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BFT Systems
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Flood

Faulty 
Primary

Faulty 
Replica

PBFT 62k 0 crash 1K 250

Q/U 24k 0 crash NA 19k

HQ 15k NA 4.5k NA crash

Zyzzyva 65k 0 crash crash 0

Aardvark 39k 39k 7.8k 37k 11k
ops/sec

System Throughput



Outline

Robust BFT:  The case for a new goal

Aardvark:  Designing for RBFT

Evaluation:  RBFT in action



Paved with 
good intentions

No BFT protocol should rely on synchrony for safety

FLP: No consensus protocol can be both safe and live in an 
asynchronous system!

All one can guarantee is eventual progress

“Handle normal and worst case separately as a rule, because 
the requirements for the two are quite different:
    the normal case must be fast;
    the worst case must make some progress”
-- Butler Lampson, “Hints for Computer System Design”



Maximize performance when

the network is synchronous 

all clients and servers behave correctly

While remaining

safe if at most   servers fails

eventually live

Recasting the problem
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Recasting the problem

Misguided

it encourages systems that fail to deliver BFT

Dangerous

it encourages fragile optimizations

Futile

it yields diminishing return on common case
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Robust BFT

Maximize performance when

the network is synchronous

at most   servers fail

While remaining

safe if at most   servers fail

eventually live

f
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Robust BFT:  The case for a new goal

Aardvark:  Designing for RBFT

Evaluation:  RBFT in action



Protocol Structure

“Good” messages

“Bad” messages
Computation 

steps

Step 1 Step 2 Step 3



Fragile Optimizations
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Revisiting 
conventional wisdom

Signatures are expensive - use MACs
Faulty clients can use MACs to generate ambiguity
Aardvark requires clients to sign requests

View changes are to be avoided
Aardvark uses regular view changes to maintain high 
throughput despite faulty primaries

Hardware multicast is a boon
Aardvark uses separate work queues for clients and 
individual replicas
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Big MAC Attack
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Faulty Client

c
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Faulty Primary
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Signed Request Filtering
Client

Blacklisted?
Verify
MAC

Verify
Signature

Blacklist
Client

Process
Request
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Big MAC Attack
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Implementation details

Sign client requests

Adaptive view change

Separate network channels

Fair scheduling

clients -v- replicas

replicas -v- replicas

Exploit multicore architectures



Outline

Robust BFT:  The case for a new goal

Aardvark:  Designing for RBFT

Evaluation:  RBFT can work
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Aardvark, Incrementally

MAC Client 
Request

Sign Client 
Request

Adaptive 
View 

Change

PBFT 62k 30k -

Aardvark 58k 39k 39k



Performance with 
failures

Byzantine failures are arbitrary

Good faith effort



Big MAC Attack

Peak Faulty 
Client

PBFT 62k 0
Q/U 24k 0
HQ 7.6k -

Zyzzyva 65k 0
Aardvark 39k 39k



Slow Primary

Peak 1ms
delay

10ms
delay

100ms
delay

PBFT 62k 5k 5k 1k

Zyzzyva 65k 28k 5k crash

Aardvark 39k 38k 37k 38k



Summary

RBFT:  a new goal for BFT systems

Aardvark:  rejecting conventional wisdom

Evaluation:  it works!


