Bunker: A Privacy-Oriented Platform for Network Tracing

Andrew Miklas, Stefan Saroiu, Alec Wolman, Angela D. Brown University of Toronto and Microsoft Research

Network Tracing Raises Privacy Concerns

- Network tracing is an indispensable tool
 - Traffic engineering, fault diagnosis and recovery
 - Research studies

- Customers' privacy is vital concern to ISPs
 - ISPs view possessing raw traces as a liability

Threat Model for Raw Traces

- ISPs view raw data traces as a liability:
 - Accidental disclosure
 - Operational and remote attacks
 - Subpoenas

■ Implications:

- 1. Nobody can have access to raw data
- 2. Trace anonymization can help mitigate privacy concerns

Two Approaches for Anon.

- 1. Offline anonymization
 - Trace anonymized after raw data is collected
 - Problem: high privacy risks
- 2. Online anonymization
 - Trace anonymized simultaneously with collection
 - Problem: high engineering costs

Both approaches have serious shortcomings

Simple Tasks can be Very Slow

Regular expression for phishing:

```
" ((password) | (<form) | (<input) | (PIN) | (username) | (<script) | (user id) | (sign in) | (log in) | (login) | (signin) | (log on) | (sign on) | (signon) | (passcode) | (logon) | (account) | (activate) | (verify) | (payment) | (personal) | (address) | (card) | (credit) | (error) | (terminated) | (suspend)) [^A-Za-z]"
```

■ libpcre: 5.5 s for 30 M = 44 Mbps max

Our Solution: Bunker

- Combines the best of both worlds
 - Avoids privacy issues of offline anon.
 - Avoids SW engineering challenges of online

■ Idea:

■ We can use buffer-on-disk (like in offline anon.) if we can lock-down the trace data + software; only information exposed is anonymized trace

Outline

- Motivation
- Design of Bunker
- Security attacks
- System evaluation
- Conclusions

Main Idea: Lock-down Raw Data in Bunker

- "Closed-box" protects sensitive data
 - Contains all raw trace data & processing code
 - Restricted access to closed-box (e.g., no console)

Main Idea: Lock-down Raw Data in Bunker

- "Closed-box" protects sensitive data
 - Contains all raw trace data & processing code
 - Restricted access to closed-box (e.g., no console)
- "Safe-on-reboot": erases data from closed-box
 - ECC RAM is cleared by BIOS upon reboot
 - Encryption protects on disk data
 - Randomly generated key held in RAM inside closed-box
 - Data on disk cannot be decrypted after reboot

Generic Tracing System

Bunker's Logical Design

VM-based Implementation

VM-based Implementation

How We Implemented Closed-box?

- Eliminate all I/O + drivers from kernel except the ones needed
 - custom-made menuconfig
- Use firewalls to restrict network communication
 - e.g., standard iptables configuration

How to Use Bunker?

- Upon bootup Bunker offers two configurations
 - 1. Debugging: all drivers enabled
 - 2. Tracing: most I/O + drivers disabled
- Upon choosing tracing configuration
 - Display and keyboard freeze (no drivers)
 - Kernel's init runs a script to start trace
 - Operator can log in open-box VM via its NIC

Benefits

- Strong privacy properties
 - Raw trace and other sensitive data cannot be leaked

- Trace processing done offline
 - Can use your favorite language! (e.g., Python)
 - Parsing can be done with off-the-shelf components

Outline

- Motivation
- Design of Bunker
- Security attacks
- System evaluation
- Conclusions

Why is Bunker secure?

- Bunker has large TCB but narrow interfaces
 - Bunker remains secure as long as vulnerability cannot be exploited through the narrow interfaces
- Three classes of attacks:
 - Attacking the closed-box's interfaces
 - Hardware attacks
 - Trace injection attacks

- 1. Attacking the closed-box's interfaces
- 2. Hardware attacks
- 3. Trace injection attacks

- 1. Attacking the closed-box's interfaces
- 2. Hardware attacks
- 3. Trace injection attacks

- 1. Attacking the closed-box's interfaces
- 2. Hardware attacks
- 3. Trace injection attacks

- 1. Attacking the closed-box's interfaces
- 2. Hardware attacks
- 3. Trace injection attacks

Attacker Tampers with Hardware

- Safe-on-reboot eliminates most H/W attacks
- Attack left: extracting keys from RAM while system is running
 - Cold-boot attacks
 - Attaching bus monitor
 - Specialized device to dump RAM without OS support
- Need hardware support
 - Secure co-processors could thwart such attacks
 - TPMs are not useful!

Outline

- Motivation
- Design of Bunker
- Security attacks
- System evaluation
- Conclusions

Software Engineering Benefits

Develop. time: 2 months (Bunker) vs. years (UW/Toronto)

Software Engineering Benefits

Develop. time: 2 months (Bunker) vs. years (UW/Toronto)

Software Engineering Benefits

Develop. time: 2 months (Bunker) vs. years (UW/Toronto)

Conclusions

- Today's network tracing requires privacy properties
 - Operators + researchers look "deep" into the packets
- Offline anon. does not offer privacy properties
- Online anon. requires serious engineering
- Bunker provides
 - the privacy of online anonymization
 - the simplicity of offline anonymization

Questions?

Code available at:

http://www.cs.toronto.edu/~stefan/bunker