
Contracts: Practical Contribution Incentives for P2P Live Streaming
Michael Piatek∗ Arvind Krishnamurthy∗ Arun Venkataramani†

Richard Yang� David Zhang× Alexander Jaffe∗

Abstract
PPLive is a popular P2P video system used daily by mil-
lions of people worldwide. Achieving this level of scala-
bility depends on users making contributions to the sys-
tem, but currently, these contributions are neither verified
nor rewarded. In this paper, we describe the design and
implementation of Contracts, a new, practical approach
to providing contribution incentives in P2P live stream-
ing systems. Using measurements of tens of thousands
of PPLive users, we show that widely-used bilateral in-
centive strategies cannot be effectively applied to the live
streaming environment. Contracts adopts a different ap-
proach: rewarding globally effective contribution with
improved robustness. Using a modified PPLive client,
we show that Contracts both improves performance and
strengthens contribution incentives. For example, in our
experiments, the fraction of PPLive clients using Con-
tracts experiencing loss-free playback is more than 4
times that of native PPLive.

1 Introduction
System collapse due to large-scale reductions in user
contributions is a major concern for PPLive, which is one
of the most widely deployed live streaming services on
the Internet today, serving more than 20 million active
users spread across the globe. Using peer-to-peer (P2P)
as the core technique, PPLive achieves cost-effective live
video distribution by providing a small amount of seed
bandwidth to a few participants, with the rest of the dis-
tribution being performed by users relaying data. Thus,
the availability and scalability of PPLive depends cru-
cially on the contributions of its users.

The current PPLive design neither verifies nor rewards
contributions, creating the potential for strategic users to
restrict their contribution, degrading robustness. This is
particularly true in environments where capacity is lim-
ited or priced by usage. Furthermore, when developing
an open live video streaming standard, relying on closed
systems with proprietary protocols is not feasible.

In this paper, we explore how to provide practical
contribution incentives for P2P live streaming, using
PPLive as a concrete example. Although incentives have
been studied extensively in the case of widely deployed
file-sharing systems (e.g., [1, 16, 22]), live streaming
presents unique challenges. For instance, clients cannot
be rewarded with faster downloads once they are receiv-
ing data at the broadcast rate (since additional data has

∗U. of Washington; † U. of Mass; � Yale; × PPLive.

not yet been produced). While some recent proposals
have considered contribution incentives in a live stream-
ing setting (e.g., [17]), they do not take into account sev-
eral practical considerations of deployed systems, such
as client heterogeneity and operation under bandwidth
constraints. We provide an examination of live stream-
ing incentives grounded in experience with a deployed
and widely used live streaming system.

We proceed in two steps. First, we use measurements
of tens of thousands of PPLive clients to demonstrate
quantitatively the challenges in adapting existing incen-
tive strategies to the live streaming environment. We find
that in practice, the majority of system capacity is con-
tributed by a minority of high capacity users. As a result,
incentive mechanisms that require balance between con-
sumption and contribution will either exclude many users
from participation or underutilize capacity substantially.

More broadly, bilateral exchange mechanisms widely
used in bulk data distribution, such as tit-for-tat in Bit-
Torrent [5], are ineffective in the live streaming envi-
ronment, in part because sequential block availability
sharply limits trading opportunities between peers. Im-
posing topologies that increase bilateral trading opportu-
nities (e.g., [17]) increases the variance in block delivery
delay, causing either increased playback deadline misses
or increased startup delay. Tit-for-tat, for example, sub-
stantially reduces performance when applied to PPLive.

The second part of the paper describes Contracts, a
new design for providing robust contribution incentives
in live streaming P2P services. Contracts differs from
existing techniques in two principal ways. First, Con-
tracts is designed for the live streaming environment.
Rather than relying on increased download rates, Con-
tracts rewards contributions with increased quality of
service when the system is constrained. Second, Con-
tracts departs from traditional incentive mechanisms that
rigidly constrain client behavior. Instead, we define a
default contract specifying an agreement between an in-
dividual client and the overall system (i.e., PPLive and
other clients) as to how its contributions will be evaluated
by others. To enable this, we introduce a lightweight pro-
tocol that provides verifiable accounting of each client’s
contributions. But, the contract does not mandate fine-
grained behavior, leaving individual clients free to make
local optimizations that increase efficiency.

We have integrated Contracts with PPLive, and find
that our implementation both improves performance and
strengthens contribution incentives. For example, in our

experiments, the fraction of PPLive/Contracts clients ex-
periencing loss-free playback is more than 4 times that of
native PPLive, and clients that contribute more than oth-
ers receive consistently higher quality of service.

The remainder of this paper is organized as follows.
Section 2 provides an overview of live streaming in
PPLive. Sections 3 and 4 describe the challenges of ap-
plying incentive strategies based on bilateral exchange to
live streaming. These challenges motivate the design and
implementation of Contracts, which we present in Sec-
tion 5 and evaluate in Section 6. We discuss related work
in Section 7 and conclude in Section 8.

2 PPlive overview
PPLive is a hybrid P2P system for streaming live and
on-demand video. Clients are organized into channels,
with members of a given channel redistributing video
data to one another. Clients rely on two forms of infras-
tructural support: 1) coordinating trackers that provide
a rendezvous point for users watching the same channel,
and 2) seed bandwidth provided by a group of broadcast
servers that source all content. Multiple channels can
be managed by a single tracker and sourced by a single
broadcaster. Currently, PPLive maintains roughly 600
public live channels daily.

The wire-level details of the PPLive protocol are sim-
ilar to existing swarming systems like BitTorrent [5].
Clients maintain a large set of directly connected peers
(50–100) to which they advertise their local data blocks
and issue requests for missing blocks. Each block is 4–
16 KB and is discarded shortly after being played.

Trackers maintain state that includes the set of clients
in each channel, the properties of clients (e.g., reported
bandwidth capacity and NAT status), and the overall
health of channels. The health of an individual chan-
nel is monitored by its broadcast source. Clients use the
source as a peer of last resort. Only when a block cannot
be obtained from any other peer is a request sent to the
data source. Thus, the load on the broadcaster provides
a metric for the health of a given channel relative to oth-
ers. By shifting capacity from channels demanding less
load to those servicing more requests, PPLive allocates
infrastructure bandwidth automatically.

Most relevant to our work is PPLive’s servicing policy.
By default, each client contributes its full available ca-
pacity and does not prioritize service for particular peers,
i.e., download requests from a peer contributing little to
the system and those from a peer making the highest con-
tribution are treated equally.

3 Limits of bilateral exchange
The lack of contribution incentives means that PPLive’s
scalability depends on clients’ good will and the faithful
execution of its software. At present, these are largely

effective due to flat-rate network pricing and the com-
plexity of PPLive’s proprietary implementation. Increas-
ingly, however, the all-you-can-eat pricing model is giv-
ing way to the realities of network management [6]. Fur-
thermore, there is continued interest in developing an
open live video streaming standard supporting multiple
implementations (e.g., IETF 73 PPSP BoF). These trends
motivate the explicit consideration of incentives for live
streaming systems to reward good (and discourage bad)
behavior by coupling performance and contribution.

Why does live streaming necessitate revisiting the in-
centive design problem? To appreciate this, consider the
most widely-used class of incentive strategies in P2P sys-
tems today—bilateral exchange—wherein a peer x deter-
mines the amount of upload bandwidth to peer y based
solely on the amount of bandwidth that client y uploads
to x, independent of the total bandwidth that client y up-
loads to all clients. Servicing policies based on bilateral
exchange are compellingly simple. For example, tit-for-
tat has been widely applied in bulk data distribution sys-
tems (e.g., BitTorrent [5]), and has also been studied ex-
tensively [16, 25]. More recently, bilateral exchange has
also been proposed as a basis for providing incentives in
live streaming systems (e.g., [17]). However, bilateral
exchange schemes suffer from fundamental performance
limitations in the context of live streaming.

For bilateral exchange to work, peers need to have
trading opportunities (i.e., distinct data blocks of mu-
tual interest). When distributing bulk data, trading op-
portunities are frequent. Each client seeks to acquire the
entirety of a large set of blocks. Bulk distribution sys-
tems typically use block selection strategies such as lo-
cal rarest first (e.g., BitTorrent [5]) or network coding of
blocks (e.g., Avalanche [9]) to ensure that all blocks hav-
ing roughly equal trading value over time. Ideally, once
a new client has received just a few random blocks, it is
bootstrapped into the trading system.

Live streaming differs radically from bulk data distri-
bution in ways that significantly reduce the effectiveness
of bilateral exchange. We consider four key challenges
in live streaming that inform the design of Contracts.
1) Heterogeneity: Capacity heterogeneity poses a fun-
damental challenge to the efficiency of balanced ex-
change schemes. Live streaming offers a common down-
load rate—the stream playback rate—to all peers regard-
less of their upload capacity. In practice however, peer
capacities can vary by an order of magnitude. We ver-
ify this by measuring the capacity distribution of PPLive
clients using logs of the reported bandwidth capacity of
99,184 clients. The distribution is highly skewed with a
mean capacity (142 KBps) that is more than double the
median (65 KBps). As a result of the skew, the majority
of total aggregate capacity is provided by a minority of
high capacity peers. The top 10% of clients account for

58% of total capacity.
Capacity heterogeneity implies a discouraging trade-

off between efficiency and balance. Insisting on near-
perfect balance will either exclude many users that can-
not support the stream rate or significantly underutilize
capacity. Concretely, streaming at the average capac-
ity of 142 KBps (the maximum possible) would would
exclude 86% of PPLive clients in our trace when requir-
ing balanced contribution and consumption. On the other
hand, providing service to 95% of PPLive clients (with
balanced exchanges) requires restricting the stream data
rate to the 5th percentile of capacity at 21 KBps, which
corresponds to an overall utilization of just 15%.

The fundamental tradeoff between efficiency and bal-
ance under skew can be quantified as follows. Let µ and
σ respectively denote the mean and variance of the up-
load capacity distribution. We define the skew1 S as σ/µ.
For a stream rate of r, the efficiency E is r/µ, where a fea-
sible broadcast implies µ≥ r. We define the imbalance I
as the deviation of peer upload rates with respect to the
stream rate normalized by the mean, i.e., 1

µ [∑i(xi−r)2

N]1/2,
where xi is peer i’s upload rate (less than or equal to its
capacity) and the sum indexes over all N peers. Note that
all three of skew, efficiency, and balance lie between 0
and 1. The theorem below captures the stated tradeoff,
the proof of which is available in a technical report [24].

THEOREM 1 High efficiency and high skew imply high
imbalance. Specifically, (a) If peers upload at a rate pro-
portional to their capacity, I = E ·S. (b) For any feasible
set of upload rates, I is bounded from below by a function
that monotonically increases from 0 to S as E increases
from 0 to 1.
2) Limited bandwidth needs: In bulk data distribu-
tion using bilateral exchange, the incentive to increase
upload rate is a corresponding increase in download rate.
In live streaming, however, once a client is downloading
data at the rate of production, a further increase in down-
load rate is not possible (as additional data does not yet
exist). Although one may consider rewarding increased
contribution with improved video quality (e.g., at higher
resolutions using layered coding), PPLive avoids such a
scheme due to its increased complexity, reduced video
coding efficiency, and the need for substantially higher
bandwidth to produce visually-discernible quality differ-
ences. Thus, a challenge to incentivize users to con-
tribute capacity in excess of their demands is to create
a compelling reward with nonzero marginal utility.

The above points do not rule out bilateral exchange
schemes that are not balanced, which we consider below.
3) Limited trading opportunities: Bilateral exchange
depends on the existence of mutually beneficial trad-
ing opportunities to evaluate peers. Unfortunately, live

1unlike the more standard definition based on the third moment.

Figure 1: The impact of distance from the broadcast
source on bilateral exchange. Requiring balanced ex-
change significantly limits trading opportunities as does
distance from the source.

streaming provides clients with limited opportunities for
mutually beneficial trading. The key difference is that
unlike bulk data distribution, where blocks have roughly
equal value over time and among clients, the value of
blocks in live streaming varies over time and client. A
block has little value at a client if it is received after the
playback point at the client. Thus, the data useful to an
individual client is limited to a narrow range between
the production point and the local playback point, i.e.,
the lag. The smaller the lag that a system targets, the
fewer the trading opportunities. Furthermore, blocks in
live streaming emerge at the data source one at a time
at the production rate unlike bulk data distribution where
data becomes available all at once. As a result, clients
closer to the data source in the topology have inherent
advantages in receiving rare (new) blocks first, creating
a perpetual trade imbalance with clients further from the
source. Although trade imbalance does not necessarily
rule out bilateral exchange schemes, it makes evaluating
peers significantly more challenging.

To make this concrete, we compare the number of
trading opportunities for clients in a PPLive broadcast
with 100 clients running on the Emulab testbed. Each
client uses random block selection to maximize trading
opportunities unless a block is near its playback deadline.
Each client simultaneously joins a test stream and period-
ically logs its buffer state during playback. Figure 1 sum-
marizes the trading opportunities among pairs of peers
taken from a snapshot of buffer states collected several
minutes into the broadcast. Each individual client’s aver-
age distance to the broadcast source is the average num-
ber of overlay hops traversed by all of its received blocks,
which correlates with lag. The number of trading oppor-
tunities is shown in terms of the absolute difference in
these averages for pairs of peers (x-axis) without con-
straints and when a balanced number of mutually ben-
eficial trades is required. These results show that the
greatest opportunity for bilateral exchange is between
peers that are at a similar distance from the broadcast
source. But, such pairs of peers are in the minority. Most

. . . .

. . . .

Figure 2: Illustration for Theorem 2: Node j has higher
upload capacity than node i but has fewer descendants.

block transfer opportunities are between pairs of peers
that have an imbalance of useful data.
4) Delay sensitivity: Live streaming requires low dis-
tribution delay so as to reduce lag (i.e., improve live-
ness) or, equivalently, reduce the playback miss rate for
a given lag. Minimizing block dissemination delays im-
poses some structural requirements on the steady-state
block distribution topology. We formalize this claim as
follows. The dissemination topology traversed by a sin-
gle block must be a tree as peers only request blocks they
do not already have. Consider the dissemination tree T
for a single block. Note that different blocks may have
different dissemination trees, so a node may be at differ-
ent distances from the source across blocks. We assume
that in steady-state, the system can sustain the stream rate
such that a block is never queued at a node behind an-
other block.2

THEOREM 2 Any topology in which a peer i has lower
bandwidth than peer j but i has more descendants than
j has higher average block delay than the topology ob-
tained by swapping i and j if one of the following two
conditions hold: (a) the topology is a balanced tree, or
(b) i is an ancestor of j.

Figure 2 illustrates the condition in the theorem above.
The proof shows that, if either T is balanced or i is an
ancestor of j, T can be transformed to a topology T ′ with
lower delay by simply swapping i and j.

The structural requirement for low delays presents a
design conflict for bilateral exchange schemes. Being
closer to the source, a high capacity peer A is likely to
receive newer blocks before a lower capacity child B, so
A is unlikely to benefit from B. However, in bilateral ex-
change, A evaluates B solely by B’s uploads to A, forcing
B to try to upload to A even though that is detrimental to
the average block delay. Note that bulk distribution does
not face this predicament as it does not require individ-
ual block delays to be low, a crucial consideration in live
streaming.

2The technical report [24] describes a procedure to construct such a
dissemination tree packing.

Figure 3: Cumulative fraction of clients with a given
block delivery rate for different topologies. Placing high
capacity clients near the source improves quality.

4 Structuring for performance
and incentives

The limitations of bilateral exchange lead us to pursue
a fundamentally different approach to providing incen-
tives in P2P live streaming systems. Instead of reward-
ing higher upload rates with higher download rates, we
craft a mechanism that incentivizes higher upload rates
with robust playback quality; i.e., fewer missed playback
deadlines, despite churn and capacity constraints. As ob-
served in measurement studies [20], in a streaming sys-
tem at a given channel rate, robust playback quality is
the key determiner of user satisfaction. Our design of
the incentive mechanism is enabled by a pleasant coinci-
dence that aligns performance and incentive objectives:
high capacity peers must be close to the source to keep
block delays low, and peers closer to the source experi-
ence lower and more predictable block delays yielding
better playback quality.
Topology: To maximize utilization, high capacity clients
need to be placed near the data source so that they can
quickly replicate useful data. To demonstrate the im-
pact of topology and capacity heterogeneity on play-
back quality, we compare the block delivery rate for 120
instrumented PPLive clients running on Emulab under
three scenarios: 1) clients joining in a random order,
2) high capacity clients joining first, followed by low ca-
pacity clients, and 3) low capacity clients preceding high
capacity. In each scenario, the over-provisioning of ca-
pacity relative to demand is two. 50% of clients are as-
signed an upload capacity equal to the stream data rate
(low capacity) with the remaining 50% having capacity
3× the stream rate (high capacity). The results are sum-
marized in Figure 3. Playback quality is best when high
capacity peers join first, and are therefore closer to the
data source. When high capacity peers join last, the qual-
ity degrades significantly. With no change in total sys-
tem capacity, the median delivery rate drops from 0.95 to
0.75. In practice, the order in which clients join is likely
to be random with respect to capacity, yielding playback
quality in between the two extremes.

Figure 4: The fraction of blocks missing playback dead-
lines as a function of distance from the broadcast source.
Playback quality is best for clients nearest to the source.

Buffering: When blocks miss playback deadlines,
PPLive takes one of two actions: 1) if only a few blocks
are missing, they are skipped; 2) but, if several blocks
miss their playback deadline, PPLive pauses while wait-
ing for downloads to complete. This buffering policy is
designed to handle temporary degradation in quality of
service. A single missed block has limited impact on
video quality, and rebuffering suffices to recover from
more significant fluctuations. But, if a client chronically
experiences misses, it will eventually fall so far behind
its directly connected peers that required blocks are no
longer available. In this case, users need to manually
rejoin the broadcast. Restarting is a simple recovery
mechanism and requiring it is an explicit design choice
in PPLive that is consistent with typical user behavior.

The buffering policy implies that the effects of quality
degradation cascade. When a client near the data source
stalls, more distant clients to which it forwards data
also experience service disruption. Although the PPLive
mesh contains significant path redundancy, failover is not
instantaneous and may require rebuffering. We quantify
the quality of service in terms of distance from the broad-
cast source in Figure 4. In this experiment, 127 clients
with equal capacities (twice the stream rate) participate
in a broadcast with one client joining every 10 seconds.
Statistics are computed after all clients have been in the
system for at least 20 minutes. As in previous experi-
ments, we define the average distance of a client from
the source to be the average number of hops traversed by
all blocks received by the client. The results show that
service quality degrades with distance from the source
even in a static setting. Introducing churn will further
degrade service quality for clients that are further away
from the source.

5 Contracts
We now describe Contracts, a new scheme to provide
contribution incentives in P2P live streaming systems.
Our scheme is based on two key design choices that are
motivated by the considerations unique to live streaming.

Contracts rather than bilateral reciprocation: Rec-
ognizing that bilateral exchanges are ineffective for live
streaming, we develop a scheme that rewards each peer
according to its global effectiveness. We borrow from
economic theory, in particular the principal-agent prob-
lem, the idea of contracts—a method of structuring in-
centives in asymmetric or non-bilateral settings [15]. In
Contracts, a data provider grants a level of service pro-
portional to the consumer’s ability to replicate the data
further, as opposed to basing service simply on recipro-
cal contributions. The contract is thus designed to moti-
vate consumers to contribute their bandwidth and also to
hold them accountable for their respective servicing de-
cisions. Further, since a provider is also a consumer in a
P2P setting, it should be in the provider’s self-interest to
enforce the contract to obtain good service from its own
providers. Put simply, a node’s incentives as a provider
should be aligned with its incentives as a consumer.
Global topology optimization: Instead of operating
with an unstructured mesh, Contracts structures the over-
lay topology globally to account for the heterogeneity
of peer capacities. Specifically, we introduce mecha-
nisms that allow clients to identify their positions rela-
tive to the stream source and reorganize themselves, with
high capacity peers percolating towards the source. Peers
with disparate capacities develop asymmetric yet mutu-
ally beneficial relationships: low capacity peers benefit
from the replication capabilities of high capacity peers,
while high capacity peers are rewarded with better qual-
ity of service for their contributions.

In this section, we outline the following: (1) the sin-
gle global contract for evaluating both the quantity and
quality of each peer’s contributions, (2) a default policy
for updating the overlay topology, and (3) a wire-level
accounting protocol for verifying contributions.

5.1 Contribution contracts
In Contracts, each peer is evaluated for both 1) the
amount that it contributes to directly connected peers,
and 2) the amounts those peers contribute in turn; i.e.,
the quality of its selections. Peers with higher valua-
tions will have a greater likelihood of being added to the
peer lists of high capacity nodes and also enjoy prompt
service when requesting individual blocks from those
nodes. We next describe the details of how peer eval-
uations are computed.
Performance metrics: For two peers x and y, we de-
note the contribution rate from x to y by B(x → y), and
compute this using a weighted moving average. B(x)
represents the total bandwidth contributed by node x.
Each of these values is mapped to discrete classes of
contribution—the deciles of the observed capacity dis-
tribution from PPlive. We label the bandwidth class of a
node x as BC(x).

2 3

4 5 6

1

Figure 5: Evaluating I for client 1. Contribution from
1 → 2 is weighted by the rates from 2 → 3, 4, 5. Contri-
bution of 1 → 3 is weighted by the rates from 3 → 2, 6.

To measure the effectiveness of contributions made by
a client, we define I(x) to be the one-hop propagation of
x’s contributions, calculating this as follows:

I(x) = ∑
p∈peers(x)

B(x → p)×DBW(BC(p)) (1)

where DBW ∈ [0,1] is a weight specified by the cumula-
tive distribution function of peer upload capacities.

As an example computation of I, consider Figure 5. In
this case, the effectiveness of contributions from node
1 are being evaluated. The total contribution rates of
peers 2 and 3 are 120 and 40, respectively. Mapping
the values 120 and 40 to their bandwidth classes and
looking them up in our measured capacity distribution
yields: DBW(BC(3)) = 0.1, DBW(BC(2)) = 0.8. Sub-
stituting these values allows us to compute I(1) = 30×
0.1+30×0.8 = 27.

Taken together, measures of contribution (BC) and ef-
fectiveness (I) constitute the global evaluation function,
V (x), which we define as the tuple [BC(x), I(x)] with the
following comparison operator:

V (x) > V (y) ⇐⇒ BC(x) > BC(y) or
BC(x) = BC(y)∧ I(x) > I(y).

In other words, peers are compared by their bandwidth
class first, and peers within a class are compared accord-
ing to the effectiveness of their contributions.
Servicing policy: The metrics defined above are used
by clients to identify which peers are selected to receive
service, the priority of that service, and which potential
peers to prefer. We distinguish between connection and
selection in our discussion of service policy. Connection
is a prerequisite for being selected to receive service, and
only connected peers exchange the control traffic neces-
sary to compute V (·).
• Peer selection: Each node periodically rank-orders its

peers by their corresponding V (·) values, selects the

top k of these, where k is a configurable parameter,
and notifies each that block requests will be accepted.

• Block request servicing: Among peers with outstand-
ing requests, each client prioritizes the request from
the peer with the maximum B(·) value.

In Section 5.3, we describe how each client reliably
ascertains the performance metrics of its peers. Before
doing so, we first analyze the incentive structure arising
from this servicing policy.
What are the incentives provided by the system? Con-
tracts provides strong contribution incentives by linking
quality of service to effective contribution. A peer in-
creases its chances of being selected for service and its
priority by increasing its upload contribution. It might
appear that contribution incentives are weakened by the
use of bandwidth classes, as a peer p can lower its contri-
bution while still remaining in its class. However, doing
so reduces its service priority for block requests, which is
determined by B(p) among peers in its bandwidth class.

Contracts also rewards peers for making globally ben-
eficial contributions. A peer that transmits blocks to
higher capacity peers will achieve a higher evaluation
under I(·) (and hence V (·)), increasing the likelihood of
being selected by others.
Will a provider enforce contracts? One possible devia-
tion is for the provider p to ignore the rank ordering of
V (·) values when choosing peers. In this case, a deviat-
ing provider selects a node y rather than x even though
V (x) > V (y). This ordering implies either BC(x) >
BC(y) or BC(x) = BC(y)∧ I(x) > I(y). In the former
case, the provider’s deviation lowers its own I(·) value
since its contributions to y will be weighted less than
its contributions to x. Hence, the deviation is not in its
self-interest. In the latter case, I(p) is unchanged by en-
forcing the contract, and hence p does not benefit from
deviating.

Another possible deviation is for the provider to not
provide prioritized service to higher capacity peers. For
instance, a provider could transmit a block to y instead
of x even though B(x) > B(y). Again, this is not in
the provider’s self-interest since it reduces the provider’s
evaluation under I(·).
Why not other incentive structures? Initially, our defi-
nition of V (·) may seem somewhat arbitrary. Why not
make effectiveness (I) fully recursive? That is, by in-
cluding the contributions of peers, peers of peers, and so
on. And, why use bandwidth classes rather than band-
width itself? Or, why not use bandwidth only and ignore
effectiveness? We tackle each of these questions in turn
to provide additional intuition behind the development of
our global contract.

We avoid a fully recursive definition of effectiveness
for scalability. Accounting for the propagation of contri-

Figure 6: Under an alternate evaluation function
V ′(·), E has an incentive to unilaterally deviate when
B(x2) > B(x1) despite V ′(x1) < V ′(x2).

butions globally creates significant overhead, both com-
putationally and from increased control traffic. To reduce
overhead, we limit propagation to one hop, with nodes
percolating to their globally appropriate position through
repeated cycles of evaluation and topology updates.

Unfortunately, limiting the propagation of account-
ing information creates an incentive to ignore the ef-
fectiveness of a peer’s contributions, a crucial consid-
eration when structuring the topology. As an example,
consider a simpler evaluation function that uses band-
width directly rather than bandwidth classes: V ′(x) =
∑p∈peers(B(x → p)× DBW (B(p)). Under this evalua-
tion function, a strategic client has an incentive to de-
viate. Consider the topology shown in Figure 6. In
this case, the system would benefit from E contribut-
ing to x1 since y1 has much higher capacity than y2, thus
V ′(x1) > V ′(x2). But, a client E∗ evaluating E considers
only the effectiveness of E, which is determined by the
bandwidths of its peers only. Thus, when B(x2) > B(x1),
a rational E would contribute to x2 rather than x1, despite
the greater redistribution capacity of x1. This problem
arises for any evaluation function with a limited view.

Bandwidth classes mitigate this problem by making
peers with similar capacities incomparable at evaluators.
When using V rather than V ′ to evaluate peers in Fig-
ure 6, E∗ treats contributions to x1 and x2 equally (if they
are in the same bandwidth class), eliminating the incen-
tive for E to deviate. Our assumption is that clients are
rational, but not Byzantine. Since deviating does not of-
fer a local benefit, clients will split ties using contribution
effectiveness, improving overall efficiency. We consider
colluding and Byzantine peers in Section 5.4.

Finally, we incorporate effectiveness into our default
contract rather than bandwidth alone in order to provide
incentive-aware gossip, the topic we describe next.

5.2 Topology updating policy
Incentive-aware gossip: In addition to specifying how
clients should make local servicing decisions, the con-
tract also influences how the overlay topology is to be up-
dated globally. To achieve a distribution structure where
high capacity peers are closer to the source, Contracts
uses peer gossip informed by V (·) as well as structural
information provided by a hop count field in block mes-

sages. By maintaining the average hop count of blocks
received from peers, each client can compare the average
distance of its peers to the source, and we use this infor-
mation to speed convergence when evaluating potential
peers for connection.

Each client is aware of the capacities of its one-hop
neighborhood of peers, and each client attempts to con-
nect to the peers in this set with highest capacities. Uni-
versally applied, this results in the highest capacity peers
percolating to the source, and lower capacity nodes being
pushed to the periphery of the mesh through attrition.

Specifically, each client c sorts p ∈ (Peers ◦Peers)(c)
by BC(p), connecting to new peers in descending order.
To split ties within a bandwidth class, c orders each po-
tential peer by its average block hop count; i.e., a mea-
sure of the distance to the source, preferring the most
distant of these. The intuition behind this policy is that
the most distant peers within a bandwidth class are likely
to be poorly clustered with respect to capacity and thus
more likely to have outstanding block requests.3 Prefer-
ential connection with misplaced peers in a bandwidth
class speeds convergence of the topology. On the re-
ceiver’s side, clients accept incoming connections opti-
mistically, pruning those that have neither provided data
nor warranted service in the recent past. Recall that con-
nectivity does not imply that a peer will be selected for
service. Exploring new nodes serves to expand the set of
peers for which a given client can compute V (·).

This gossip strategy is incentive-aware; it incorporates
the interests of clients seeking to maximize their V -value
by contributing to the highest capacity peers. Consider
the example topology in Figure 6. To compute V (·) for
each of its peers, node E knows the bandwidth capaci-
ties of all labeled nodes (provided by our account mech-
anism). Suppose BC(y1) > BC(x1). In this case, E would
increase its V -value by sending to y1 directly rather than
through x1, and so connects to y1. Although x1 might
prefer to avoid this, revealing the bandwidth capacity of
y1 to E is required to demonstrate the effectiveness of its
own contributions.
Bootstrapping new clients: For a newly joined, high
capacity client to demonstrate its capability, it needs to
receive stream data early enough to replicate that data
widely. But, since a recently added client is typically
placed far from the data source, the client might be over-
looked simply because it could not receive enough useful
data to replicate.

To address this problem, Contracts clients advertise an
optional bootstrapping block comprised of random data.
Advertising the bootstrapping block serves to inform di-
rectly connected peers that a client has excess capacity

3Preferring distant peers is a heuristic to increase trading opportuni-
ties. Recall that in a mesh with a capacity surplus, clients must compete
to satisfy requests.

that can be verified through direct transfer. Each trans-
ferred bootstrapping block is worth half that of a normal
block in terms of contribution value, although this value
need not be precise. In light of the significantly skewed
bandwidth distribution, our goal is to encourage mean-
ingful contribution whenever possible while still allow-
ing high capacity peers to demonstrate their capabilities.

Contracts’s use of bootstrapping blocks exploits a key
characteristic of the P2P environment, bandwidth asym-
metry, to make a tradeoff beneficial to the overlay. Be-
cause many home broadband connections have signifi-
cantly greater download capacity than upload capacity,
identifying high capacity clients by downloading ran-
dom data trades a reduction in abundant download ca-
pacity for an increase in upload capacity, the scarce re-
source. Of course, if a live broadcast has significantly
more capacity than demand, bootstrapping blocks need
not be transferred. To limit overhead, a Contracts client
requests bootstrapping blocks only when it has excess ca-
pacity and with a probability that decreases as the num-
ber of its peers with excess capacity increases. This prob-
ability is given by: 1− Peers with excess capacity

Total peers .

5.3 Verifying contributions
The preceding topology update policies depend on the
peers and the tracker obtaining truthful values of the
global contributions of the peers (e.g., the calculation of
Equation (1)). Contracts introduces verifiable contribu-
tions to support this task.

Each client P using Contracts completes a one-time
registration step with the streaming infrastructure during
which it is provided with a unique public/private key pair
KP. It should be clear in the context whether KP rep-
resents the public key or the private key. The key pair
serves as the client’s identity and is persistent. After-
wards, clients are provided with two additional pieces
of information when connecting to a channel: 1) a peer-
specific nonce value and 2) the public key of the tracker
of the channel. The nonce is used by several Con-
tracts protocol messages to prevent replay attacks, and
the tracker’s public key is used to authenticate messages
from the tracker that are forwarded in the overlay. We
use 〈M〉K to denote a message M signed by key K.

When Contracts clients connect to one another, they
exchange their respective public keys and nonce values.4

Afterwards, data is exchanged normally. Periodically
during data transfer, each Contracts client mints a signed
receipt message for each of its peers. Each receipt ac-
counts for the most recent contributions of that client and
is sent to the remote endpoint. For example, if a client
P with key pair KP has received V blocks of data from a

4Man-in-the-middle attacks can be precluded by bundling peer keys
with the peer list returned by the tracker. This increases overhead and
is optional.

peer Q since it last sent a receipt to Q, P sends Q a receipt
containing 〈NQ,KP → KQ : V 〉KP . This includes a nonce
(NQ), the sender and receiver identities, and the number
of blocks, signed by P.5 Receipts are sent when a thresh-
old on the volume of sent data is reached. This threshold
is set by the tracker to control load and overhead.

Receipts serve as the foundation for verified contribu-
tions in Contracts, and we describe both distributed and
centralized methods for using them to evolve the over-
lay topology. Distributed verification reduces load on the
tracker, increasing scalability. Centralized verification
speeds topology updates and reduces total network over-
head, while also precluding several attacks from Byzan-
tine users. These methods are not mutually exclusive; ei-
ther (or both) can be used during a broadcast, and clients
can switch between them freely depending on the level
of contention for tracker resources. We describe each in
turn.

Distributed verification: When using distributed verifi-
cation, the tracker bootstraps new peers by providing a
random subset of candidates to each client, and times-
tamps are used as nonce values. Each client forwards
all receipts it receives due to contributions to its directly
connected peers, including receipts collected from its
one-hop neighborhood. Unlike the tracker, which gen-
erates the keys for all valid users in the broadcast, ordi-
nary peers that receive receipts cannot distinguish valid
identities from those generated by a strategic user. If any
receipt is accepted, such users can manufacture an arbi-
trary number of receipts and claim any level of contri-
bution. Thus, the challenge for verification in the dis-
tributed case is identifying valid receipts.

To do this, the tracker issues each user a small valid
user message when the user first joins a given broad-
cast. This message is signed by the tracker and includes
a timestamp, channel identifier, and the public key of the
recipient. When peers connect to one another, they ex-
change and verify valid user messages, demonstrating to
one another that they are a valid peer for the given broad-
cast.

Centralized verification: Although conceptually
straightforward, distributed verification and contract
enforcement assumes rational clients. A large number of
Byzantine clients may undercut the convergence of our
topology structuring algorithm, degrading performance.
To address this, Contracts supports evaluating peers
and enforcing topology updates at the tracker if neces-
sary. Centralized topology updates also enable rapid
and/or fine-grained adjustments to the topology during
challenging workloads, e.g., flash crowds. The primary
challenge to centralizing these functions is ensuring
that the tracker is not overwhelmed with network traffic

5For brevity, we omit the broadcast identifier, also included.

Figure 7: Construction of the receipt digest message at
a client Q. The ∗ operator indicates concatenation.

or computational demands, and the remainder of this
section describes the mechanisms Contracts uses to
achieve this.

Periodically, each client contacts the tracker to report
its continuing participation in the broadcast and requests
an updated set of peers. In the current PPLive implemen-
tation, this message also includes the client’s maximum
upload rate as measured by the client. Contracts piggy-
backs on this message, replacing the self-reported upload
rate with a verifiable accounting of blocks contributed to
specific peers during the previous update interval. Since
public keys (and hence individual receipts) are lengthy,
the naı̈ve approach of simply forwarding all receipts to
the tracker would amount to a de-facto DDoS attack. In-
stead, Contracts clients report a compact, plain-text di-
gest of receipts.

The algorithm for constructing the receipt digest mes-
sage is given in Figure 7. The key underlying technique
is to trade optional computation at the tracker for a sub-
stantial reduction in network traffic. Instead of trans-
mitting full receipts, each digest contains claims about
receipts received and a verification hash. Claims are a
plain-text list of contributions that allows the tracker to
reconstruct the original contribution receipts by recom-
puting them. A digest contains claims for each receipt re-
ceived since the last digest was sent (line 4). Each claim
contains the first n bits of the public key of the receiver
specified in the full receipt (line 6). Each truncated key
serves as an index, allowing the tracker to map an iden-
tifier to a public/private key pair it previously generated
for a particular user. Finally, a hash chain is computed
over the original receipts (line 7) sorted by receiver iden-
tifier (line 3). This can be used by the tracker to verify
that claims correspond to valid receipts.

A list of claims informs the tracker as to which re-
ceivers generated receipts, but to recompute those orig-
inal receipts and verify the hash chain, the tracker also
needs to know the number of blocks received and the re-
ceipt nonce. Both of these are set by the tracker when
clients initially connect. The block threshold for dis-
patching receipts, V , is set to control overhead both at
the tracker and among clients. Each client’s nonce is

selected at random by the tracker and incremented by
clients per-peer for each receipt received. For example, if
a client’s initial nonce is 5 and it receives 2 receipts from
peer A and 3 from peer B in a given reporting interval,
subsequent receipts minted by A and B to this client will
be stamped with nonce values of 7 and 8, respectively.
The tracker verifies increments to nonce values to pre-
vent replay attacks, and nonce values are maintained on
a per-peer basis to prevent concurrent data transfers from
producing receipts with the identical nonce values.

At the tracker, ranking clients based on the plain-
text claims in digests requires little overhead relative to
the existing processing already done by the tracker; ta-
ble lookups provide the required information to com-
pute Equation (1) (where the sum of contributed block
claims per update interval provides contribution rates).
Although processing is straightforward, verification is
computationally intensive, requiring the tracker to regen-
erate and hash each signed receipt. But, since only the
plain-text content of digests is needed to rank clients, the
tracker can shed load at any time. While sampling di-
gests may increase susceptibility to cheating, our evalua-
tion shows that verifying all digests on the fly is feasible
given PPLive’s current infrastructure provisioning.

5.4 Collusion resistance
Contracts includes both centralized and distributed ver-
ification of receipts to allow the tracker to manage the
tradeoff between protocol overhead and robustness to
malicious behavior. In the absence of Byzantine behav-
ior, distributed verification effectively rewards contribu-
tion without relying on centralized accounting. With iso-
lated Byzantine agents, coordinating topology updates at
the tracker enables convergence even while some nodes
deviate from our default contract. This increases over-
head, but as we show in our evaluation, not prohibitively.

In the remainder of this section, we describe the tech-
niques used by a tracker to use its global perspective to
mitigate security attacks, in particular, the well-known
P2P attack: collusion, in which a group of participants
work collectively to subvert our accounting mechanism.
The collusion participants we consider may include both
real users with interest in receiving stream data, as well
as synthetic identities created strictly for collusion.
Limited identity creation: The tracker appeals to stan-
dard techniques used by other P2P proposals for in-
hibiting the creation of arbitrarily many synthetic iden-
tities, the so-called Sybil attack [7]. In particular, the
tracker limits the creation of new identities on the basis
of durable identifiers, e.g., cell phone number via SMS.
Flow integrity check: When a new client joins a broad-
cast, the tracker evaluates its maximum upload capacity.
Although a client may choose to upload at a lower rate, it
cannot exceed the capacity. This restricts potential false

claims on BC(·). In addition, live streaming imposes a
known incoming rate bound on each client’s long-term
incoming data rate, which is the streaming rate. When
verifying receipts, the tracker validates the upload capac-
ity and incoming rate bounds. Such verification limits the
collusion of a set of broadcast participants to issue fraud-
ulent receipts. No group of colluders can form a loop and
arbitrarily boost a colluder’s contribution value. Specifi-
cally, consider a client x with the support of a total of K
colluders. Assume that x is an actual broadcast partici-
pant that needs to receive actual data from non-colluders.
Then x cannot issue any fraudulent receipts, as it needs
to issue receipts for actual data. The capability of the
colluders to help x is also limited. The value B(x → p),
where p is a colluder, is limited by the streaming rate r
due to incoming rate bound on p. Thus, with K colluders
generating fraudulent receipts, x can claim at most K · r
fraudulent contributions to these colluders. But, K ·r can-
not exceed the upload rate of x measured by the tracker
for WAN traffic. Further, if a given colluder p helps x to
claim contribution rate r, then B(p′ → p) should be zero
for any other client p′, otherwise p violate its incoming
rate bound. Thus, if a collusion scheme is to let B(x→ p)
be r for all K colluders, then B(p) has to be zero for all
of the colluders. This substantially limits I(x).
Global and diversity weighting: In spite of the preced-
ing checks, some clients might still be able to collude
and/or acquire several synthetic identities to increase the
overall value of V (·) of a client. To address this, the
tracker detects a cluster of linked colluders. Also, Con-
tracts can optionally weight the overall value of V (·) by
the network-level address diversity of the peers to which
a client contributes. As a consequence of registering for
a broadcast, the tracker knows each client’s IP address
and port. For identities within the same IP prefix (/24),
Contracts dampens the value of contributions when us-
ing centralized verification. For identities registered at
the same address (e.g., users behind a NAT), contribu-
tions are further dampened. This policy restricts collu-
sion by exploiting the scarcity of IP addresses.

Note that we do not adopt a universal notion of client
utility, and we do not claim that Contracts is strategy-
proof, even given these defenses. An alternative ap-
proach to mitigating collusion and strategic behavior is to
restrict each client’s choice in peer selection. As shown
in previous work [17, 18], limiting peer selection is a
powerful tool for enabling formal analysis of gossip pro-
tocols since the potential for protocol deviations is re-
stricted. But, such restrictions may limit the potential for
grouping peers based on locality or bandwidth, e.g., high
bandwidth, local exchange between peers on the same
LAN. In practice, flexible peering significantly increases
distribution efficiency in PPLive, leading us to eschew
restrictions which may aid in formal analysis, leaving

open these issues for future work.

6 Evaluation
Our evaluation of Contracts answers two main questions.
First, is applying Contracts to streaming systems feasi-
ble? We find that it is; Contracts adds modest overhead
but does not fundamentally limit scalability. Second, is
Contracts effective? To confirm this, we report measure-
ments of a modified PPLive client to demonstrate the
performance improvement of Contracts relative to other
systems and incentive strategies. Specifically:

• Contracts improves performance relative to unmodi-
fied PPLive. In experiments with heterogeneous ca-
pacities and churn, Contracts increases the number of
clients with uninterrupted playback from 13% to 62%,
an increase of more than 4×.

• Contracts provides robust contribution incentives.
Experiments in bandwidth constrained environments
show that quality of service improves with contribu-
tion. Moreover, Contracts provides a substantial and
consistent improvement in quality of service relative
to tit-for-tat.

• Contracts is scalable, even when using centralized ver-
ification. Using our default parameters, a single Con-
tracts tracker can support the computational and net-
work overhead of more than 90,000 concurrent clients.

• Clients are quickly integrated into the mesh. After
only a few rounds of peer exchanges, newly joined
clients percolate to their intended locations in the over-
lay with bandwidth clustered peers.

6.1 Performance and incentives
We first evaluate the performance of our Contracts im-
plementation, which is built from modifications to the
reference PPLive client. We show two main results:
1) PPLive with Contracts significantly outperforms both
unmodified PPLive and one modified to support tit-for-
tat (TFT). 2) Contracts provides our intended contri-
bution incentives; when the system is bandwidth con-
strained, increasing contribution improves performance.
Performance: We define performance as the fraction of
data blocks received by their playback deadlines, and
compare performance for PPLive, PPLive using Con-
tracts, PPLive with tit-for-tat, and FlightPath [17]. For
each of these techniques, we measure the performance of
100 clients participating in a test broadcast on Emulab.6

Each client initially joins the system separated by a ten-
second interval. To evaluate Contracts under churn, each
client disconnects and rejoins after participating for 20
minutes. All clients continue this process for two hours.
To compare performance under realistic bandwidth con-
straints, client upload capacities are drawn from our mea-

6Emulab allows us to execute Windows binaries.

Figure 8: Performance comparison of unmodified
FlightPath, PPLive, rate-based tit-for-tat, and Contracts.

sured capacity distribution of PPLive clients, normal-
ized to provide an over-provisioning factor of 2; i.e., the
sum of peer capacities is twice the aggregate demand.
Crucially, however, many peers have capacity less than
the stream data rate—a common occurrence in practice.
Both TFT and Contracts clients actively exchange data
with 10 directly connected peers and reevaluate these de-
cisions every 10 seconds using the statistics of previous
30 seconds. For FlightPath trails, we use default config-
uration parameters described by Li, et al. [17].

Figure 8 shows our results. Contracts significantly im-
proves performance relative to unmodified PPLive and
FlightPath; 62% of Contracts clients experience loss-
free playback compared with just 13% when using un-
modified PPLive or 3% when using FlightPath. In other
words, the fraction of PPLive/Contracts clients experi-
encing loss-free playback is more than 4 times that of un-
modified PPLive. For clients that do miss playback dead-
lines, a larger fraction of blocks arrive in time when using
Contracts. Relative to unmodified PPLive, tit-for-tat de-
grades performance for the majority of clients. This is
consistent with our analysis in Section 3. Tit-for-tat ben-
efits high capacity clients when they happen to be placed
near the broadcast source (y > 0.96). But, more distant
clients cannot collect enough useful data with which to
trade. Even high capacity clients cannot prove their ca-
pabilities when far from the source, decreasing overall
utilization and average performance.
Incentives: Contracts rewards contribution with in-
creased robustness. We evaluate this by comparing the
performance of PPLive using Contracts with that of
PPLive using tit-for-tat. In both cases, the system is
bandwidth constrained. We use 100 clients with capaci-
ties uniformly distributed between 1–2× the stream rate
(over-provisioning factor 1.5) to connect to a test stream,
participating in the broadcast for 10 minutes. We repeat
this experiment 10 times.

Figure 9 shows the results. Averages are shown with
error bars giving the full range of block delivery rates for
clients with a given capacity. While tit-for-tat does pro-
vide some correlation between contribution and perfor-
mance, the amount of improvement varies significantly

Figure 9: Delivery rate as a function of contribution.

because tit-for-tat does not update the topology. In con-
trast, Contracts combines both topology updates and lo-
cal servicing rate decisions to provide a consistent im-
provement in performance, strengthening incentives.

6.2 Overhead
In this section, we describe implementation details and
overhead related to verifying contributions, including:
1) state maintained by the tracker and clients, 2) compu-
tation required to verify receipts, and 3) network control
traffic. We discuss each of these in turn.
State: When using centralized verification, the PPLive
tracker maintains soft state including bandwidth capac-
ity, client version, etc. of active clients. To these, Con-
tracts adds a last digest update field which records the
timestamp and content of the most recently received re-
ceipt digest message. This is used to compute contri-
bution rates when new digests are received, and its size
varies depending on content. We estimate the likely
size of receipt digest messages when computing network
overhead (described below).

Trackers also maintain hard state: the key pairs of reg-
istered clients. For cryptographic operations, Contracts
uses SHA-1 with RSA, DER-encoded PKCS#1 and 1024
bit keys. Maintaining one million key pairs requires less
than a gigabyte of storage on disk. A lookup table map-
ping truncated identifiers to keys easily fits in memory
on modern servers. For distributed verification, clients
associate public keys and nonces with connections and
maintain counters of verified receipts received from each
directly connected peer.
Network traffic: Exchanging receipt and receipt digest
messages is the main source of network overhead in Con-
tracts. Three related parameters influence this. The
tracker specifies a digest interval indicating how often
digests are reported by clients. A lengthy interval re-
duces the number of such messages at the cost of de-
layed topology updates or delayed detection of cheating
clients. The receipt volume specifies how much data each
receipt acknowledges. Finally, the stream data rate con-
trols how many receipts are exchanged among peers. To
make our analysis independent of stream data rate, we
define receipt volume in terms of how many seconds of

Figure 10: The size of receipt digest messages as a func-
tion of the digest update interval.

video data each receipt acknowledges. Currently, Con-
tracts uses a digest update interval of 15 minutes and a
receipt volume that acknowledges 30 seconds of stream
data. In the remainder of this section, we examine the
tradeoffs underlying these choices.

For a video stream of moderate quality (500 Kbit),
sending a receipt acknowledging every 30 seconds of
video data imposes less than 0.1% overhead relative to
data transfer among peers when verifying contributions
at the tracker. Distributed verification requires forward-
ing additional receipts from each peer’s one hop neigh-
borhood. This increases average network overhead to
1.2%, trading an increase in traffic among peers for a re-
duction in traffic at the tracker, which we consider next.

Network overhead at the tracker is determined by the
number of receipt digest messages received. Each receipt
digest message contains a 24 byte header and 6 byte tu-
ples specifying a peer (4 byte truncated public key) and
a receipt count (2 bytes). In the worst case, each digest
would include an entry for every directly connected peer.

In practice, only a fraction of connected peers are in-
cluded in a single digest update. To compute this, we
measured the amount of data uploaded to directly con-
nected peers by an instrumented PPLive client that par-
ticipated in popular broadcasts for 10 minutes apiece.
Contribution is highly skewed; for each client, the top
10% of its peers receive 60% of its contributed data,
meaning that there are fewer entries in each digest.

Combining our measurements of skew with the typical
number of directly connected peers allows us to compute
the size of receipt digest messages. Figure 10 shows this
data for several receipt volume values. Each line shows
the growth in the size of a digest message as a function
of the update interval. Each data point is averaged over
10,000 randomly generated digest messages using sam-
ples from measured distributions to specify the directly
connected peers and capacity skew. To compute aggre-
gate traffic at the tracker, we multiply the average receipt
digest size by the total number of clients. For instance,
processing digests for 100,000 clients with our default
parameters requires 10 KBps of tracker overhead.
Computation: Computational requirements at the

clients are dominated by the demands of video playback.
At the tracker, the computational overhead of Contracts
is dominated by receipt verification. Verification requires
regenerating the receipt messages specified by receipt di-
gest messages and computing the SHA-1 hash chain for
the generated receipts to verify the hash specified in the
digest (Figure 7). Thus, the computational overhead of
verification depends on the number of receipts, which is
determined by the stream data rate and receipt volume.

The total number of receipts per second generated by
a channel is simply the ratio of data rate and receipt vol-
ume multiplied by the population. A micro-benchmark
on a single commodity server using our current imple-
mentation can verify 3,200 receipts per second, and re-
ceipt verification is embarrassingly parallel. If receipts
encapsulate 30 seconds worth of video data, our cur-
rent implementation can verify receipts for more than
90,000 simultaneous clients in real-time using a single
server. In practice, management of so large a broadcast
is already distributed across several servers in PPLive,
meaning that receipt verification with Contracts does not
dominate resource usage when scaling the coordination
infrastructure. As with network overhead, Contracts al-
lows the tracker to shed computational load when re-
quired. receipt digest messages that are not cryptographi-
cally verified can still be used to evolve the topology and
(optionally) stored for later verification. This increases
the window of vulnerability to a cheating client but does
not degrade the efficiency of distribution.

6.3 Convergence
We next consider the integration of new clients into the
mesh. Convergence of clients to their intended location
in the topology is determined by many factors. We con-
sider two explicitly: 1) the capacity of a newly joined
client, and 2) the number of newly joining clients; e.g.,
integrating a flash crowd may require additional peer ex-
changes relative to integrating a single client into a sta-
ble mesh. We measure convergence in terms of update
rounds; i.e., the interval between peer gossip connec-
tions. To understand convergence at scale, we use trace-
driven simulation of Contracts using default parameters.

We first evaluate convergence as a function of a newly
joined client’s bandwidth capacity. For each capacity, the
new client joins a 10,000 user channel with stable mem-
bership, and we record the number of topology updates
required for the newly joined client to reach a stable po-
sition. We consider a client to have reached a stable po-
sition when the average capacity of its net contributors
(i.e., those that provide more blocks than they receive) is
within 5% of the average capacity of net consumers. The
vast majority of peers (> 80%) reach a stable position in
four update rounds or less. Broadly, the results are con-
sistent with the variation in observed bandwidth capacity.

Figure 11: The number of peer exchanges required for a
set of newly joined clients to reach stable matchings as a
function of the number of arrivals in a flash crowd.

Low capacity peers can quickly discover a stable set of
similarly low capacity peers, while high capacity peers
need several rounds to stabilize.

Next, we consider topology convergence for flash-
crowd arrivals. In this case, we simulate a channel with
1,000 initial participants and vary the number of joining
clients. Each new client is assigned a capacity drawn
from the same distribution as the existing clients, provid-
ing a constant amount of resources in the system. Fig-
ure 11 shows the number of rounds required to achieve
stability for the last newly joined client in the crowd.
The number of rounds required increases logarithmically
with the number of joining peers.

6.4 Over-provisioning

Our evaluation thus far has focused on the performance
of Contracts in settings with a specific amount of over-
provisioning; i.e., capacity in excess of total demand. We
now evaluate over-provisioning directly, measuring the
performance of PPLive and Contracts while scaling our
measured capacity distribution to vary the ratio of capac-
ity to demand. We measure the block delivery rate of 100
static PPLive clients running on Emulab. As in previous
experiments, we record each client’s block delivery rate.
Figure 12 summarizes the results, with error bars show-
ing the 5th and 95th percentiles of delivery rate across all
clients. In each trial, the average delivery rate PPLive us-
ing Contracts exceeds that of unmodified PPLive. When
capacity is limited, low capacity clients are penalized by
Contracts, contributing to variations in performance. As
capacity increases, however, Contracts delivers consis-
tently higher quality of service for all peers. Taken to-
gether, these results show that Contracts achieves consis-
tently higher performance for a range of operating con-
ditions, and delivers on our overall goals of improving
efficiency and providing contribution incentives. When
the system is capacity rich, Contracts improves distri-
bution efficiency, improving delivery rate for all peers.
But, during periods of resource contention, high capac-
ity peers receive better quality of service.

Figure 12: The impact of over-provisioning on PPLive’s
performance. Data points show the average fraction of
blocks received by their playback deadlines.

7 Related work
Our work builds on a large body of prior work focused
on live streaming, P2P data distribution, and incentives.

The notion of a P2P approach to data streaming was
pioneered by Narada, Overcast and Yoid [4, 14, 8]. These
designs tried to approximate multicast support using a
tree structured overlay. SplitStream, a subsequent de-
sign, addressed the limited utilization of leaf nodes in
tree-based schemes [2].

Subsequent work has applied swarming designs,
borrowed from BitTorrent-like systems, to video-on-
demand and live streaming. Coolstreaming/DONet ap-
plies a mesh-based network structure to live stream-
ing [28]. Annapureddy, et al. argue that high quality
video on demand is feasible using a P2P architecture,
a point reinforced by recent work describing PPLive’s
video-on-demand P2P implementation [13] as well as
other publicly available commercial streaming systems
(e.g., PPStream, SopCast, TVAnts, and UUSee).

More recent work has studied incentives in bulk data
distribution in widely deployed systems, particularly Bit-
Torrent. Qiu and Srikant studied BitTorrent formally,
finding that it achieves a Nash equilibrium under certain
conditions [25], although more recent work has shown
practical mechanisms for subverting BitTorrent’s incen-
tive strategy [22]. These advancements in understand-
ing the subtlety of bilateral exchange motivated our con-
sideration of its application to live streaming. In [1],
Aperjis, et al. extend bilateral exchange to multilateral
exchange by introducing prices. They compare their
scheme with BitTorrent and show improvements in ef-
ficiency and robustness. One hop reputations [23] use
limited propagation of contribution information to im-
prove incentives in BitTorrent; we apply similar ideas to
live streaming.

Most related to our work are systems that address in-
centives in live streaming (e.g., [10, 12, 18, 19, 21, 26,
27]). Sung, et al. describe a live streaming design that
rewards contribution but depends on honest capacity re-
porting by peers [27]. SecureStream introduces proto-

col mechanisms to defend against several attacks (e.g.,
forged data and denial of service [12]). These techniques
are largely complementary to our work, which focuses
on verifiably rewarding contribution. BAR Gossip an-
alyzes incentives in streaming formally and describes a
protocol designed to induce contributions from rational
users [18]. FlightPath relaxes several constraints of BAR
Gossip (e.g., by allowing dynamic membership), but still
requires the long-term balance of contribution and con-
sumption to provide contribution incentives. Our experi-
ence applying rate-based tit-for-tat is consistent with that
of Pianese, et al. who apply TFT to live streaming and
experimentally confirm the need for significant altruism
to achieve robustness [21].

Motivated by the practical challenges of client het-
erogeneity, we take a different approach in the design
of Contracts, providing incentives via a global contract
and including explicit topology restructuring in our algo-
rithm design. Habib, et al. propose providing high capac-
ity clients with additional peers to improve their service
quality [10], but such improvements are not assured in
environments with high levels of bandwidth heterogene-
ity.

Several live-streaming systems focus on providing ro-
bustness by enforcing contribution amounts. Chu, et al.
propose mandatory, centrally enforced taxation in the
context of multi-tree live streaming [3]. Haridasan, et
al. provide a two-level auditing scheme for live stream-
ing that ensures that peers contribute more than a thresh-
old amount of data [11]. Local auditing and gossip pro-
vide an immediate but partial check on user’s contribu-
tion, while global audit ensures that a misbehaving node
is caught. Rather than punishing nodes that do not con-
tribute a sufficient amount, Contracts rewards nodes for
voluntarily contributing as much as possible.

8 Conclusion
We have examined performance and contribution incen-
tives for live streaming systems. The unique features of
the P2P live streaming environment limit the effective-
ness of many widely-used incentive strategies based on
balanced or bilateral exchange. These challenges moti-
vate the design of Contracts, a new incentive strategy that
rewards contribution with quality of service by evolving
the overlay topology. Building on a protocol that pro-
vides verifiable contributions, we have shown that the
use of Contracts both improves performance relative to
PPLive and strengthens contribution incentives relative
to existing approaches without curtailing scalability.

Acknowledgments
We would like to thank the anonymous reviewers and our
shepherd, Lorenzo Alvisi, for their valuable feedback.

References
[1] C. Aperjis, M. Freedman, and R. Johari. Peer-assisted content

distribution with prices. In CoNEXT, 2008.
[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Row-

stron, and A. Singh. SplitStream: high-bandwidth multicast in
cooperative environments. In SOSP, 2003.

[3] Y. Chu, J. Chuang, and H. Zhang. A case for taxation in peer-to-
peer streaming broadcast. In SIGCOMM PINS, 2004.

[4] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast.
In SIGMETRICS, 2000.

[5] B. Cohen. Incentives build robustness in BitTorrent. In P2P-
ECON, 2003.

[6] Comcast limits download volume. http://online.wsj.
com/article/SB122004003325884079.html.

[7] J. R. Douceur. The Sybil attack. In IPTPS, 2002.
[8] P. Francis. Yoid: Extending the internet multicast architecture.

Available at http://www.icir.org/yoid/docs/, 2000.
[9] C. Gkantsidis, J. Miller, and P. Rodriguez. Comprehensive view

of a live network coding P2P system. In IMC, 2006.
[10] A. Habib and J. Chuang. Service differentiated peer selection:

an incentive mechanism for peer-to-peer media. In IEEE Trans.
Multimedia, 2006.

[11] M. Haridasan, I. Jansch-Porto, and R. van Renesse. Enforcing
fairness in a live-streaming system. In MMCN, 2008.

[12] M. Haridasan and R. van Renesse. SecureStream: An intrusion-
tolerant protocol for live-streaming dissemination. Computer
Communication, 31(3):563–575, 2008.

[13] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang. Challenges,
design and analysis of a large-scale P2P-VoD system. In SIG-
COMM, 2008.

[14] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and
J. W. O’Toole. Overcast: Reliable multicasting with on overlay
network. In OSDI, 2000.

[15] J.-J. Laffont and D. Martumort. The Theory of Incentives: The
Principal-agent model. Princeton University Press, 2002.

[16] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee. BitTorrent
is an auction: analyzing and improving BitTorrent’s incentives. In
SIGCOMM, 2008.

[17] H. Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robinson,
L. Alvisi, and M. Dahlin. FlightPath: Obedience vs choice in
cooperative services. In OSDI, Dec 2008.

[18] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin. BAR gossip. In OSDI, Nov. 2006.

[19] Z. Liu, Y. Shen, S. Panwar, K. Ross, and Y. Wang. Using layered
video to provide incentives in P2P live streaming. In P2P-TV,
2007.

[20] Z. Liu, C. Wu, B. Li, and S. Zhao. Distilling superior peers in
large-scale P2P streaming systems. In INFOCOMM, 2009.

[21] F. Pianese, D. Perino, J. Keller, and E. W. Biersack. PULSE: An
adaptive, incentive-based, unstructured P2P live streaming sys-
tem. IEEE Transactions on Multimedia, 2007.

[22] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. Do incentives build robustness in BitTorrent?
In NSDI, 2007.

[23] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson. One hop
reputations for P2P file sharing workloads. In NSDI, 2008.

[24] M. Piatek, A. Krishnamurthy, A. Venkataramani, R. Yang, and
D. Zhang. Contracts: Practical contribution incentives for P2P
live streaming. Technical Report, UW CSE, 2010.

[25] D. Qiu and R. Srikant. Modeling and performance analysis of
BitTorrent-like peer-to-peer networks. In SIGCOMM, 2004.

[26] T. Silverston, O. Fourmaux, and J. Crowcroft. Towards an incen-
tive mechanism for peer-to-peer multimedia live streaming sys-
tems. In International Conference on Peer-to-Peer Computing,
2008.

[27] Y.-W. Sung, M. Bishop, and S. Rao. Enabling contribution aware-
ness in an overlay broadcasting system. SIGCOMM, 2006.

[28] X. Zhang, J. Liu, B. Li, and T.-S. P. Yun. CoolStreaming/DONet:
A data-driven overlay network for live media streaming. In IN-
FOCOMM, 2005.

http://online.wsj.com/article/SB122004003325884079.html
http://online.wsj.com/article/SB122004003325884079.html
http://www.icir.org/yoid/docs/

	Introduction
	PPlive overview
	Limits of bilateral exchange
	Structuring for performance and incentives
	Contracts
	Contribution contracts
	Topology updating policy
	Verifying contributions
	Collusion resistance

	Evaluation
	Performance and incentives
	Overhead
	Convergence
	Over-provisioning

	Related work
	Conclusion

