-

fied, it holds regardless of the auxiliary or prior knowl-

edge that the adversary may possess. Furthermore, dif-

ferential privacy is composable: a composition of two

differentially private computations is also differentially

private (of course, ǫ and δ may increase).

There are many mechanisms for achieving differential

privacy [5, 14, 17, 40]. In this paper, we will use the

mechanism that adds Laplacian noise to the output of a

computation f : D → Rk:

f(x) + (Lap(∆f/ǫ))k

where Lap(∆f/ǫ) is a symmetric exponential distribu-

tion with standard deviation
√

2∆f/ǫ.

Privacy groups. To provide privacy guarantees which

are meaningful to users, it is sometimes important to

consider input datasets that differ not just on a single

record, but on a group of records (PG). For example,

when searching for a string within a set of documents,

each input might be a line from a document, but the pri-

vacy guarantee should apply to whole documents. Differ-

ential privacy extends to privacy groups via composabil-

ity: the effect of n input items on the output is at most n
times the effect of a single item.

4.1 Function sensitivity

A function’s sensitivity measures the maximum change

in the function’s output when any single item is removed

from or added to its input dataset. Intuitively, the more

sensitive a function, the more information it leaks about

the presence or absence of a particular input. Therefore,

more sensitive functions require the addition of more ran-

dom noise to their output to achieve differential privacy.

Formally, the sensitivity of a function f : D → Rk is

∆(f) = max
D,D′

‖f(D) − f(D′)‖1

for any D,D′ that are identical except for a single ele-

ment, which is present in D, but not in D′. In this paper,

we will be primarily interested in functions that produce

a single output, i.e., k = 1.

Many common functions have low sensitivity. For ex-

ample, a function that counts the number of elements sat-

isfying a certain predicate has sensitivity 1 (because the

count can change by at most 1 when any single element is

removed from the dataset). The sensitivity of a function

that sums up integers from a bounded range is the max-

imum value in that range. Malicious functions that aim

to leak information about an individual input or signal its

presence in the input dataset are likely to be sensitive be-

cause their output must necessarily differentiate between

the datasets in which this input is present and those in

which it is not present.

In general, estimating the sensitivity of arbitrary un-

trusted code is difficult. Therefore, we require the com-

putation provider to furnish the range of possible outputs

for his mappers and use this range to derive estimated

sensitivity. Estimated sensitivity is then used to add suf-

ficient random noise to the output and guarantee privacy

regardless of what the untrusted code does. If the code

is malicious and attempts to output values outside its de-

clared range, the enforcement mechanism will chose a

value within the range. The computation still guarantees

privacy, but the results may no longer be accurate (§ 5.1).

Sensitivity of SUM. Consider a use of SUM that takes

as input 100 integers and returns their sum. If we know in

advance that the inputs are all 0 or 1, then the sensitivity

of SUM is low because the result varies at most by 1 de-

pending on the presence of any given input. Only a little

noise needs to be added to the sum to achieve privacy.

In general, the sensitivity of SUM is determined by the

largest possible input. In this example, if one input could

be as big as 1,000 and the rest are all 0 or 1, the proba-

bility of outputting any given sum should be almost the

same with or without 1,000. Even if all actual inputs are

0 or 1, a lot of noise must be added to the output of SUM

in order to hide whether 1,000 was among the inputs.

Differential privacy works best for low-sensitivity

computations, where the maximum influence any given

input can have on the output of the computation is low.

4.2 Privacy budget

Data providers may want an absolute privacy guarantee

that holds regardless of the number and nature of compu-

tations carried out on the data. Unfortunately, an abso-

lute privacy guarantee cannot be achieved for meaningful

definitions of privacy. A fundamental result by Dinur and

Nissim [10] shows that the entire dataset can be decoded

with a linear (in the size of the dataset) number of queries.

This is a serious, but inevitable, limitation. Existing pri-

vacy mechanisms which are not based on differential pri-

vacy either severely limit the utility of the data, or are

only secure against very restricted adversaries (see [13]

and Section 9).

The composability of differential privacy and the need

to restrict the number of queries naturally give rise to the

concept of a “privacy budget” (PB) [17, 38]. Each differ-

entially private computation with a privacy parameter of ǫ

5

results in subtracting ǫ from this budget. Once the privacy

budget is exhausted, results can no longer be automati-

cally declassified. The need to pre-specify a limit on how

much computation can be done over a given dataset con-

strains some usage scenarios. We emphasize that there

are no definitions of privacy that are robust, composable,

and achievable in practice without such a limit.

After the privacy budget has been exhausted, Airavat

still provides useful functionality. While the output can

no longer be automatically declassified without risking

a privacy violation, Airavat still enforces access control

restrictions on the untrusted code and associates proper

access control labels with the output. In this case, out-

puts are no longer public and privacy protection is based

solely on mandatory access control.

5 Enforcing differential privacy

Airavat supports both trusted and untrusted mappers. Be-

cause reducers are responsible for enforcing privacy, they

must be trusted. The computation provider selects a re-

ducer from a small set included in the system.

The outputs of mappers and reducers are lists of key/-

value pairs. An untrusted, potentially malicious mapper

may try to leak information about an individual input by

encoding it in (1) the values it outputs, (2) the keys it out-

puts, (3) the order in which it outputs key/value pairs, or

(4) relationships between output values of different keys.

MapReduce keys are arbitrary strings. Airavat cannot

determine whether a key encodes sensitive information.

The mere presence of a particular key in the output may

signal information about an individual input. Therefore,

Airavat never outputs any keys produced by untrusted

mappers. Instead, the computation provider submits a

key or list of keys as part of the query and Airavat returns

(noisy) values associated with these keys. As explained

below, Airavat always returns a value for every key in

the query, even if none of the mappers produced this key.

This prevents untrusted mappers from signaling informa-

tion by adding or removing keys from their output.

For example, Airavat can be used to compute the noisy

answer to the query “What is the total number of iPods

and pens sold today?” (see the example in Section 5.4)

because the two keys iPod and pen are declared as

part of the computation. The query “List all items and

their sales” is not allowed in Airavat, unless the mapper

trusted. The reason is that a malicious mapper can leak

information by encoding it in item names.

Trusted Airavat reducers always sort keys prior to out-

putting them. Therefore, a malicious mapper cannot use

key order as a channel to leak information about a partic-

ular input record.

A malicious mapper may attempt to encode informa-

tion by emitting a certain combination of values associ-

ated with different keys. As explained below, trusted re-

ducers use the declared output range of mappers to add

sufficient noise to ensure differential privacy for the out-

puts. In particular, a combination C of output values

across multiple keys does not leak information about any

given input record r because the probability of Airavat

producing C is approximately the same with or without r
in the input dataset.

In the rest of this section, we explain how Airavat en-

forces differential privacy for computations involving un-

trusted mappers. We use BigShop from Section 2 as our

running example. We also briefly describe a broader class

of differentially private computations which can be im-

plemented using trusted mappers.

5.1 Range declarations and estimated sensitivity

Airavat reducers enforce differential privacy by adding

exponentially distributed noise to the output of the com-

putation. The sensitivity of the computation determines

the amount of noise: the noise must be sufficient to mask

the maximum influence that any single input record can

have on the output (§ 4.1).

In the case of untrusted mappers, the function(s)

they compute and their sensitivity are unknown. To

help Airavat estimate sensitivity, we require the com-

putation provider to declare the range of output values

(Mmin,Mmax) that his mapper can produce. Airavat

combines this range with the sensitivity of the function

implemented by the trusted reducer (Red) into estimated

sensitivity. For example, estimated sensitivity of the SUM

reducer is max(|Mmax|, |Mmin|), because any single in-

put can change the output by at most this amount.

The declared mapper range can be greater or smaller

than the true global sensitivity of the function computed

by the mapper. While global sensitivity measures the

output difference between any two inputs that differ in

at most one element (§ 4.1), the mapper range captures

the difference between any two inputs. That said, the

computation provider may assume that all inputs for the

current computation lie in a certain subset of the func-

tion’s domain, so the declared range may be lower than

the global sensitivity. In our clustering case study (§ 8.4),

such an assumption allows us to obtain accurate results

even though global sensitivity of clustering is very high

(on “bad” input datasets, a single point can significantly

change the output of the clustering algorithms).

The random noise added by Airavat to the output

of MapReduce computations is a function of the data

provider’s privacy parameter ǫ and the estimated sen-

sitivity. For example, Airavat’s SUM reducer adds

noise from the Laplace distribution, Lap(b
ǫ
), where b =

max(|Mmax|, |Mmin|).
Example. In the BigShop example, Bob writes his own

mapper and uses the SUM reducer to compute the total

number of orders placed on date D. Assuming that a cus-

6

tomer can order at most 25 items on any single day, Bob

declares his mapper range as (0, 25). The estimated sen-

sitivity is 25 because the presence or absence of a record

can affect the order total by at most 25.

Privacy groups. In the BigShop example, we may

want to provide privacy guarantees at the level of cus-

tomers rather than records (a single customer may have

multiple records). Airavat supports privacy groups (§ 4),

which are collections of records that are jointly present

or absent in the dataset. The data provider supplies a pro-

gram (PG) that takes a record as input and emits the cor-

responding group identifier, gid. Airavat attaches these

identifiers to key/value pairs to track the dispersal of in-

formation from each input privacy group through inter-

mediate keys to the output. The mapper range declared

by the computation provider is interpreted at the group

level. For example, suppose that each BigShop record

represents a purchase, a customer can make at most 10

purchases a day, and each purchase contains at most 25
orders. If all orders of a single customer are viewed as a

privacy group, then the mapper range is (0, 250).

5.2 Range enforcement

To prevent malicious mappers from leaking information

about inputs through their output values, Airavat asso-

ciates a range enforcer with each mapper. The range en-

forcer checks that the value in each key/value pair output

by the mapper lies within its declared range. This check

guarantees that the actual sensitivity of the computation

performed by the mapper does not exceed the estimated

sensitivity, which is based on the declared range. If a

malicious mapper outputs a value outside the range, the

enforcer replaces it with a value inside the range. In the

latter case, differential privacy holds, but the computation

may no longer produce accurate or meaningful results.

Range enforcement in Airavat prioritizes privacy over

accuracy. If the computation provider declares the range

incorrectly, the computation remains differentially pri-

vate. However, the results are not meaningful and the

provider gets no feedback about the problem, because

any such feedback would be an information leak. The

lack of feedback may seem unsatisfying, but other sys-

tems that tightly regulate information flow make similar

tradeoffs. For example, MAC systems Flume and As-

bestos make pipes (used for interprocess communication)

unreliable and do not give the user any feedback about

their failure because such feedback would leak informa-

tion [29, 49].

Providing a mapper range is simple for some compu-

tations. For example, Netflix movie ratings (§8.3) are al-

ways between 1 and 5. When computing the word count

of a set of documents, however, estimating the mapper

range is more difficult. If each document is at most N
words, and the document is a privacy group, then the

Mapper

Mapper

split 2

split 3

split 4

split 1
Output

Labels

Noise

Gen.

Reducer

Range

Enforcer

Range
Enforcer

Figure 2: Simplified overview of range enforcers and noise

generation. Trusted components are shaded.

0 − N range will guarantee privacy of individual doc-

uments. Depending on the number of documents, such

a large range may result in adding excessive noise. For

some domains, it might not be possible to obtain a rea-

sonable estimate of the mapper’s range. Airavat gives

accurate results only when the computation provider un-

derstands the sensitivity of his computation.

In the BigShop example, the range enforcer ensures

that in every 〈K, V〉 pair output by the mapper, 0 ≤ V ≤
25. Suppose a malicious mapper attempts to leak infor-

mation by outputting 1, 000 when Alice’s record is in the

input dataset and 0 otherwise. Because 1, 000 is outside

the declared range, the range enforcer will replace it with,

say, 12.5. The difference between 0 and 12.5 is less than

the estimated sensitivity. Therefore, enough noise will

be added so that one cannot tell, by looking at the out-

put, whether this output was obtained by adding noise to

12.5 or 0. The noisy output thus does not reveal whether

Alice’s record was present in the input dataset or not.

Distributed range enforcement. A single MapReduce

operation may execute mappers on many different ma-

chines. These mappers may process input elements with

the same key or privacy group. Airavat associates a range

enforcer with each mapper and merges their states at the

end of the map phase. After merging, Airavat ensures that

the values corresponding to each key or privacy group are

within the declared range (see Figure 2).

Example: “noisy sum.” Figure 3 illustrates differen-

tial privacy enforcement with an untrusted mapper and

the SUM reducer. This “noisy sum” primitive was shown

by Blum et al. [6] to be sufficient for privacy-preserving

computation of all algorithms in the statistical query

model [27], including k-Means, Naive Bayes, principal

component analysis, and linear classifiers such as percep-

trons (for a slightly different definition of privacy).

Each input record is its own privacy group. The com-

putation provider supplies the implementation of the ac-

tual mapper function Map, which converts every input

record into a list of key/value pairs.

7

// Inputs and definitions

Data owner: DB, ǫ, δ = 0, PB,

Computation provider: Map, Mmin, Mmax, N

Airavat: SUM (trusted reducer, Red)

b = max(|Mmax|, |Mmin|)
µ = (Mmax − Mmin)/2

// Map phase

if(PB − ǫ ×N < 0){
print ‘‘Privacy limit exceeded’’;

TERMINATE

}
PB = PB − ǫ ×N
For(Record r in DB){

(k0, v0), . . . , (kn, vn) = Map(r)

For(i: 1 to n){
if(vi < Mmin or vi > Mmax) {

vi = µ }
}
emit〈k0, v0〉 . . . 〈kn, vn〉

}

// Reduce phase

count = N

Reduce(Key k, List val){
if(--count ≤ 0) { Skip }
V = SUM(val)

print V + Lap(b

ǫ
)

}
for(i: count to 0) {

print Lap(b

ǫ
) }

Figure 3: Simplified pseudo-code demonstrating differential

privacy enforcement.

5.3 Mapper independence

Airavat forces all invocations of a mapper in a given

MapReduce computation to be independent. Only a sin-

gle input record is allowed to affect the key/value pairs

output by the mapper. The mapper may not store the

key/value pair(s) produced from an input record and use

them later, when computing the key/value pair for an-

other record. Without this restriction, estimated sensitiv-

ity used in privacy enforcement may be lower than the ac-

tual sensitivity of the mapper, resulting in a potential pri-

vacy violation. Mappers can only create additional keys

for the same input record, they cannot merge information

contained in different input records. We ensure mapper

independence by modifying the JVM (§ 7.3).

Each mapper is permitted by the Airavat JVM to ini-

tialize itself once by overriding the configure func-

tion, called when the mapper is instantiated. To ensure

independence, during initialization the mapper may not

read any files written in this MapReduce computation.

5.4 Managing multiple outputs

A MapReduce computation may output more than one

key/value pair (e.g., Figure 3). The computation provider

must specify the number of output keys (N) beforehand;

otherwise, the number of outputs can become a channel

through which a malicious mapper can leak information

about the inputs. If a computation produces more (fewer)

than the declared number of outputs, then Airavat re-

moves (creates) outputs to match the declared value.

Range restrictions are enforced separately for each

(privacy group, key) pair. Therefore, random noise is in-

dependently added to all values associated with the final

output keys. Recall that Airavat never outputs a key pro-

duced by an untrusted mapper. Instead, the computation

provider must specify a key or list of keys as part of the

query, and Airavat will return the noisy values associated

with each key in the query. For such queries, N can be

calculated automatically.

In general, each output represents a separate release

of information about the same input. Therefore, Airavat

must subtract more than one ǫ from the privacy budget

(see Figure 3). If different outputs are based on disjoint

parts of the input, then smaller deductions from the pri-

vacy budget are needed (see below).

Example. Consider the BigShop example, where each

record includes the customer’s name, a list of products,

and the number of items bought for each product (e.g.,

[Joe, iPod, 1, pen, 10]). The privacy group is the cus-

tomer, and each customer may have multiple records.

Bob wants to compute the total number of iPods and pens

sold. Bob must specify that he expects two outputs. If he

specifies the keys for these outputs as part of the query

(e.g., “iPod” and “pen”), then the keys will be printed.

Otherwise, only the values will be printed. Airavat sub-

tracts 2ǫ from the privacy budget for this query.

Bob’s mapper, after reading a record, outputs the prod-

uct name and the number of sold items (e.g., 〈iPod, 1〉,
〈pen, 10〉—note that more than one key/value pair is out-

put for each record). Bob also declares the mapper range

for each key, e.g., (0, 5) for the number of iPods bought

and (0, 25) for the number of pens. Airavat range en-

forcers automatically group the values by customer name

and enforce the declared range for each item count. The

final reducer adds random noise to the total item counts.

Computing on disjoint partitions of the input. When

different outputs depend on disjoint parts of the input, the

MapReduce computation can be decomposed into inde-

pendent, parallel computations on independent datasets,

and smaller deductions from the privacy budget are suffi-

cient to ensure differential privacy. To help Airavat track

and enforce the partitioning of the input, the computation

provider must (1) supply the code (PC) that assigns input

records to disjoint partitions, and (2) specify which of the

8

declared outputs will be based on which partition (PM).

The PC code is executed as part of the initial map-

per. For each key/value pair generated by a mapper, Aira-

vat constructs records of the form 〈key, value, gid, pid〉,
where gid is the privacy group identifier and pid is the

partition identifier.

The computation provider declares which partition

produces which of the N final outputs (PM). Airavat uses

PM to calculate p, the maximum number of final outputs

that depend on any single partition. If PC and PM are

not provided, Airavat sets p to equal N. Airavat charges

ǫ × min(N,p) from the privacy budget. For example,

a computation provider may partition the BigShop data

into two cities Austin and Seattle which act as the

partition identifiers. He then specifies that the MapRe-

duce computation will have 8 outputs, the first five of

which are calculated from the Austin partition and the

next three from the Seattle partition. In this example,

N = 8, p = 5, and to run the computation, Airavat will

subtract 5ǫ from the privacy budget. In Figure 3, ǫ ×N
is charged to the privacy budget because the N outputs

depend on the entire input, not on disjoint partitions.

Airavat enforces the partitioning declared by the com-

putation provider. Trusted Airavat reducers use partition

identifiers to ensure that only key/value pairs that have

the correct pid are combined to generate the output.

Airavat uses PM for computations on disjoint partitions

in the same way as it uses N for unpartitioned data. If the

number of outputs for a partition is less (more) than what

is specified by PM, Airavat adds (deletes) outputs.

5.5 Trusted reducers and reducer composition

Trusted reducers such as SUM and COUNT are executed

directly on the output of the mappers. The computation

provider can combine these reducers with any untrusted

mapper, and Airavat will ensure differential privacy for

the reducer’s output. For example, to calculate the total

number of products sold by BigShop, the mapper will be

responsible for the parsing logic and manipulation of the

data. COUNT is a special case of SUM where the output

range is {0, 1}. MEAN is computed by calculating the

SUM and dividing it by the COUNT.

Reducers can be composed sequentially.

THRESHOLD, K-COUNT, and K-SUM reducers are

most useful when applied to the output of another

reducer. THRESHOLD prints the outputs whose value is

more than C, where C is a parameter. K-COUNT counts

the number of records, and K-SUM sums the values

associated with each record. For example, to count the

number of distinct words occurring in a document, one

can first write a MapReduce computation to group the

words and then apply K-COUNT to calculate the number

of groups. The sensitivity of K-COUNT is equal to the

maximum number of distinct keys that a mapper can

output after processing any input record.

5.6 Enforcing δ

Privacy guarantees associated with the THRESHOLD re-

ducer may have non-zero δ. Intuitively, δ bounds the

probability that the values generated from a given record

will exceed the threshold and appear in the final output.

Assuming that the mapper outputs at most n keys after

processing a single record and the threshold value is C,

δ ≤ n

2
exp

(

ǫ · (1 − C

∆f
)

)

The proof is omitted because of space constraints and ap-

pears in a technical report [46]. When the computation

provider uses the THRESHOLD reducer, Airavat first cal-

culates the value of δ. If it is less than the bound specified

by the data provider, then computation can proceed; oth-

erwise it is aborted.

5.7 Mapper composition

Multiple mappers {M1, . . . ,Mj} can be chained one af-

ter another, followed by a final reducer Rj . Each mapper

after the initial mapper propagates the partition identi-

fier (pid) and privacy group (gid) values from the input

record to output key/value pairs. Airavat enforces the de-

clared range for the output of the final mapper Mj . Noise

is added only once by the final reducer Rj .

To reduce the charge to the privacy budget, the compu-

tation provider can specify the maximum number of keys

n that any mapper can output after reading records from

a single privacy group. If provided, Airavat will enforce

that maximum. If n is not provided, Airavat sets n equal

to N. If a mapper generates more than n key/value pairs,

Airavat will only pass n randomly selected pairs to the

next mapper.

When charging the total cost of a composed computa-

tion to the privacy budget, Airavat uses ǫ×min(N,p,nj)
where j is the number of composed mappers, p is the

maximum number of outputs from any partition (§5.4),

and N is the total number of output keys. If the com-

putation provider supplies the optional arguments, then

N > p > nj results in a more economical use of the

privacy budget.

MapReduce composition not supported. Airavat

supports composition of mappers and composition of re-

ducers, but not general composition of MapReduce com-

putations (i.e., reducer followed by another mapper). For

many reducers, the output of a MapReduce depends on

the inputs in a complex way that Airavat cannot easily

represent, making sensitivity calculations difficult.

In the future, we plan to investigate MapReduce com-

position for reducers that do not combine information as-

sociated with different keys (e.g., those corresponding to

a “select” statement).

9

5.8 Choosing privacy parameters

Providers of sensitive data must supply privacy parame-

ters ǫ and δ, as well as the privacy budget PB , in order for

their data to be used in an Airavat computation. These pa-

rameters are part of the differential privacy model. They

control the tradeoff between accuracy and privacy. It is

not possible to give a generic recommendation for set-

ting their values because they are highly dependent on the

type of the data, the purpose of the computation, privacy

threats that the data provider is concerned about, etc.

As ǫ increases, the amount of noise added to the output

decreases. Therefore, the output becomes more accurate,

but there is a higher chance that it reveals the presence of

a record in the input dataset. In many cases, the accuracy

required determines the minimum ǫ-privacy that can be

guaranteed. For example, in Section 8.5 we classify doc-

uments in a privacy-preserving fashion. Our experiments

show that to achieve 95% accuracy in classification, we

need to set ǫ greater than 0.6.

Intuitively, δ bounds the probability of producing an

output which can occur only as a result of a particular

input (see Section 4). Clearly, such an output immedi-

ately reveals the presence of the input in question. In

many computations—for example, statistical computa-

tions where each input datapoint is a single number—δ
should be set to 0. In our AOL experiment (§8.2), which

outputs the search queries that occur more than a thresh-

old number of times, δ is set to a value close to the num-

ber of unique users. This value of δ bounds the proba-

bility that a single user’s privacy is breached due to the

release of his search query.

The privacy budget (PB) is finite. If data providers

specify a single privacy budget for all computation

providers, then one provider can exhaust more than its

fair share. Data providers could specify privacy budgets

for each computation provider to ensure fairness. Man-

aging privacy budgets is an administrative issue inherent

to all differential privacy mechanisms and orthogonal to

the design of Airavat.

5.9 Computing with trusted mappers

While basic differential privacy only applies to computa-

tions that produce numeric outputs, it can be generalized

to discrete domains (e.g., discrete categories or strings)

using the exponential mechanism of McSherry and Tal-

war [40]. In general, this requires both mappers and re-

ducers to be trusted, because keys are an essential part

of the system’s output. Our prototype includes an im-

plementation of this mechanism for simple cases, but we

omit the definition and discussion for brevity.

As a case study, one of the authors of this paper ported

CloudBurst, a genome mapping algorithm written for

MapReduce [47], to Airavat. The CloudBurst code con-

tains two mappers and two reducers (3,500 lines total,

including library routines). The mappers are not indepen-

dent and the reducers perform non-trivial computation.

The entire system was ported in a week. If a reducer

was non-trivial, it was replaced by an identity reducer

and its functionality was executed as the second mapper

stage. This transformation was largely syntactic. Some

work was required to make the mappers independent, and

about 50 lines of code had to be added for differential pri-

vacy enforcement.

6 Enforcing mandatory access control

This section describes how Airavat confines MapRe-

duce computations, preventing information leaks via sys-

tem resources by using mandatory access control mecha-

nisms. Airavat uses SELinux to execute untrusted code in

a sandbox-like environment and to ensure that local and

HDFS files are safeguarded from malicious users. While

decentralized information flow control (DIFC) [45, 49,

51] would provide far greater flexibility for access con-

trol policies within Airavat, only prototype DIFC oper-

ating systems exist. By contrast, SELinux is a broadly

deployed, mature system.

6.1 SELinux policy

Airavat’s SELinux policy creates two domains, one

trusted and the other untrusted. The trusted components

of Airavat, such as the MapReduce framework and DFS,

execute inside the trusted domain. These processes can

read and write trusted files and connect to the network.

Untrusted components, such as the user-provided map-

per, execute in the untrusted domain and have very lim-

ited permissions.

Table 2 shows the different domains and how they

are used. The airavatT t type is a trusted domain

used by the MapReduce framework and the distributed

file system. Airavat labels executables that launch the

framework and file system with the airavatT exec t

type so the process executes in the trusted domain. This

trusted domain reads and writes only trusted files (la-

beled with airavatT rw t). No other domain is al-

lowed to read or write these files. For example, the dis-

tributed file system stores blocks of data in the underlying

file system and labels files containing those blocks with

airavatT rw t.

In certain cases Airavat requires the trusted domain

to create configuration files that can later be read by

untrusted processes for initialization. Airavat uses the

airavatT notsec t domain to label configuration

files which do not contain any secrets but whose integrity

is guaranteed. Since MapReduce requires network com-

munication for transferring data, our policy allows net-

work access by the trusted domain.

Only privileged users may enter the trusted do-

main. To implement this restriction, Airavat cre-

ates a trusted SELinux user called airavat user.

10

Domain Object labeled Remark

airavatT t Process Trusted domain. Can access airavatT * t and common domains like sockets, networking, etc.

airavatT exec t Executable Used to transition to the airavatT t domain.

airavatT rw t File Used to protect trusted files.

airavatT notsec t File Used to protect configuration files that contain no secrets. Can be read by untrusted code for

initialization.

airavatU t Process Untrusted domain. Can access only airavatT notsec t and can read and write to pipes of the aira-

vatT t domain.

airavatU exec t Executable Used to transition to the airavatU t domain.

airavavat user User type Trusted user who can transition to the airavatT t domain.

Table 2: SELinux domains defined in Airavat and their usage.

Only airavat user can execute files labeled with

airavatT exec t and transition to the trusted do-

main. The system administrator maps a Linux user to

airavat user.

The untrusted domain, airavatU t, has very few

privileges. A process in the untrusted domain can-

not connect to the network, nor read or write files.

There are two exceptions to this rule. First, the un-

trusted domain can read configuration files of the type

airavatT notsec t. Second, it can communicate

with the trusted domain using pipes. All communica-

tion with the mapper happens via these pipes which are

established by the trusted framework. A process can en-

ter the untrusted domain by executing a file of the type

airavatU exec t. In our implementation, the frame-

work transitions to the untrusted domain by executing the

JVM that runs the mapper code.

Each data provider labels its input files (DB) with

a domain specific to that provider. Only the trusted

airavatT t domain can read files from all providers.

The output of a computation is stored in a file la-

beled with the trusted domain airavatT rw t. Data

providers may set their declassify flag if they agree to

declassify the result when Airavat guarantees differen-

tial privacy. If all data providers agree to declassify, then

the trusted domain label is removed from the result when

differential privacy holds. If only a subset of the data

providers agree to declassify, then the result is labeled by

a new domain, restricted to entities that have permission

from all providers who chose to retain their label. Since

creating domains in SELinux is a cumbersome process,

our current prototype only supports full declassification.

DIFC makes this ad hoc sharing among domains easy.

6.2 Timing channels

A malicious mapper may leak data using timing chan-

nels. MapReduce is a batch-oriented programming style

where most programs do not rely on time. The bandwidth

of covert timing channels is reduced by making clocks

noisy and low-resolution [25]. Airavat currently denies

untrusted mappers access to the high-resolution proces-

sor cycle counter (TSC), which is accessed via Java APIs.

A recent timing attack requires the high-definition pro-

cessor counter to create a channel with 0.2 bits per sec-

ond capacity [44]. Without the TSC, the data rate drops

three orders of magnitude.

We are working to eliminate all obvious time-based

APIs from the Airavat JVM for untrusted mappers,

including System.currentTimeMillis. We as-

sume an environment like Amazon’s elastic MapReduce,

where the only interface to the system is the MapRe-

duce programming interface and untrusted mappers are

the only untrusted code on the system. Untrusted map-

pers cannot create files, so they cannot use file metadata

to measure time. Airavat eliminates the API through

which programs are notified about garbage collection

(GC), so untrusted code has only indirect evidence about

GC through the execution of finalizers, weak, soft, and

phantom references (no Java native interface calls are al-

lowed). Channels related to GC are inherently noisy and

are controlled by trusted software whose implementation

can be changed if it is found to leak too much timing in-

formation.

Airavat does not block timing channels caused by

infinite loops (non-termination). Such channels have

low bandwidth, leaking one bit per execution. Cloud

providers send their users billing information (including

execution time) which may be exploited as a timing chan-

nel. Quantizing billing units (e.g., billing in multiples of

$10) and aggregating billing over long time periods (e.g.,

monthly) greatly reduce the data rate of this channel. A

computer system cannot completely close all time-based

channels, but a batch-oriented system like MapReduce

where mappers may not access the network can decrease

the utility of timing channels for the attacker to a point

where another attack vector would appear preferable.

7 Implementation

The Airavat implementation includes modifications to the

Hadoop MapReduce framework and Hadoop file system

(HDFS), a custom JVM for running user-supplied map-

pers, trusted reducers, and an SELinux policy file. In

our prototype, we modified 2, 000 lines of code in the

MapReduce framework, 3, 000 lines in HDFS, and 500
lines of code in the JVM. The SELinux policy is ap-

proximately 450 lines that include the type enforcement

11

rules and interface declarations. This section describes

the changes to the HDFS, implementation details of the

range enforcers, and JVM modifications.

7.1 HDFS modifications

An HDFS cluster consists of a single NameNode server

that manages the file system namespace and a number

of DataNode servers that store file contents. HDFS cur-

rently supports file and directory permissions that are

similar to the discretionary access control of the POSIX

model. Airavat modifies HDFS to support MAC labels,

by placing them in the file inode structure. Inodes are

stored in the NameNode server. Any request for a file op-

eration by a client is validated against the inode label. In

the DataNodes, Airavat adds the HDFS label of the file to

the block information structure.

7.2 Enforcing sensitivity

As described in Section 5.1, each mapper has an associ-

ated range enforcer. The range enforcer determines the

group for each input record and tags the output produced

by the mapper with the gid. In the degenerate case when

each input belongs to a group of its own, each output by

the mapper is given a unique identifier as its gid. The

range enforcer also determines and tags the outputs with

the partition identifier, pid. The default is to tag each

record as belonging to the same partition.

During the reduce phase, each reducer fetches the

sorted key/value pairs produced by the mappers. The re-

ducer then uses the gid tag to group together the output

values. Any value that falls outside the range declared by

the computation provider (Mmin . . . Mmax) is replaced

by a value inside the range. Such a substitution (if it

happens) prioritizes privacy over accuracy (§ 5.1). The

reducer also enforces that only key/value pairs with the

correct pid are combined to generate the final output.

7.3 Ensuring mapper independence

To add the proper amount of noise to ensure differential

privacy, the result of the mapper on each input record

must not depend on any other input record (§ 5.3). A

mapper is stateful if it writes a value to storage during an

invocation and then uses this value in a later invocation.

Airavat ensures that mapper invocations are not stateful

by executing them in an untrusted domain that cannot

write to files or the network. The MAC OS enforces the

limitation that mappers cannot write to system resources.

For memory objects, Airavat adds access checks to two

types of data: objects, which reside on the heap, and stat-

ics, which reside in the global pool. Airavat modifies the

Java virtual machine to enforce these checks. Our proto-

type uses Jikes RVM 3.0.0,2 a Java-in-Java research vir-

tual machine.

2www.jikesrvm.org

Airavat prevents mappers from writing static variables.

This restriction is enforced dynamically by using write

barriers that are inserted whenever a static is accessed.

Airavat modifies the object allocator to add a word to

each object header. This word points to a 64-bit number

called the invocation number (ivn). The Aira-

vat JVM inserts read and write barriers for all objects.

Before each write, the ivn of the object is updated to the

current invocation number (which is maintained by the

trusted framework). Before a read, the JVM checks if the

object’s ivn is less than the current invocation number.

If so, then the mapper is assumed to be stateful and the

JVM throws an exception. After this exception, the cur-

rent map invocation is re-executed and the final output of

the MapReduce operation is not differentially private and

must be protected using MAC (without declassification).

Jikes RVM is not mature enough to run code as large

and complex as the Hadoop framework. We therefore use

Hadoop’s streaming feature to ensure that mappers run on

Jikes and that most of the framework executes on Sun’s

JVM. The streaming utility forks a trusted Jikes process

that loads the mapper using reflection. The Jikes process

then executes the map function for each input provided by

the streaming utility. The streaming utility communicates

with the Jikes process using pipes. This communication

is secured by SELinux.

8 Evaluation

This section empirically makes the case that Airavat can

be used to efficiently compute a wide variety of algo-

rithms in a privacy-preserving manner with acceptable

accuracy loss. Table 3 provides an overview of the

case studies. Our experiments show that computations

in Airavat incur approximately 32% overhead compared

to those running on unmodified Hadoop and Linux. In

all experiments except the one with the AOL queries,

the mappers are untrusted. The AOL experiment outputs

keys, so we trust the mapper not to encode information in

the key.

8.1 Airavat overheads

We ran all experiments on Amazon’s EC2 service on a

cluster of 100 machines. We use the large EC2 instances,

each with two cores of 1.0–1.2 GHz Opteron or Xeon, 7.5

GB memory, 850 GB hard disk, and running SELinux-

enabled Fedora 8. The numbers reported are the average

of 5 runs, and the variance is less than 8%. K-Means

and Naive Bayes use the public implementations from

Apache Mahout.3

Figure 4 breaks down the execution time for each

benchmark. The values are normalized to the execution

time of the applications running on unmodified Hadoop

and unmodified Linux. The graph depicts the percentage

3http://lucene.apache.org/mahout/

12

Benchmark Privacy grouping Reducer primitive #MapReduce computations Accuracy metric

AOL queries Users THRESHOLD,SUM Multiple % Queries released

kNN recommender Individual rating COUNT, SUM Multiple RMSE

k-Means Individual points COUNT, SUM Multiple, till convergence Intra-cluster variance

Naive Bayes Individual articles SUM Multiple Misclassification rate

Table 3: Details of the benchmarks, including the grouping of data, type of reducer used, number of MapReduce phases, and the

accuracy metric.

 AOL Matrix k−Means N−Bayes
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

SELinux Map Sort Reduce Copy

Figure 4: Normalized execution time of benchmarks when

running on Airavat, compared to execution on Hadoop. Lower

is better.

Benchmark JVM

overhead

Total

overhead

Time (sec)

AOL 36.3% 23.9% 228 ±3

Cov. Matrix 43.2% 19.6% 1080 ±6

k-Means 28.5% 29.4% 154 ±7

Naive Bayes 37.4% 32.3% 94 ±2

Table 4: Performance details.

of the total time spent in different phases, such as map,

sort, and reduce. The category Copy represents the phase

where the output data from the mappers is copied by the

reducer. Note that the copy phase generally overlaps with

the map phase. The benchmarks show that Airavat slows

down the computation by less than 33%.

Table 4 measures the performance overhead of enforc-

ing differential privacy. The JVM instrumentation, to en-

sure mapper independence, adds up to 44% overhead in

the map phase.

8.2 Queries on AOL dataset

Recently, Korolova et al. showed how to release search

queries while preserving privacy [28]. They first find the

frequency of each query and then output the noisy count

of those that exceed a certain threshold. Intuitively, the

threshold suppresses uncommon, low-frequency queries,

since such queries are likely to breach privacy.

We demonstrate how Airavat can perform similar com-

putations on the AOL dataset, while ensuring differential

privacy. Airavat does not output non-numeric values if

the mapper is untrusted because non-numeric values can

leak information (§5). The outputs of this experiment

are search queries (which are non-numeric) and their fre-

quencies, so we assume that the mapper is trusted. We

use SUM and THRESHOLD as reducers to generate the

frequency of distinct queries and then output those that

exceed the threshold. The privacy group is the user, and

M is the maximum number of search queries made by

any single user. The mapper range is (0,M). We vary M
in our experiments.

Our experiments use the AOL data for the first week

of April 2006 (253K queries). Since we use the thresh-

old function, Airavat needs a non-zero δ as input. We

chose δ = 10−5 based on the number of unique users for

this week, 24,861. Fixing the value of ǫ and δ also de-

termines the minimum threshold to ensure privacy. The

exact threshold value can be calculated from the formula

in section 5.5: C = M(1 − ln(2δ

M
)

ǫ
).

It is possible that a single user may perform an un-

common search multiple times (e.g., if he searches for

his name or address). Releasing such search queries can

compromise the user’s privacy. The probability of such a

release can be reduced by increasing M and/or setting a

low value of δ. A large value of M implies that the re-

lease threshold C is also large, thus reducing the chance

that an uncommon query will be released.

In our experiments, we show the effect of different

parameters on the number of queries that get published.

First, we vary M , the maximum number of search queries

that belong to any one user. Figure 5(a) shows that as

we increase the value of M , the threshold value also in-

creases, resulting in a smaller number of distinct queries

being released. Second, we vary the privacy parameter ǫ.

As we increase ǫ, i.e., decrease the privacy restrictions,

more queries can be released. Note that fewer than 1%
of total unique queries (109K) are released. The reason

is that most queries are issued very few times and hence

cannot be released without jeopardizing the privacy of

users who issued them.

8.3 Covariance matrices

Covariance matrices find use in many machine-learning

computations. For example, McSherry and Mironov re-

cently showed how to build a recommender system that

preserves individual privacy [39]. The main idea is to

construct a covariance matrix in a privacy-preserving

fashion and then use a recommender algorithm such as

13

0 20 40 60 80
0

20

40

60

80

100

120

M (queries per user)

#
u

n
iq

u
e

 q
u

e
ri
e

s
 r

e
le

a
s
e

d

ε=ln(10)

ε=ln(5)

ε=ln(2)

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Privacy guarantee (ε)

R
M

S
E

kNN

0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50

60

70

80

90

100

Privacy bound (ε)

A
c
c
u

ra
c
y
 (

%
)

k−Means
Naive Bayes

Figure 5: Effect of privacy parameter on the (a) number of released AOL search queries, (b) accuracy in RMSE in kNN recom-

mender system (lower is better) and (c) accuracy in k-Means and Naive Bayes (higher is better).

k-nearest neighbor (kNN) on the matrix.

We picked 1, 000 movies from the Netflix prize dataset

and generated a covariance matrix using Airavat. The

computation protects the privacy of any individual Net-

flix user. We cannot calculate the complete matrix in one

computation using the Airavat primitives. Instead, we fill

the matrix cell by individual cell. The disadvantage of

this approach is that the privacy budget is expended very

quickly. For example, if the matrix has M2 cells, then we

subtract ǫM2 from the privacy budget (equivalently, we

achieve ǫM2-differential privacy).

Because each movie rating is between 1 and 5 and an

entry of the covariance matrix is a product of two such

ratings, the mapper range is (0, 25). Figure 5(b) plots

the root mean squared error (RMSE) of the kNN algo-

rithm when executed on the covariance matrix generated

by Airavat. The x-axis corresponds to the privacy guar-

antee for the complete covariance matrix. Our results

show that with the guarantee of 5-differential privacy, the

RMSE of kNN is approximately 0.97. For comparison,

Netflix’s own algorithm, called Cinematch, has a RMSE

of 0.95 when applied on the complete Netflix dataset.

8.4 Clustering Algorithm: k-Means

The k-Means algorithm clusters input vectors into k par-

titions. The partitioning aims to minimize intra-cluster

variances. We use Lloyd’s iterative heuristic to com-

pute k-Means. The algorithm proceeds in two steps [6].

In the first step, the cardinality of each cluster is calcu-

lated. In the second step, all points in the new cluster are

added up and then divided by the cardinality derived in

the previous step, producing new cluster centers. The in-

put dataset consists of 600 examples of control charts.4

Control charts are used to assess whether a process is

functioning properly. Machine learning techniques are

often applied to such charts to detect anomaly patterns.

Figure 5(c) plots the accuracy of the k-Means algo-

rithm as we change the privacy parameter ǫ. We assume

4http://archive.ics.uci.edu/ml/databases/synthetic control

that each point belongs to a different user whose privacy

must be guaranteed. The mapper range of the computa-

tion that calculates the cluster size is (0, 1). The mapper

range for calculating the actual cluster centers is bounded

by the maximum value of any coordinate over all points,

which is 36 for the current dataset. We measure the ac-

curacy of the algorithm by computing the intra-cluster

variance. With ǫ > 0.5, the accuracy of the clustering

algorithm exceeds 90%.

8.5 Classification algorithm: Naive Bayes

Naive Bayes is a simple probabilistic classifier that ap-

plies the Bayes Theorem with assumptions of strong in-

dependence. During the training phase, the algorithm is

given a set of feature vectors and the class labels to which

they belong. The algorithm creates a model, which is

then used in the classification phase to classify previously

unseen vectors.

Figure 5(c) plots the accuracy against the privacy pa-

rameter ǫ. We used the 20newsgroup dataset,5 which

consists of different articles represented by words that

appear in them. We train the classifier on one partition

of the dataset and test it on another. The value of ǫ af-

fects the noise which is added to the model in the train-

ing phase. We measure the accuracy of the classifier by

looking at the number of misclassified articles. An arti-

cle contributes at most 1, 000 to a category of words, so

the range for mapper outputs is (0, 1000). Our results

show that, for this particular dataset, we require ǫ > 0.6
to achieve 95% accuracy.

9 Related work

Differential privacy guarantees are somewhat similar to

robust or secure statistical estimation, which provides sta-

tistical computations with low sensitivity to any single

input (e.g., see [21, 23, 24]). While robust estimators do

not by themselves guarantee privacy, they can serve as

the basis for differentially private estimators [16].

5http://people.csail.mit.edu/jrennie/20Newsgroups/

14

In its current version, Airavat requires computation

providers to provide an upper bound on the sensitivity

of their code by declaring the range of its possible out-

puts in advance. An alternative is to have the enforce-

ment system estimate local, input-specific sensitivity of

the function computed by the code—either by re-running

it on perturbed inputs, or by sampling from the input

space [43]. Local sensitivity measures how much the out-

put of the function varies on neighboring inputs from a

subset of the function’s domain. It often requires less

noise to be added to the output in order to achieve the

same differential privacy guarantee. We plan to investi-

gate this approach in future work.

PINQ. Privacy Integrated Queries (PINQ) is a declar-

ative system for computing on sensitive data [38] which

ensures differential privacy for the outputs of the com-

putation. Airavat mappers are Java bytecode, with re-

strictions on the programming model enforced at run-

time. Mapper independence is an example of a restriction

enforced by the language runtime which is absent from

PINQ. PINQ provides a restricted programming language

with a small number of trusted, primitive data operations

in the LINQ framework. PINQ employs a request/reply

model, which avoids adding noise to the intermediate re-

sults of the computation by keeping them on a trusted

data server or an abstraction of a trusted data server pro-

vided by a distributed system.

Airavat’s privacy enforcement mechanisms provide

end-to-end guarantees, while PINQ provides language-

level guarantees. Airavat’s enforcement mechanisms in-

clude all software in the MapReduce framework, includ-

ing language runtimes, the distributed file system, and the

operating system. Enforcing privacy throughout the soft-

ware stack allows Airavat computations to be securely

distributed across multiple nodes, achieving the scalabil-

ity that is the hallmark of the MapReduce framework.

While the PINQ API can be supported in a similar set-

ting (e.g., DryadLINQ), PINQ’s security would then de-

pend on the security of Microsoft’s common language

runtime (CLR), the Cosmos distributed file system, the

Dryad framework, and the operating system. Securing

the levels below the language layer would require the

same security guarantees as provided by Airavat.

Alternative definitions of privacy. Differential pri-

vacy is a relative notion: it assures the owner of any

individual data item that the same privacy violations, if

any, will occur whether this item is included in the aggre-

gate computation or not. Therefore, no additional privacy

risk arises from participating in the computation. While

this may seem like a relatively weak guarantee, stronger

properties cannot be achieved without making unjustified

assumptions about the adversary [11, 12]. Superficially

plausible but unachievable definitions include “the adver-

sary does not learn anything about the data that he did not

know before” [8] and “the adversary’s posterior distribu-

tion of possible data values after observing the result of

the computation is close to his prior distribution.”

Secure multi-party computation [20] ensures that a dis-

tributed protocol leaks no more information about the in-

puts than is revealed by the output of the computation.

The goal is to keep the intermediate steps of the com-

putation secret. This technique is not appropriate in our

setting, where the goal is to ensure that the output itself

does not leak too much information about the inputs.

While differential privacy mechanisms often employ

output perturbation (adding random noise to the result of

a computation), several approaches to privacy-preserving

data mining add random noise to inputs instead. Pri-

vacy guarantees are usually average-case and do not im-

ply anything about the privacy of individual inputs. For

example, the algorithm of Agrawal and Srikant [4] fails

to hide individual inputs [3]. In turn, Evfimievski et al.

show that the definitions of [3] are too weak to provide

individual privacy [18].

k-anonymity focuses on non-interactive releases of re-

lational data and requires that every record in the released

dataset be syntactically indistinguishable from at least

k − 1 other records on the so-called quasi-identifying

attributes, such as ZIP code and date of birth [7, 48].

k-anonymity is achieved by syntactic generalization and

suppression of these attributes (e.g., [31]). k-anonymity

does not provide meaningful privacy guarantees. It fun-

damentally assumes that the adversary’s knowledge is

limited to the quasi-identifying attributes and thus fails

to provide any protection against adversaries who have

additional information [34, 35]. It does not hide whether

a particular individual is in the dataset [42], nor the sen-

sitive attributes associated with any individual [32, 34].

Multiple releases of the same dataset or mere knowledge

of the k-anonymization algorithm may completely break

the protection [19, 52]. Variants, such as l-diversity [34]

and m-invariance [50], suffer from many of the same

flaws.

Program analysis techniques can be used to estimate

how much information is leaked by a program [36]. Pri-

vacy in MapReduce computations, however, is difficult

if not impossible to express as a quantitative information

flow problem. The flow bound cannot be set at 0 bits be-

cause the output depends on every single input. But even

a 1-bit leakage may be sufficient to reveal, for example,

whether a given person’s record was present in the input

dataset or not, violating privacy. By contrast, differential

privacy guarantees that the information revealed by the

computation cannot be specific to any given input.

15

10 Conclusion

Airavat is the first system that integrates mandatory ac-

cess control with differential privacy, enabling many

privacy-preserving MapReduce computations without

the need to audit untrusted code. We demonstrate the

practicality of Airavat by evaluating it on a variety of case

studies.

Acknowledgements

We are grateful to Frank McSherry for several insight-

ful discussions and for helping us understand PINQ. We

thank the anonymous referees and our shepherd Michael

J. Freedman for the constructive feedback. We also thank

Hany Ramadan for his help with the initial implemen-

tation. This research is supported by NSF grants CNS-

0746888 and CNS-0905602, “Collaborative Policies and

Assured Information Sharing” MURI, and a Google re-

search award.

References

[1] AppArmor. https://help.ubuntu.com/8.04/

serverguide/C/apparmor.html.
[2] Hadoop. http://hadoop.apache.org/core/.
[3] D. Agrawal and C. Aggarwal. On the design and quantification

of privacy-preserving data mining algorithms. In PODS, 2001.
[4] R. Agrawal and R. Srikant. Privacy-preserving data mining. In

SIGMOD, 2000.
[5] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and

K. Talwar. Privacy, accuracy, and consistency too: a holistic so-
lution to contingency table release. In PODS, 2007.

[6] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical pri-
vacy: the SuLQ framework. In PODS, 2005.

[7] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Sama-
rati. k-anonymity. Secure Data Management in Decentralized

Systems, 2007.
[8] T. Dalenius. Towards a methodology for statistical disclosure

control. Statistik Tidskrift, 15, 1977.
[9] J. Dean and S. Ghemawat. MapReduce: simplified data process-

ing on large clusters. Commun. ACM, 51(1), 2008.
[10] I. Dinur and K. Nissim. Revealing information while preserving

privacy. In PODS, 2003.
[11] C. Dwork. Differential privacy. In ICALP, 2006.
[12] C. Dwork. An ad omnia approach to defining and achieving pri-

vate data analysis. In PinKDD, 2007.
[13] C. Dwork. Ask a better question, get a better answer: A new

approach to private data analysis. In ICDT, 2007.
[14] C. Dwork. Differential privacy: A survey of results. In TAMC,

2008.
[15] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor.

Our data, ourselves: Privacy via distributed noise generation. In
EUROCRYPT, 2006.

[16] C. Dwork and J. Lei. Differential privacy and robust statistics.
In STOC, 2009.

[17] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In TCC, 2006.

[18] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy
breaches in privacy-preserving data mining. In PODS, 2003.

[19] S. Ganta, S. Kasiviswanathan, and A. Smith. Composition at-
tacks and auxiliary information in data privacy. In KDD, 2008.

[20] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game. In STOC, 1987.

[21] F. Hampel, E. Ronchetti, P. Rousseeuw, and W. Stahel. Robust

Statistics - The Approach Based on Influence Functions. Wiley,
1986.

[22] S. Hansell. AOL removes search data on vast group of web users.
New York Times, Aug 8 2006.

[23] J. Heitzig. The “jackknife” method: confidentiality protection for
complex statistical analyses. Joint UNECE/Eurostat work ses-
sion on statistical data confidentiality, 2005.

[24] J. Hellerstein. Quantitative data cleaning for large databases.
http://db.cs.berkeley.edu/jmh/papers/

cleaning-unece.pdf, February 2008.
[25] W-M. Hu. Reducing timing channels with fuzzy time. In S&P,

1987.
[26] P. Karger, M.E. Zurko, D. Bonin, A. Mason, and C. Kahn. A ret-

rospective on the VAX VMM security kernel. IEEE Trans. Softw.

Eng., 17(11), 1991.
[27] M. Kearns. Efficient noise-tolerant learning from statistical

queries. J. ACM, 45(6), 1998.
[28] A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas. Releas-

ing search queries and clicks privately. In WWW, 2009.
[29] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,

E. Kohler, and R. Morris. Information flow control for standard
OS abstractions. In SOSP, 2007.

[30] B. Lampson. A note on the confinement problem. Commun.

ACM, 16(10), 1973.
[31] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito: Effi-

cient full-domain k-anonymity. In SIGMOD, 2005.
[32] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy

beyond k-anonymity and ℓ-diversity. In ICDE, 2007.
[33] S. Lipner. A comment on the confinement problem. In SOSP,

1975.
[34] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubrama-

niam. ℓ-diversity: Privacy beyond k-anonymity. In ICDE, 2006.
[35] D. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and

J. Halpern. Worst-case background knowledge for privacy-
preserving data publishing. In ICDE, 2007.

[36] S. McCamant and M. Ernst. Quantitative information flow as net-
work flow capacity. In PLDI, 2008.

[37] B. McCarty. SELinux: NSA’s Open Source Security Enhanced

Linux. O’Reilly Media, 2004.
[38] F. McSherry. Privacy integrated queries: an extensible platform

for privacy-preserving data analysis. In SIGMOD, 2009.
[39] F. McSherry and I. Mironov. Differentially private recommender

systems: Building privacy into the Netflix Prize contenders. In
KDD, 2009.

[40] F. McSherry and K. Talwar. Mechanism design via differential
privacy. In FOCS, 2007.

[41] A. Narayanan and V. Shmatikov. Robust de-anonymization of
large sparse datasets. In S&P, 2008.

[42] M. Nergiz, M. Atzori, and C. Clifton. Hiding the presence of
individuals from shared database. In SIGMOD, 2007.

[43] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity
and sampling in private data analysis. In STOC, 2007.

[44] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you,
get off of my cloud! Exploring information leakage in third-party
compute clouds. In CCS, 2009.

[45] I. Roy, D. Porter, M. Bond, K. Mckinley, and E. Witchel. Lami-
nar: Practical fine-grained decentralized information flow control.
In PLDI, 2009.

[46] I. Roy, S. Setty, A. Kilzer, V. Shmatikov, and E. Witchel. Airavat:
Security and privacy for MapReduce. Technical Report TR-10-
09, UT-Austin, 2010.

[47] M. Schatz. CloudBurst: highly sensitive read mapping with
MapReduce. Bioinformatics, 2009.

[48] L. Sweeney. k-anonymity: A model for protecting privacy. Int.

J. Uncertain. Fuzziness Knowl.-Based Syst., 10(5), 2002.
[49] S. Vandebogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey,

D. Ziegler, F. Kaashoek, R. Morris, and D. Mazières. Labels and
event processes in the Asbestos operating system. TOCS, 2007.

[50] X. Xiao and T. Tao. m-invariance: Towards privacy preserving
re-publication of dynamic datasets. In SIGMOD, 2007.

[51] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In OSDI, 2006.

[52] L. Zhang, S. Jajodia, and A. Brodsky. Information disclosure
under realistic assumptions: Privacy versus optimality. In CCS,
2007.

16

