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Sybil attacks pollute voting resultWebsites rely on votes for ranking



Sybil defense is hard

• Open system → an attacker can join easily

• Lack of strong identity → an attacker can 
join with many fake accounts

• Need some resource that cannot be 
acquired in abundance

– Links in a social network?



Social links are hard to acquire in 

abundance

Assumption: # of attack edges is small
[SybilLimit S&P’08] [Ostra NSDI’08]

An attack edge connects an honest 

node and a Sybil node
[SybilGuard Sigcomm’06]



SumUp: a Sybil-resilient vote 

aggregation system

• SumUp’s setting: A central party collects all votes 
and the social graph  

• Goal: extract a subset of votes

– Include few votes from Sybils

– Include most votes from honest users
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SumUp overview

• Design insights

1. Designate a vote collector

2. Use max-flow to collect votes

3. Assign appropriate link capacities



#1: Designate a vote collector 

vote collector

• Each node acts as its own vote collector



#2: Use max-flow to collect votes

vote collector

Bogus votes are 

congested at attack edges



#2: Use max-flow to collect votes

vote collector

Bogus votes are 

congested at attack edges
Honest votes are 

also congested



#3: Assign appropriate link capacities

vote collector

Attack edges should be 

farther away from the 

collector

Honest votes are 

congested at edges 

closer to the collector



SumUp’s design details

• Capacity assignment

• Leverage user feedback to reduce bogus 
votes



Capacity assignment

• Assign link capacity to collect at most v
votes

– Ideally v is the number of honest votes

• Assign greater capacity to edges that are 
closer to the vote collector



Assign capacity via ticket distribution

v = 6 tickets
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vote envelope

Assign capacity via ticket distribution

v = 6 tickets
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vote envelope

Assign capacity via ticket distribution
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Approximate v to # of honest votes

• Observation

– When number of honest votes      v, number 

of collected votes v

– When number of honest votes      v, number 

of collected votes     v

• Not many bogus votes are collected
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Setting v

• Iteratively adjust v:

• Final v approximates number of 

honest votes regardless of attacks 

1. Start with a small v = 100
2. Collect votes using current v

3. If # of collected votes > 0.5*v, double v and repeat step 2



SumUp’s provable properties

• Limit bogus votes 

– When v      n, expected bogus votes per 

attack edge is 1+ o(1)

– Even when v =    (n), expected bogus votes 

per attack edge is O(log n) [SybilLimit IEEE S&P’08]

• Collect a large fraction of honest votes

– On a random graph, ~100% honest votes 

can be collected

�

Θ



Leverage user feedback on votes

• If vote collector can tag some votes as 
bogus, SumUp can do better: 

– Reduce capacity on attack edges close to 

the collector

– Possibly ignore attack edges 

• Idea: penalize all links along the path 
taken by the bogus vote [Ostra NSDI’08]



Associate a penalty with each link

vote collector
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Reassign capacity according to penalty

V = 6 tickets
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Capacity of attack edge is 

reduced from 2 to 1

V = 6 tickets
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Eliminate links with high penalty 

V = 6 tickets
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Evaluation

1. How does SumUp perform on real 
social networks? 

2. Can SumUp detect Sybil attacks?



Simulation setup

• Use 3 social networks

– YouTube (0.5 million nodes)

– Flickr (1.5 million nodes) 

– Synthetic (3 million nodes)

• Inject 100 attack edges randomly

• Use a random vote collector

• Choose a random set of honest voters



SumUp limits number of bogus votes
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SumUp collects most honest votes
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Evaluate SumUp on Digg

Digg marks 

“popular” articles

• 130,000 popular articles among 7 

million articles submitted

Users cast positive 

or negative votes

Digg’s social network
• 3 million nodes

• 0.5 million nodes in a 

connected component

• 80% of votes are from the 

connected component



Evaluating SumUp on Digg

• Kevin Rose (Digg founder) → vote collector

• Run SumUp for all votes cast before the 
article is marked as “popular”

• Normal articles → fraction of votes collected 
> 0.7

• Suspicious articles → fraction of votes 
collected      0.7 �



Suspicious articles have 

evidence of attack

• ~800 suspicious articles have less than 50% 
votes collected by SumUp

• Manually sampled 30 articles

• Found (subjective) evidence of attacks in 15 
the articles
– 1 article is an advertisement

– 10 articles have many newly registered voters

– 4 articles receive < 50 votes after marked 
“popular”



Examples of suspicious articles



An example of suspicious articles 

with no evidence of attack



Suspicious articles receive

more negative votes
A

v
g

n
e

g
a

ti
v
e

 v
o

te
s
  
a

ft
e
r 

“p
o

p
u

la
r”

Fraction of positive votes collected by SumUp
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Related work

• Node admission
– SybilGuard [Sigcomm’06], SybilLimit [IEEE S&P’08], 

SybilInfer [NDSS’09]

• Fighting spam
– Ostra [NSDI’08]

• User reputation systems
– SybilProof [P2PEcon’05], Appleseed [ISF’05],

Advogato[SSYM’98]

• Content voting systems
– Credence [NSDI’06]



Conclusion

• Defending against Sybil attacks is important 
for content voting systems

• SumUp vote aggregation:

1. Limit # of bogus votes by # of attack edges

2. Collect many votes from honest users

3. Ignore votes from attackers that repetitively 

cast bogus votes


