
Sybil-resilient online

content voting

Nguyen Tran, Bonan Min, Jinyang Li, and
Lakshminarayanan Subramanian

New York University
NSDI’09

Sybil attacks pollute voting resultWebsites rely on votes for ranking

Sybil defense is hard

• Open system → an attacker can join easily

• Lack of strong identity → an attacker can
join with many fake accounts

• Need some resource that cannot be
acquired in abundance

– Links in a social network?

Social links are hard to acquire in

abundance

Assumption: # of attack edges is small
[SybilLimit S&P’08] [Ostra NSDI’08]

An attack edge connects an honest

node and a Sybil node
[SybilGuard Sigcomm’06]

SumUp: a Sybil-resilient vote

aggregation system

• SumUp’s setting: A central party collects all votes
and the social graph

• Goal: extract a subset of votes

– Include few votes from Sybils

– Include most votes from honest users

SumUp: a Sybil-resilient vote

aggregation system

• SumUp’s setting: A central party collects all votes
and the social graph

• Goal: extract a subset of votes

– Include few votes from Sybils

– Include most votes from honest users

SumUp overview

• Design insights

1. Designate a vote collector

2. Use max-flow to collect votes

3. Assign appropriate link capacities

#1: Designate a vote collector

vote collector

• Each node acts as its own vote collector

#2: Use max-flow to collect votes

vote collector

Bogus votes are

congested at attack edges

#2: Use max-flow to collect votes

vote collector

Bogus votes are

congested at attack edges
Honest votes are

also congested

#3: Assign appropriate link capacities

vote collector

Attack edges should be

farther away from the

collector

Honest votes are

congested at edges

closer to the collector

SumUp’s design details

• Capacity assignment

• Leverage user feedback to reduce bogus
votes

Capacity assignment

• Assign link capacity to collect at most v
votes

– Ideally v is the number of honest votes

• Assign greater capacity to edges that are
closer to the vote collector

Assign capacity via ticket distribution

v = 6 tickets

3
3

1

1
1

1

0

A node consumes 1

ticket and distributes the

rest to out-going links

vote envelope

Assign capacity via ticket distribution

v = 6 tickets

2

2
2

1 2

1 1

1
1

1

1 1

1
1

1

1

1

1

1

1

1

1

1

1 1

1

4
4

1

Link capacity =

(# of tickets on the link) +1

vote envelope

Assign capacity via ticket distribution

v = 6 tickets

2

2

2

1
2

1 1

1
1

1

1 1

1
1

1

1

1

1

1

1

1

1

1

1 1

1

1

4 4

Link capacity =

(# of tickets on the link) +1

Approximate v to # of honest votes

• Observation

– When number of honest votes v, number

of collected votes v

– When number of honest votes v, number

of collected votes v

• Not many bogus votes are collected

�

≈

�

�

Setting v

• Iteratively adjust v:

• Final v approximates number of

honest votes regardless of attacks

1. Start with a small v = 100
2. Collect votes using current v

3. If # of collected votes > 0.5*v, double v and repeat step 2

SumUp’s provable properties

• Limit bogus votes

– When v n, expected bogus votes per

attack edge is 1+ o(1)

– Even when v = (n), expected bogus votes

per attack edge is O(log n) [SybilLimit IEEE S&P’08]

• Collect a large fraction of honest votes

– On a random graph, ~100% honest votes

can be collected

�

Θ

Leverage user feedback on votes

• If vote collector can tag some votes as
bogus, SumUp can do better:

– Reduce capacity on attack edges close to

the collector

– Possibly ignore attack edges

• Idea: penalize all links along the path
taken by the bogus vote [Ostra NSDI’08]

Associate a penalty with each link

vote collector

4 4

2
2

22

1

1

1

1

1

1

1 1

1
1

1
1

1

1

1

1

1

1

1

1

1
1

An attack edge is close

to the vote collector

p=1/4

p=1/2

p=1

p=1

Reassign capacity according to penalty

V = 6 tickets

4
2

1

p=1/4

p=1/2

p=1

p=1

Links with higher penalty

receive fewer tickets

Capacity of attack edge is

reduced from 2 to 1

V = 6 tickets

5 3

3

2
2

2

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

p=1/4

p=1/2

p=1

p=1

Reassign capacity according to penalty

Eliminate links with high penalty

V = 6 tickets

5 3

3

2
2

2

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1
p=5

Eliminate links with high

penalty

p=1/4

p=1/2

p=1

p=1

Evaluation

1. How does SumUp perform on real
social networks?

2. Can SumUp detect Sybil attacks?

Simulation setup

• Use 3 social networks

– YouTube (0.5 million nodes)

– Flickr (1.5 million nodes)

– Synthetic (3 million nodes)

• Inject 100 attack edges randomly

• Use a random vote collector

• Choose a random set of honest voters

SumUp limits number of bogus votes

A
v
g

b
o

g
u
s
 v

o
te

s
 p

e
r

a
tt
a

c
k
 e

d
g

e

Fraction of honest nodes that vote

Bogus votes per

attack edge is close

to 1

When all nodes

vote, bogus votes

per attack edge is

still small

SumUp collects most honest votes

F
ra

c
o

f
h

o
n
e

s
t
v
o

te
s
 c

o
lle

c
te

d

Fraction of honest nodes that vote

SumUp can collect

>90% honest votes

Evaluate SumUp on Digg

Digg marks

“popular” articles

• 130,000 popular articles among 7

million articles submitted

Users cast positive

or negative votes

Digg’s social network
• 3 million nodes

• 0.5 million nodes in a

connected component

• 80% of votes are from the

connected component

Evaluating SumUp on Digg

• Kevin Rose (Digg founder) → vote collector

• Run SumUp for all votes cast before the
article is marked as “popular”

• Normal articles → fraction of votes collected
> 0.7

• Suspicious articles → fraction of votes
collected 0.7 �

Suspicious articles have

evidence of attack

• ~800 suspicious articles have less than 50%
votes collected by SumUp

• Manually sampled 30 articles

• Found (subjective) evidence of attacks in 15
the articles
– 1 article is an advertisement

– 10 articles have many newly registered voters

– 4 articles receive < 50 votes after marked
“popular”

Examples of suspicious articles

An example of suspicious articles

with no evidence of attack

Suspicious articles receive

more negative votes
A

v
g

n
e

g
a

ti
v
e

 v
o

te
s

a

ft
e
r

“p
o

p
u

la
r”

Fraction of positive votes collected by SumUp

• Obtained negative votes for 5794 “popular”
articles from 08/2008 to 09/2008

Related work

• Node admission
– SybilGuard [Sigcomm’06], SybilLimit [IEEE S&P’08],

SybilInfer [NDSS’09]

• Fighting spam
– Ostra [NSDI’08]

• User reputation systems
– SybilProof [P2PEcon’05], Appleseed [ISF’05],

Advogato[SSYM’98]

• Content voting systems
– Credence [NSDI’06]

Conclusion

• Defending against Sybil attacks is important
for content voting systems

• SumUp vote aggregation:

1. Limit # of bogus votes by # of attack edges

2. Collect many votes from honest users

3. Ignore votes from attackers that repetitively

cast bogus votes

