
Making Byzantine Fault
Tolerant Systems
Tolerate Byzantine

Failures
Allen Clement, Mirco Marchetti, Edmund Wong

Lorenzo Alvisi, Mike Dahlin

BFT Systems
PBFT [OSDI 98]

HQ [OSDI 06]

Zyzzyva [SOSP 07]

HT BFT [DSN 04]

QU [SOSP 05]

BFT Under Attack [NSDI 08]

Commit Barrier Scheduling
[SOSP 07]

Low Overhead BFT [SOSP 07]

Attested Append Only Memory
[SOSP 07]

Beyond 1/3 Faulty in BFT
[SOSP 07]

BASE [OSDI 02]

SafeStore [USENIX 07]

Separating Agreement from
Execution [SOSP 03]

SUNDR [OSDI 04]

...

Best
Case

Faulty
Client

Client
Flood

Faulty
Primary

Faulty
Replica

PBFT 62k 0 crash 1K 250

Q/U 24k 0 crash NA 19k

HQ 15k NA 4.5k NA crash

Zyzzyva 65k 0 crash crash 0

ops/sec

System Throughput

Best
Case

Faulty
Client

Client
Flood

Faulty
Primary

Faulty
Replica

PBFT 62k 0 crash 1K 250

Q/U 24k 0 crash NA 19k

HQ 15k NA 4.5k NA crash

Zyzzyva 65k 0 crash crash 0

ops/sec

System Throughput

Best
Case

Faulty
Client

Client
Flood

Faulty
Primary

Faulty
Replica

PBFT 62k 0 crash 1K 250

Q/U 24k 0 crash NA 19k

HQ 15k NA 4.5k NA crash

Zyzzyva 65k 0 crash crash 0

Aardvark 39k 39k 7.8k 37k 11k
ops/sec

System Throughput

Outline

Robust BFT: The case for a new goal

Aardvark: Designing for RBFT

Evaluation: RBFT in action

Paved with
good intentions

No BFT protocol should rely on synchrony for safety

FLP: No consensus protocol can be both safe and live in an
asynchronous system!

All one can guarantee is eventual progress

“Handle normal and worst case separately as a rule, because
the requirements for the two are quite different:
 the normal case must be fast;
 the worst case must make some progress”
-- Butler Lampson, “Hints for Computer System Design”

Maximize performance when

the network is synchronous

all clients and servers behave correctly

While remaining

safe if at most servers fails

eventually live

Recasting the problem

f

Misguided

Dangerous

Futile

Recasting the problem

Recasting the problem

Misguided

it encourages systems that fail to deliver BFT

Dangerous

Futile

Recasting the problem

Misguided

it encourages systems that fail to deliver BFT

Dangerous

it encourages fragile optimizations

Futile

Recasting the problem

Misguided

it encourages systems that fail to deliver BFT

Dangerous

it encourages fragile optimizations

Futile

it yields diminishing return on common case

Synchronous

A New Goal

No FailuresFailures No Failures

Asynchronous

Failures

Synchronous

A New Goal

No FailuresFailures

?

Synchronous

No Failures

Asynchronous

A New Goal

Synchronous

No FailuresFailures

Asynchronous

Failures

Robust BFT

Maximize performance when

the network is synchronous

at most servers fail

While remaining

safe if at most servers fail

eventually live

f

f

Outline

Robust BFT: The case for a new goal

Aardvark: Designing for RBFT

Evaluation: RBFT in action

Protocol Structure

“Good” messages

“Bad” messages
Computation

steps

Step 1 Step 2 Step 3

Fragile Optimizations

Revisiting
conventional wisdom

Signatures are expensive - use MACs

View changes are to be avoided!

Hardware multicast is a boon

Revisiting
conventional wisdom

Signatures are expensive - use MACs
Faulty clients can use MACs to generate ambiguity
Aardvark requires clients to sign requests

View changes are to be avoided

Hardware multicast is a boon

Revisiting
conventional wisdom

Signatures are expensive - use MACs
Faulty clients can use MACs to generate ambiguity
Aardvark requires clients to sign requests

View changes are to be avoided
Aardvark uses regular view changes to maintain high
throughput despite faulty primaries

Hardware multicast is a boon

Revisiting
conventional wisdom

Signatures are expensive - use MACs
Faulty clients can use MACs to generate ambiguity
Aardvark requires clients to sign requests

View changes are to be avoided
Aardvark uses regular view changes to maintain high
throughput despite faulty primaries

Hardware multicast is a boon
Aardvark uses separate work queues for clients and
individual replicas

Big MAC Attack

c

Big MAC Attack

c

Big MAC Attack

c

Big MAC Attack

c

c

c

Big MAC Attack

c

c

c

Big MAC Attack

c

Big MAC Attack

c

Big MAC Attack

c

Big MAC Attack

c

c

c

Big MAC Attack

c

c

c

Big MAC Attack

cc

c c

c

c

Big MAC Attack

c

Faulty Client

c

c

Faulty Primary

c

c][

Hybrid MAC/Signatures

c][

Hybrid MAC/Signatures

request
submission

c][

Hybrid MAC/Signatures

request
submission

The MAC is good.
How is the signature?

c

Hybrid MAC/Signatures

request
submission

c

Hybrid MAC/Signatures

request
submission

Signature is good too!

c

Hybrid MAC/Signatures

request
submission

c

c

c

Hybrid MAC/Signatures

request
submission

primary
orders
request

c

c

c

Hybrid MAC/Signatures

request
submission

primary
orders
request

c

c

c

Hybrid MAC/Signatures

request
submission

primary
orders
request

Signed Request Filtering
Client

Blacklisted?
Verify
MAC

Verify
Signature

Blacklist
Client

Process
Request

Big MAC Attack

request
submission

primary
orders
request

replicas agree on
the next request

replicas respond
to the client

PBFT

Big MAC Attack

request
submission

primary
orders
request

replicas agree on
the next request

replicas respond
to the client

primary
orders
request

execute
the

request

Zyzzyva

Big MAC Attack

Q/U

request
submission

replicas agree on
the next request

replicas respond
to the client

“primary” orders request

view change

execute
the

request

Big MAC Attack

request
submission

“primary” orders request replicas respond
to the client

replicas agree on
the next request

view
change

execute
the

request

HQ

Slow Primary

Slow Primary

Slow Primary

Adaptive View Changes

Time

Required Throughput

Observed Throughput

Th
ro

ug
hp

ut

Adaptive View Changes

Time

Required Throughput

Observed Throughput

Th
ro

ug
hp

ut

Adaptive View Changes

Time

Required Throughput

Observed Throughput

Th
ro

ug
hp

ut

Adaptive View Changes

Time

Required Throughput

Observed Throughput

Th
ro

ug
hp

ut

Implementation details

Sign client requests

Adaptive view change

Separate network channels

Fair scheduling

clients -v- replicas

replicas -v- replicas

Exploit multicore architectures

Outline

Robust BFT: The case for a new goal

Aardvark: Designing for RBFT

Evaluation: RBFT can work

Throughput -v- Latency

AardvarkHQ Q/U

PBFT ZyzzyvaLa
te

nc
y

(m
s)

Throughput (Kops/sec)

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

Aardvark, Incrementally

MAC Client
Request

Sign Client
Request

Adaptive
View

Change

PBFT 62k 30k -

Aardvark 58k 39k 39k

Performance with
failures

Byzantine failures are arbitrary

Good faith effort

Big MAC Attack

Peak Faulty
Client

PBFT 62k 0
Q/U 24k 0
HQ 7.6k -

Zyzzyva 65k 0
Aardvark 39k 39k

Slow Primary

Peak 1ms
delay

10ms
delay

100ms
delay

PBFT 62k 5k 5k 1k

Zyzzyva 65k 28k 5k crash

Aardvark 39k 38k 37k 38k

Summary

RBFT: a new goal for BFT systems

Aardvark: rejecting conventional wisdom

Evaluation: it works!

