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Abstract
This paper presents PADS, a policy architecture for build-
ing distributed storage systems. A policy architecture has
two aspects. First, a common set of mechanisms that al-
low new systems to be implemented simply by defining
new policies. Second, a structure for how policies, them-
selves, should be specified. In the case of distributed
storage systems, PADS defines a data plane that pro-
vides a fixed set of mechanisms for storing and trans-
mitting data and maintaining consistency information.
PADS requires a designer to define a control plane pol-
icy that specifies the system-specific policy for orches-
trating flows of data among nodes. PADS then divides
control plane policy into two parts: routing policy and
blocking policy. The PADS prototype defines a concise
interface between the data and control planes, it provides
a declarative language for specifying routing policy, and
it defines a simple interface for specifying blocking pol-
icy. We find that PADS greatly reduces the effort to de-
sign, implement, and modify distributed storage systems.
In particular, by using PADS we were able to quickly
construct a dozen significant distributed storage systems
spanning a large portion of the design space using just a
few dozen policy rules to define each system.

1 Introduction
Our goal is to make it easy for system designers to con-
struct new distributed storage systems. Distributed stor-
age systems need to deal with a wide range of hetero-
geneity in terms of devices with diverse capabilities (e.g.,
phones, set-top-boxes, laptops, servers), workloads (e.g.,
streaming media, interactive web services, private stor-
age, widespread sharing, demand caching, preloading),
connectivity (e.g., wired, wireless, disruption tolerant),
and environments (e.g., mobile networks, wide area net-
works, developing regions). To cope with these varying
demands, new systems are developed [12, 14, 19, 21,
22, 30], each making design choices that balance perfor-
mance, resource usage, consistency, and availability. Be-
cause these tradeoffs are fundamental [7, 16, 34], we do
not expect the emergence of a single “hero” distributed
storage system to serve all situations and end the need
for new systems.

This paper presents PADS, a policy architecture that

simplifies the development of distributed storage sys-
tems. A policy architecture has two aspects.

First, a policy architecture defines a common set of
mechanisms and allows new systems to be implemented
simply by defining new policies. PADS casts its mech-
anisms as part of a data plane and policies as part of a
control plane. The data plane encapsulates a set of com-
mon mechanisms that handle the details of storing and
transmitting data and maintaining consistency informa-
tion. System designers then build storage systems by
specifying a control plane policy that orchestrates data
flows among nodes.

Second, a policy architecture defines a framework for
specifying policy. In PADS, we separate control plane
policy into routing and blocking policy.

• Routing policy: Many of the design choices of dis-
tributed storage systems are simply routing decisions
about data flows between nodes. These decisions pro-
vide answers to questions such as: “When and where
to send updates?” or “Which node to contact on a
read miss?”, and they largely determine how a sys-
tem meets its performance, availability, and resource
consumption goals.

• Blocking policy: Blocking policy specifies predicates
for when nodes must block incoming updates or lo-
cal read/write requests to maintain system invariants.
Blocking is important for meeting consistency and
durability goals. For example, a policy might block
the completion of a write until the update reaches at
least 3 other nodes.

The PADS prototype is an instantiation of this archi-
tecture. It provides a concise interface between the con-
trol and data planes that is flexible, efficient, and yet sim-
ple. For routing policy, designers specify an event-driven
program over an API comprising a set of actions that set
up data flows, a set of triggers that expose local node in-
formation, and the abstraction of stored events that store
and retrieve persistent state. To facilitate the specifi-
cation of event-driven routing, the prototype defines a
domain-specific language that allows routing policy to
be written as a set of declarative rules. For defining a
control plane’s blocking policy, PADS defines five block-
ing points in the data plane’s processing of read, write,
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Fig. 1: Features covered by case-study systems. Each column corresponds to a system implemented on PADS, and the rows list
the set of features covered by the implementation. ∗Note that the original implementations of some systems provide interfaces that
differ from the object store or file system interfaces we provide in our prototypes.

and receive-update actions; at each blocking point, a de-
signer specifies blocking predicates that indicate when
the processing of these actions must block.

Ultimately, the evidence for PADS’s usefulness is sim-
ple: two students used PADS to construct a dozen dis-
tributed storage systems summarized in Figure 1 in a few
months. PADS’s ability to support these systems (1) pro-
vides evidence supporting our high-level approach and
(2) suggests that the specific APIs of our PADS prototype
adequately capture the key abstractions for building dis-
tributed storage systems. Notably, in contrast with the
thousands of lines of code it typically takes to construct
such a system using standard practice, given the PADS
prototype it requires just 6-75 routing rules and a hand-
ful of blocking conditions to define each new system with
PADS.

Similarly, we find it easy to add significant new
features to PADS systems. For example, we add co-
operative caching [5] to Coda by adding 13 rules.

This flexibility comes at a modest cost to absolute per-
formance. Microbenchmark performance of an imple-
mentation of one system (P-Coda) built on our user-level
Java PADS prototype is within ten to fifty percent of the
original system (Coda [14]) in most cases and 3.3 times
worse in the worst case we measured.

A key issue in interpreting Figure 1 is understanding
how complete or realistic these PADS implementations
are. The PADS implementations are not bug-compatible
recreations of every detail of the original systems, but we

believe they do capture the overall architecture of these
designs by storing approximately the same data on each
node, by sending approximately the same data across the
same network links, and by enforcing the same consis-
tency and durability semantics; we discuss our definition
of architectural equivalence in Section 6. We also note
that our PADS implementations are sufficiently complete
to run file system benchmarks and that they handle im-
portant and challenging real world details like configura-
tion files and crash recovery.

2 PADS overview
Separating mechanism from policy is an old idea. As
Figure 2 illustrates, PADS does so by defining a data
plane that embodies the basic mechanisms needed for
storing data, sending and receiving data, and maintain-
ing consistency information. PADS then casts policy
as defining a control plane that orchestrates data flow
among nodes. This division is useful because it allows
the designer to focus on high-level specification of con-
trol plane policy rather than on implementation of low-
level data storage, bookkeeping, and transmission de-
tails.

PADS must therefore specify an interface between the
data plane and the control plane that is flexible and effi-
cient so that it can accommodate a wide design space. At
the same time, the interface must be simple so that the
designer can reason about it. Section 3 and Section 4 de-
tail the interface exposed by the data plane mechanisms
to the control plane policy.
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Fig. 2: PADS approach to system development.

To meet these goals and to guide a designer, PADS di-
vides the control policy into a routing policy and a block-
ing policy. This division is useful because it introduces a
separation of concerns for a system designer.

First, a system’s trade-offs among performance, avail-
ability, and resource consumption goals largely map to
routing rules. For example, sending all updates to all
nodes provides excellent response time and availability,
whereas caching data on demand requires fewer network
and storage resources. As described in Section 3, a PADS
routing policy is an event-driven program that builds on
the data plane mechanisms exposed by the PADS API to
set up data flows among nodes in order to transmit and
store the desired data at the desired nodes.

Second, a system’s durability and consistency con-
straints are naturally expressed as conditions that must
be met when an object is read or updated. For example,
the enforcement of a specific consistency semantic might
require a read to block until it can return the value of
the most recently completed write. As described in Sec-
tion 4, a PADS blocking policy specifies these require-
ments as a set of predicates that block access to an object
until the predicates are satisfied.

Blocking policy works together with routing policy to
enforce the safety constraints and the liveness goals of
a system. Blocking policy enforce safety conditions by
ensuring that an operation blocks until system invariants
are met, whereas routing policy guarantee liveness by en-
suring that an operation will eventually unblock—by set-
ting up data flows to ensure the conditions are eventually
satisfied.

2.1 Using PADS

As Figure 2 illustrates, in order to build a distributed stor-
age system on PADS, a system designer writes a routing
policy and a blocking policy. She writes the routing pol-
icy as an event-driven program comprising a set of rules
that send or fetch updates among nodes when particular
events exposed by the underlying data plane occur. She
writes her blocking policy as a list of predicates. She
then uses a PADS compiler to translate her routing rules

into Java and places the blocking predicates in a config-
uration file. Finally, she distributes a Java jar file con-
taining PADS’s standard data plane mechanisms and her
system’s control policy to the system’s nodes. Once the
system is running at each node, users can access locally
stored data, and the system synchronizes data among
nodes according to the policy.

2.2 Policies vs. goals
A PADS policy is a specific set of directives rather than
a statement of a system’s high-level goals. Distributed
storage design is a creative process and PADS does not
attempt to automate it: a designer must still devise a
strategy to resolve trade-offs among factors like perfor-
mance, availability, resource consumption, consistency,
and durability. For example, a policy designer might de-
cide on a client-server architecture and specify “When
an update occurs at a client, the client should send the
update to the server within 30 seconds” rather than stat-
ing “Machine X has highly durable storage” and “Data
should be durable within 30 seconds of its creation” and
then relying on the system to derive a client-server archi-
tecture with a 30 second write buffer.

2.3 Scope and limitations
PADS targets distributed storage environments with mo-
bile devices, nodes connected by WAN networks, or
nodes in developing regions with limited or intermittent
connectivity. In these environments, factors like limited
bandwidth, heterogeneous device capabilities, network
partitions, or workload properties force interesting trade-
offs among data placement, update propagation, and con-
sistency. Conversely, we do not target environments like
well-connected clusters.

Within this scope, there are three design issues for
which the current PADS prototype significantly restricts
a designer’s choices

First, the prototype does not support security specifi-
cation. Ultimately, our policy architecture should also
define flexible security primitives, and providing such
primitives is important future work [18].

Second, the prototype exposes an object-store inter-
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face for local reads and writes. It does not expose other
interfaces such as a file system or a tuple store. We be-
lieve that these interfaces are not difficult to incorporate.
Indeed, we have implemented an NFS interface over our
prototype.

Third, the prototype provides a single mechanism for
conflict resolution. Write-write conflicts are detected and
logged in a way that is data-preserving and consistent
across nodes to support a broad range of application-
level resolvers. We implement a simple last writer wins
resolution scheme and believe that it is straightforward to
extend PADS to support other schemes [14, 31, 13, 28, 6].

3 Routing policy
In PADS, the basic abstraction provided by the data plane
is a subscription—a unidirectional stream of updates to
a specific subset of objects between a pair of nodes. A
policy designer controls the data plane’s subscriptions to
implement the system’s routing policy. For example, if
a designer wants to implement hierarchical caching, the
routing policy would set up subscriptions among nodes
to send updates up and to fetch data down the hierarchy.
If a designer wants nodes to randomly gossip updates,
the routing policy would set up subscriptions between
random nodes. If a designer wants mobile nodes to ex-
change updates when they are in communication range,
the routing policy would probe for available neighbors
and set up subscriptions at opportune times.

Given this basic approach, the challenge is to define
an API that is sufficiently expressive to construct a wide
range of systems and yet sufficiently simple to be com-
prehensible to a designer. As the rest of this section de-
tails, PADS provides three sets of primitives for specify-
ing routing policies: (1) a set of 7 actions that establish
or remove subscriptions to direct communication of spe-
cific subsets of data among nodes, (2) a set of 9 triggers
that expose the status of local operations and informa-
tion flow, and (3) a set of 5 stored events that allow a
routing policy to persistently store and access configura-
tion options and information affecting routing decisions
in data objects. Consequently, a system’s routing policy
is specified as an event-driven program that invokes the
appropriate actions or accesses stored events based on
the triggers received.

In the rest of this section, we discuss details of these
PADS primitives and try to provide an intuition for why
these few primitives can cover a large part of the design
space. We do not claim that these primitives are minimal
or that they are the only way to realize this approach.
However, they have worked well for us in practice.

3.1 Actions
The basic abstraction provided by a PADS action is sim-
ple: an action sets up a subscription to route updates

Routing Actions
Add Inval Sub srcId, destId, objS, [startTime],

LOG|CP|CP+Body
Add Body Sub srcId, destId, objS, [startTime]
Remove Inval Sub srcId, destId, objS
Remove Body Sub srcId, destId, objS
Send Body srcId, destId, objId, off, len, writerId, time
Assign Seq objId, off, len, writerId, time
B Action <policy defined>

Fig. 3: Routing actions provided by PADS. objId, off, and len
indicate the object identifier, offset, and length of the update
to be sent. startTime specifies the logical start time of the sub-
scription. writerId and time indicate the logical time of a par-
ticular update. The fields for the B Action are policy defined.

from one node to another or removes an established sub-
scription to stop sending updates. As Figure 3 shows, the
subscription establishment API (Add Inval Sub and Add
Body Sub) provides five parameters that allow a designer
to control the scope of subscriptions:
• Selecting the subscription type. The designer decides

whether invalidations or bodies of updates should be
sent. Every update comprises an invalidation and a
body. An invalidation indicates that an update of a
particular object occurred at a particular instant in log-
ical time. Invalidations aid consistency enforcement
by providing a means to quickly notify nodes of up-
dates and to order the system’s events. Conversely, a
body contains the data for a specific update.

• Selecting the source and destination nodes. Since sub-
scriptions are unidirectional streams, the designer in-
dicates the direction of the subscription by specifying
the source node (srcId) of the updates and the desti-
nation node (destId) to which the updates should be
transmitted.

• Selecting what data to send. The designer specifies
what data to send by specifying the objects of inter-
est for a subscription so that only updates for those
objects are sent on the subscription. PADS exports a
hierarchical namespace in which objects are identified
with unique strings (e.g., /x/y/z) and a group of related
objects can be concisely specified. (e.g., /a/b/*).

• Selecting the logical start time. The designer specifies
a logical start time so that the subscription can send
all updates that have occurred to the objects of interest
from that time. The start time is specified as a partial
version vector and is set by default to the receiver’s
current logical time.

• Selecting the catch-up method. If the start time for
an invalidation subscription is earlier than the sender’s
current logical time, the sender has two options: The
sender can transmit either a log of the updates that
have occurred since the start time or a checkpoint that
includes just the most recent update to each byterange
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Local Read/Write Triggers
Operation block obj, off, len,

blocking point, failed predicates
Write obj, off, len, writerId, time
Delete obj, writerId, time

Message Arrival Triggers
Inval arrives srcId, obj, off, len, writerId, time
Send body success srcId, obj, off, len, writerId, time
Send body failed srcId, destId, obj, off, len, writerId, time

Connection Triggers
Subscription start srcId, destId, objS, Inval|Body
Subscription caught-up srcId, destId, objS, Inval
Subscription end srcId, destId, objS, Reason, Inval|Body

Fig. 4: Routing triggers provided by PADS. blocking point and
failed predicates indicate at which point an operation blocked
and what predicate failed (refer to Section 4). Inval | Body
indicate the type of subscription. Reason indicates if the sub-
scription ended due to failure or termination.

since the start time. These options have different per-
formance tradeoffs. Sending a log is more efficient
when the number of recent changes is small compared
to the number of objects covered by the subscription.
Conversely, a checkpoint is more efficient if (a) the
start time is in the distant past (so the log of events is
long) or (b) the subscription set consists of only a few
objects (so the size of the checkpoint is small). Note
that once a subscription catches up with the sender’s
current logical time, updates are sent as they arrive,
effectively putting all active subscriptions into a mode
of continuous, incremental log transfer. For body sub-
scriptions, if the start time of the subscription is earlier
than the sender’s current time, the sender transmits a
checkpoint containing the most recent update to each
byterange. The log option is not available for send-
ing bodies. Consequently, the data plane only needs to
store the most recent version of each byterange.
In addition to the interface for creating subscriptions

(Add Inval Sub and Add Body Sub), PADS provides Re-
move Inval Sub and Remove Body Sub to remove estab-
lished subscriptions, Send Body to send an individual
body of an update that occurred at or after the speci-
fied time, Assign Seq to mark a previous update with a
commit sequence number to aid enforcement of consis-
tency [23], and B Action to allow the routing policy to
send an event to the blocking policy (refer to Section 4).
Figure 3 details the full routing actions API.

3.2 Triggers
PADS triggers expose to the control plane policy events
that occur in the data plane. As Figure 4 details, these
events fall into three categories.
• Local operation triggers inform the routing policy

when an operation blocks because it needs additional
information to complete or when a local write or delete
occurs.

Stored Events
Write event objId, eventName, field1, ..., fieldN
Read event objId
Read and watch event objId
Stop watch objId
Delete events objId

Fig. 5: PADS’s stored events interface. objId specifies the ob-
ject in which the events should be stored or read from. event-
Name defines the name of the event to be written and field*
specify the values of fields associated with it.

• Message receipt triggers inform the routing policy
when an invalidation arrives, when a body arrives, or
whether a send body succeeds or fails.

• Connection triggers inform the routing policy when
subscriptions are successfully established, when a sub-
scription has caused a receiver’s state to be caught up
with a sender’s state (i.e., the subscription has trans-
mitted all updates to the subscription set up to the
sender’s current time), or when a subscription is re-
moved or fails.

3.3 Stored events
Many systems need to maintain persistent state to make
routing decisions. Supporting this need is challenging
both because we want an abstraction that meshes well
with our event-driven programming model and because
the techniques must handle a wide range of scales. In
particular, the abstraction must not only handle simple,
global configuration information (e.g., the server identity
in a client-server system like Coda [14]), but it must also
scale up to per-file information (e.g., which nodes store
the gold copies of each object in Pangaea [26].)

To provide a uniform abstraction to address this range
of demands, PADS provides stored events primitives to
store events into a data object in the underlying persis-
tent object store. Figure 5 details the full API for stored
events. A Write Event stores an event into an object and
a Read Event causes all events stored in an object to be
fed as input to the routing program. The API also in-
cludes Read and Watch to produce new events whenever
they are added to an object, Stop Watch to stop producing
new events from an object, and Delete Events to delete all
events in an object.

For example, in a hierarchical information dissemi-
nation system, a parent p keeps track of what volumes
a child subscribes to so that the appropriate subscrip-
tions can be set up. When a child c subscribes to a new
volume v, p stores the information in a configuration
object /subInfo by generating a <write event, /subInfo,
child sub, p, c, v> action. When this information is
needed, for example on startup or recovery, the parent
generates a <read event, /subInfo> action that causes a
<child sub, p, c, v> event to be generated for each item
stored in the object. The child sub events, in turn, trig-
ger event handlers in the routing policy that re-establish
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subscriptions.

3.4 Specifying routing policy
A routing policy is specified as an event-driven program
that invokes actions when local triggers or stored events
are received. PADS provides R/OverLog, a language
based on the OverLog routing language [17] and a run-
time to simplify writing event-driven policies.1

As in OverLog, a R/OverLog program defines a set of
tables and a set of rules. Tables store tuples that represent
internal state of the routing program. This state does not
need to be persistently stored, but is required for policy
execution and can dynamically change. For example, a
table might store the ids of currently reachable nodes.
Rules are fired when an event occurs and the constraints
associated with the rule are met. The input event to a
rule can be a trigger injected from the local data plane,
a stored event injected from the data plane’s persistent
state, or an internal event produced by another rule on a
local machine or a remote machine. Every rule generates
a single event that invokes an action in the data plane,
fires another local or remote rule, or is stored in a table
as a tuple. For example, the following rule:

EVT clientReadMiss(@S, X, Obj, Off, Len):-
TRIG operationBlock(@X, Obj, Off, Len, BPoint, ),
TBL serverId(@X, S),
BPoint == “readNowBlock”.

specifies that whenever node X receives a operationBlock
trigger informing it of an operation blocked at the read-
NowBlock blocking point, it should produce a new event
clientReadMiss at server S, identified by serverId table.
This event is populated with the fields from the triggering
event and the constraints—the client id (X), the data to be
read (obj, off, len), and the server to contact (S). Note that
the underscore symbol ( ) is a wildcard that matches any
list of predicates and the at symbol (@) specifies the node
at which the event occurs. A more complete discussion
of OverLog language and execution model is available
elsewhere [17].

4 Blocking policy
A system’s durability and consistency constraints can be
naturally expressed as invariants that must hold when an
object is accessed. In PADS, the system designer speci-
fies these invariants as a set of predicates that block ac-
cess to an object until the conditions are satisfied. To that
end, PADS (1) defines 5 blocking points for which a sys-
tem designer specifies predicates, (2) provides 4 built-in
conditions that a designer can use as predicates, and (3)
exposes a B Action interface that allows a designer to
specify custom conditions based on routing information.

1Note that if learning a domain specific language is not one’s cup of
tea, one can define a (less succinct) policy by writing Java handlers for
PADS triggers and stored events to generate PADS actions and stored
events.

Predefined Conditions on Local Consistency State
isValid Block until node has received the body corre-

sponding to the highest received invalidation
for the target object

isComplete Block until object’s consistency state reflects
all updates before the node’s current logical
time

isSequenced Block until object’s total order is established
maxStaleness
nodes, count, t

Block until all writes up to
(operationStartTime-t) from count nodes in
nodes have been received.

User Defined Conditions on Local or Distributed State
B Action
event-spec

Block until an event with fields matching
event-spec is received from routing policy

Fig. 6: Conditions available for defining blocking predicates.

The set of predicates for each blocking point makes up
the blocking policy of the system.

4.1 Blocking points
PADS defines five points for which a policy can supply a
predicate and a timeout value to block a request until the
predicate is satisfied or the timeout is reached. The first
three are the most important:

• ReadNowBlock blocks a read until it will return data
from a moment that satisfies the predicate. Blocking
here is useful for ensuring consistency (e.g., block un-
til a read is guaranteed to return the latest sequenced
write.)

• WriteEndBlock blocks a write request after it has up-
dated the local object but before it returns. Blocking
here is useful for ensuring consistency (e.g., block un-
til all previous versions of this data are invalidated)
and durability (e.g., block here until the update is
stored at the server.)

• ApplyUpdateBlock blocks an invalidation received
from the network before it is applied to the local data
object. Blocking here is useful to increase data avail-
ability by allowing a node to continue serving local
data, which it might not have been able to if the data
had been invalidated. (e.g., block applying a received
invalidation until the corresponding body is received.)

PADS also provides WriteBeforeBlock to block a write
before it modifies the underlying data object and Read-
EndBlock to block a read after it has retrieved data from
the data plane but before it returns.

4.2 Blocking conditions
PADS provides a set of predefined conditions, listed in
Figure 6, to specify predicates at each blocking point.
A blocking predicate can use any combination of these
predicates. The first four conditions provide an interface
to the consistency bookkeeping information maintained
in the data plane on each node.

• IsValid requires that the last body received for an ob-
ject is as new as the last invalidation received for that
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object. isValid is useful for enforcing monotonic co-
herence on reads2 and for maximizing availability by
ensuring that invalidations received from other nodes
are not applied until they can be applied with their cor-
responding bodies [6, 20].

• IsComplete requires that a node receives all invalida-
tions for the target object up to the node’s current log-
ical time. IsComplete is needed because liveness poli-
cies can direct arbitrary subsets of invalidations to a
node, so a node may have gaps in its consistency state
for some objects. If the predicate for ReadNowBlock
is set to isValid and isComplete, reads are guaranteed
to see causal consistency.

• IsSequenced requires that the most recent write to the
target object has been assigned a position in a to-
tal order. Policies that want to ensure sequential or
stronger consistency can use the Assign Seq routing
action (see Figure 3) to allow a node to sequence other
nodes’ writes and specify the isSequenced condition
as a ReadNowBlock predicate to block reads of unse-
quenced data.

• MaxStaleness is useful for bounding real time stale-
ness.
The fifth condition on which a blocking predicate can

be based on is B Action. A B Action condition provides
an interface with which a routing policy can signal an
arbitrary condition to a blocking predicate. An operation
waiting for event-spec unblocks when the routing rules
produce an event whose fields match the specified spec.

Rationale. The first four, built-in consistency book-
keeping primitives exposed by this API were developed
because they are simple and inexpensive to maintain
within the data plane [2, 35] but they would be complex
or expensive to maintain in the control plane. Note that
they are primitives, not solutions. For example, to en-
force linearizability, one must not only ensure that one
reads only sequenced updates (e.g., via blocking at Read-
NowBlock on isSequenced) but also that a write operation
blocks until all prior versions of the object have been in-
validated (e.g., via blocking at WriteEndBlock on, say,
the B Action allInvalidated which the routing policy pro-
duces by tracking data propagation through the system).

Beyond the four pre-defined conditions, a policy-
defined B Action condition is needed for two reasons.
The most obvious need is to avoid having to predefine
all possible interesting conditions. The other reason for
allowing conditions to be met by actions from the event-
driven routing policy is that when conditions reflect dis-
tributed state, policy designers can exploit knowledge of
their system to produce better solutions than a generic
implementation of the same condition. For example, in

2Any read on an object will return a version that is equal to or newer
than the version that was last read.

the client-server system we describe in Section 6, a client
blocks a write until it is sure that all other clients caching
the object have been invalidated. A generic implemen-
tation of the condition might have required the client
that issued the write to contact all other clients. How-
ever, a policy-defined event can take advantage of the
client-server topology for a more efficient implementa-
tion. The client sets the writeEndBlock predicate to a
policy-defined receivedAllAcks event. Then, when an ob-
ject is written and other clients receive an invalidation,
they send acknowledgements to the server. When the
server gathers acknowledgements from all other clients,
it generates a receivedAllAcks action for the client that
issued the write.

5 Constructing P-TierStore
As an example of how to build a system with PADS, we
describe our implementation of P-TierStore, a system in-
spired by TierStore [6]. We choose this example because
it is simple and yet exercises most aspects of PADS.

5.1 System goals
TierStore is a distributed object storage system that tar-
gets developing regions where networks are bandwidth-
constrained and unreliable. Each node reads and writes
specific subsets of the data. Since nodes must often op-
erate in disconnected mode, the system prioritizes 100%
availability over strong consistency.

5.2 System design
In order to achieve these goals, TierStore employs a hi-
erarchical publish/subscribe system. All nodes are ar-
ranged in a tree. To propagate updates up the tree, every
node sends all of its updates and its children’s updates
to its parent. To flood data down the tree, data are parti-
tioned into “publications” and every node subscribes to a
set of publications from its parent node covering its own
interests and those of its children. For consistency, Tier-
Store only supports single-object monotonic reads coher-
ence.

5.3 Policy specification
In order to construct P-TierStore, we decompose the de-
sign into routing policy and blocking policy.

A 14-rule routing policy establishes and maintains the
publication aggregation and multicast trees. A full list-
ing of these rules is available elsewhere [3]. In terms
of PADS primitives, each connection in the tree is sim-
ply an invalidation subscription and a body subscription
between a pair of nodes. Every PADS node stores in con-
figuration objects the ID of its parent and the set of pub-
lications to subscribe to.

On start up, a node uses stored events to read the con-
figuration objects and store the configuration information
in R/OverLog tables (4 rules). When it knows of the ID
of its parent, it adds subscriptions for every item in the
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publication set (2 rules). For every child, it adds sub-
scriptions for “/*” to receive all updates from the child
(2 rules). If an application decides to subscribe to an-
other publication, it simply writes to the configuration
object. When this update occurs, a new stored event is
generated and the routing rules add subscriptions for the
new publication.

Recovery. If an incoming or an outgoing subscription
fails, the node periodically tries to re-establish the con-
nection (2 rules). Crash recovery requires no extra pol-
icy rules. When a node crashes and starts up, it sim-
ply re-establishes the subscriptions using its local logical
time as the subscription’s start time. The data plane’s
subscription mechanisms automatically detect which up-
dates the receiver is missing and send them.

Delay tolerant network (DTN) support. P-TierStore
supports DTN environments by allowing one or more
mobile PADS nodes to relay information between a par-
ent and a child in a distribution tree. In this configura-
tion, whenever a relay node arrives, a node subscribes to
receive any new updates the relay node brings and pushes
all new local updates for the parent or child subscription
to the relay node (4 rules).

Blocking policy. Blocking policy is simple because
TierStore has weak consistency requirements. Since
TierStore prefers stale available data to unavailable data,
we set the ApplyUpdateBlock to isValid to avoid applying
an invalidation until the corresponding body is received.

TierStore vs. P-TierStore. Publications in TierStore
are defined by a container name and depth to include all
objects up to that depth from the root of the publication.
However, since P-TierStore uses a name hierarchy to de-
fine publications (e.g., /publication1/*), all objects under
the directory tree become part of the subscription with no
limit on depth.

Also, as noted in Section 2.3, PADS provides a single
conflict-resolution mechanism, which differs from that
of TierStore in some details. Similarly, TierStore pro-
vides native support for directory objects, while PADS
supports a simple untyped object store interface.

6 Experience and evaluation
Our central thesis is that it is useful to design and build
distributed storage systems by specifying a control plane
comprising a routing policy and a blocking policy. There
is no quantitative way to prove that this approach is good,
so we base our evaluation on our experience using the
PADS prototype.

Figure 1 conveys the main result of this paper: using
PADS, a small team was able to construct a dozen signif-
icant systems with a large number of features that cover

a large part of the design space. PADS qualitatively re-
duced the effort to build these systems and increased our
team’s capabilities: we do not believe a small team such
as ours could have constructed anything approaching this
range of systems without PADS.

In the rest of this section, we elaborate on this ex-
perience by first discussing the range of systems stud-
ied, the development effort needed, and our debugging
experience. We then explore the realism of the sys-
tems we constructed by examining how PADS handles
key system-building problems like configuration, consis-
tency, and crash recovery. Finally, we examine the costs
of PADS’s generality: what overheads do our PADS im-
plementations pay compared to ideal or hand-crafted im-
plementations?

Approach and environment. The goal of PADS is to
help people develop new systems. One way to evaluate
PADS would be to construct a new system for a new de-
manding environment and report on that experience. We
choose a different approach—constructing a broad range
of existing systems—for three reasons. First, a single
system may not cover all of the design choices or test
the limits of PADS. Second, it might not be clear how
to generalize the experience from building one system to
building others. Third, it might be difficult to disentangle
the challenges of designing a new system for a new envi-
ronment from the challenges of realizing a design using
PADS.

The PADS prototype uses PRACTI [2, 35] to provide
the data plane mechanisms. We implement a R/OverLog
to Java compiler using the XTC toolkit [9]. Except where
noted, all experiments are carried out on machines with
3GHz Intel Pentium IV Xeon processors, 1GB of mem-
ory, and 1Gb/s Ethernet. Machines and network connec-
tions are controlled via the Emulab software [33]. For
software, we use Fedora Core 8, BEA JRockit JVM Ver-
sion 27.4.0, and Berkeley DB Java Edition 3.2.23.

6.1 System development on PADS

This section describes the design space we have covered,
how the agility of the resulting implementations makes
them easy to adapt, the design effort needed to construct
a system under PADS, and our experience debugging and
analyzing our implementations.

6.1.1 Flexibility
We constructed systems chosen from the literature to
cover large part of the design space. We refer to our im-
plementation of each system as P-system (e.g., P-Coda).
To provide a sense of the design space covered, we pro-
vide a short summary of each of the system’s properties
below and in Figure 1.

Generic client-server. We construct a simple client-
server (P-SCS) and a full featured client-server (P-FCS).
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Objects are stored on the server, and clients cache the
data from the server on demand. Both systems imple-
ment callbacks in which the server keeps track of which
clients are storing a valid version of an object and sends
invalidations to them whenever the object is updated.
The difference between P-SCS and P-FCS is that P-SCS
assumes full object writes while P-FCS supports partial-
object writes and also implements leases and coopera-
tive caching. Leases [8] increase availability by allowing
a server to break a callback for unreachable clients. Co-
operative caching [5] allows clients to retrieve data from
a nearby client rather than from the server. Both P-SCS
and P-FCS enforce sequential consistency semantics and
ensure durability by making sure that the server always
holds the body of the most recently completed write of
each object.

Coda [14]. Coda is a client-server system that supports
mobile clients. P-Coda includes the client-server pro-
tocol and the features described in Kistler et al.’s pa-
per [14]. It does not include server replication features
detailed in [27]. Our discussion focuses on P-Coda. P-
Coda is similar to P-FCS—it implements callbacks and
leases but not cooperative caching; also, it guarantees
open-to-close consistency3 instead of sequential consis-
tency. A key feature of Coda is its support for discon-
nected operation—clients can access locally cached data
when they are offline and propagate offline updates to
the server on reconnection. Every client has a hoard list
that specifies objects to be periodically fetched from the
server

TRIP [20]. TRIP is a distributed storage system for
large-scale information dissemination: all updates occur
at a server and all reads occur at clients. TRIP uses a
self-tuning prefetch algorithm and delays applying inval-
idations to a client’s locally cached data to maximize the
amount of data that a client can serve from its local state.
TRIP guarantees sequential consistency via a simple al-
gorithm that exploits the constraint that all writes are car-
ried out by a single server.

TierStore [6]. TierStore is described in Section 5.

Chain replication [32]. Chain replication is a server
replication protocol that guarantees linearizability and
high availability. All the nodes in the system are arranged
in a chain. Updates occur at the head and are only con-
sidered complete when they have reached the tail.

Bayou [23]. Bayou is a server-replication protocol that
focuses on peer-to-peer data sharing. Every node has a
local copy of all of the system’s data. From time to time,

3Whenever a client opens a file, it always gets the latest version of
the file known to the server, and the server is not updated until the file
is closed.

a node picks a peer to exchange updates with via anti-
entropy sessions.

Pangaea [26] Pangaea is a peer-to-peer distributed
storage system for wide area networks. Pangaea main-
tains a connected graph across replicas for each object,
and it pushes updates along the graph edges. Pangaea
maintains three gold replicas for every object to ensure
data durability.

Summary of design features. As Figure 1 further de-
tails, these systems cover a wide range of design features
in a number of key dimensions. For example,
• Replication: full replication (Bayou, Chain Replica-

tion, and TRIP), partial replication (Coda, Pangaea, P-
FCS, and TierStore), demand caching (Coda, Pangaea,
and P-FCS),

• Topology: structured topologies such as client-server
(Coda, P-FCS, and TRIP), hierarchical (TierStore),
and chain (Chain Replication); unstructured topolo-
gies (Bayou and Pangaea). Invalidation-based (Coda
and P-FCS) and update-based (Bayou, TierStore, and
TRIP) propagation.

• Consistency: monotonic-reads coherence (Pangaea
and TierStore), casual (Bayou), sequential (P-FCS and
TRIP), and linearizability (Chain Replication); tech-
niques such as callbacks (Coda, P-FCS, and TRIP) and
leases (Coda and P-FCS).

• Availability: Disconnected operation (Bayou, Coda,
TierStore, and TRIP), crash recovery (all), and net-
work reconnection (all).

Goal: Architectural equivalence. We build systems
based on the above designs from the literature, but con-
structing perfect, “bug-compatible” duplicates of the
original systems using PADS is not a realistic (or use-
ful) goal. On the other hand, if we were free to pick and
choose arbitrary subsets of features to exclude, then the
bar for evaluating PADS is too low: we can claim to have
built any system by simply excluding any features PADS
has difficulty supporting.

Section 2.3 identifies three aspects of system design—
security, interface, and conflict resolution—for which
PADS provides limited support, and our implementations
of the above systems do not attempt to mimic the original
designs in these dimensions.

Beyond that, we have attempted to faithfully imple-
ment the designs in the papers cited. More precisely, al-
though our implementations certainly differ in some de-
tails, we believe we have built systems that are archi-
tecturally equivalent to the original designs. We define
architectural equivalence in terms of three properties:

E1. Equivalent overhead. A system’s network bandwidth
between any pair of nodes and its local storage at any
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node are within a small constant factor of the target
system.

E2. Equivalent consistency. The system provides consis-
tency and staleness properties that are at least as strong
as the target system’s.

E3. Equivalent local data. The set of data that may be ac-
cessed from the system’s local state without network
communication is a superset of the set of data that may
be accessed from the target system’s local state. No-
tice that this property addresses several factors includ-
ing latency, availability, and durability.

There is a principled reason for believing that these prop-
erties capture something about the essence of a repli-
cation system: they highlight how a system resolves
the fundamental CAP (Consistency vs. Availability vs.
Partition-resilience) [7] and PC (Performance vs. Con-
sistency) [16] trade-offs that any distributed storage sys-
tem must make.

6.1.2 Agility
As workloads and goals change, a system’s requirements
also change. We explore how systems build with PADS
can be adapted by adding new features. We highlight
two cases in particular: our implementation of Bayou
and Coda. Even though they are simple examples, they
demonstrate that being able to easily adapt a system to
send the right data along the right paths can pay big div-
idends.

P-Bayou small device enhancement. P-Bayou is a
server-replication protocol that exchanges updates be-
tween pairs of servers via an anti-entropy protocol. Since
the protocol propagates updates for the whole data set to
every node, P-Bayou cannot efficiently support smaller
devices that have limited storage or bandwidth.

It is easy to change P-Bayou to support small devices.
In the original P-Bayou design, when anti-entropy is trig-
gered, a node connects to a reachable peer and subscribes
to receive invalidations and bodies for all objects using a
subscription set “/*”. In our small device variation, a
node uses stored events to read a list of directories from
a per-node configuration file and subscribes only for the
listed subdirectories. This change required us to modify
two routing rules.

This change raises an issue for the designer. If a small
device C synchronizes with a first complete server S1, it
will not receive updates to objects outside of its subscrip-
tion sets. These omissions will not affect C since C will
not access those objects. However, if C later synchro-
nizes with a second complete server S2, S2 may end up
with causal gaps in its update logs due to the missing up-
dates that C doesn’t subscribe to. The designer has three
choices: weaken consistency from causal to per-object

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0  100  200  300  400  500

D
at

a 
Tr

an
sf

er
ed

 (K
B)

Number of Writes

P-Bayou

Ideal

P-Bayou small
device enhancement

Fig. 7: Anti-Entropy bandwidth on P-Bayou

 0

 100

 200

 300

 400

 500

P-Coda + Cooperative CachingP-Coda

Av
er

ag
e 

re
ad

 la
te

nc
y 

(m
s)

Fig. 8: Average read latency of P-Coda and P-Coda with coop-
erative caching.

coherence; restrict communication to avoid such situa-
tions (e.g., prevent C from synchronizing with S2); or
weaken availability by forcing S2 to fill its gaps by talk-
ing to another server before allowing local reads of po-
tentially stale objects. We choose the first, so we change
the blocking predicate for reads to no longer require the
isComplete condition. Other designers may make differ-
ent choices depending on their environment and goals.

Figure 7 examines the bandwidth consumed to syn-
chronize 3KB files in P-Bayou and serves two purposes.
First, it demonstrates that the overhead for anti-entropy
in P-Bayou is relatively small even for small files com-
pared to an ideal Bayou implementation (plotted by
counting the bytes of data that must be sent ignoring all
metadata overheads.) More importantly, it demonstrates
that if a node requires only a fraction (e.g., 10%) of the
data, the small device enhancement, which allows a node
to synchronize a subset of data, greatly reduces the band-
width required for anti-entropy.

P-Coda and cooperative caching. In P-Coda, on a
read miss, a client is restricted to retrieving data from the
server. We add cooperative caching to P-Coda by adding
13-rules: 9 to monitor the reachability of nearby nodes,
2 to retrieve data from a nearby client on a read miss, and
2 to fall back to the server if the client cannot satisfy the
data request.

Figure 8 shows the difference in read latency for
misses on a 1KB file with and without support for co-
operative caching. For the experiment, the rount-trip
latency between the two clients is 10ms, whereas the
round-trip latency between a client and server is almost
500ms. When data can be retrieved from a nearby client,
read performance is greatly improved. More importantly,
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with this new capability, clients can share data even when
disconnected from the server.

6.1.3 Ease of development
Each of these systems took a few days to three weeks to
construct by one or two graduate students with part time
effort. The time includes mapping the original system
design to PADS policy primitives, implementation, test-
ing, and debugging. Mapping the design of the original
implementation to routing and blocking policy was chal-
lenging at first but became progressively easier. Once the
design work was done, the implementation did not take
long.

Note that routing rules and blocking conditions are
extremely simple, low-level building bocks. Each rout-
ing rule specifies the conditions under which a single
tuple should be produced. R/Overlog lets us specify
routing rules succinctly—across all of our systems, each
routing rule is from 1 to 3 lines of text. The count of
blocking conditions exposes the complexity of the block-
ing predicates: each blocking predicate is an equation
across zero or more blocking condition elements from
Figure 6, so the count of at most 10 blocking condi-
tions for a policy indicates that across all of that policy’s
blocking predicates, a total of 10 conditions were used.
As Figure 1 indicates, each system was implemented in
fewer than 100 routing rules and fewer than 10 blocking
conditions.

6.1.4 Debugging and correctness
Three aspects of PADS help simplify debugging and rea-
soning about the correctness of PADS systems.

First, the conciseness of PADS policy greatly facili-
tates analysis, peer review, and refinement of design. It
was extremely useful to be able to sit down and walk
through an entire design in a one or two hour meeting.

Second, the abstractions themselves divide work in a
way that simplifies reasoning about correctness. For ex-
ample, we find that the separation of policy into routing
and blocking helps reduce the risk of consistency bugs.
A system’s consistency and durability requirements are
specified and enforced by simple blocking predicates, so
it is not difficult to get them right. We must then design
our routing policy to deliver sufficient data to a node to
eventually satisfy the predicates and ensure liveness.

Third, domain-specific languages can facilitate the
use of model checking [4]. As future work, we intend
to implement a translator from R/Overlog to Promela [1]
so that policies can be model checked to test the correct-
ness of a system’s implementation.

6.2 Realism
When building a distributed storage system, a system de-
signer needs to address issues that arise in practical de-
ployments such as configuration options, local crash re-

covery, distributed crash recovery, and maintaining con-
sistency and durability despite crashes and network fail-
ures. PADS makes it easy to tackle these issues for three
reasons.

First, since the stored events primitive allows routing
policies to access local objects, policies can store and
retrieve configuration and routing options on-the-fly. For
example, in P-TierStore, a nodes stores in a configuration
object the publications it wishes to access. In P-Pangaea,
the parent directory object of each object stores the list
of nodes from which to fetch the object on a read miss.

Second, for consistency and crash recovery, the un-
derlying subscription mechanisms insulate the designer
from low-level details. Upon recovery, local mechanisms
first reconstruct local state from persistent logs. Also,
PADS’s subscription primitives abstract away many chal-
lenging details of resynchronizing node state. Notably,
these mechanisms track consistency state even across
crashes that could introduce gaps in the sequences of in-
validations sent between nodes. As a result, crash re-
covery in most systems simply entails restoring lost sub-
scriptions and letting the underlying mechanisms ensure
that the local state reflects any updates that were missed.

Third, blocking predicates greatly simplify maintain-
ing consistency during crashes. If there is a crash and
the required consistency semantics cannot be guaranteed,
the system will simply block access to “unsafe” data. On
recovery, once the subscriptions have been restored and
the predicates are satisfied, the data become accessible
again.

In each of the PADS systems we constructed, we im-
plemented support for these practical concerns. Due
to space limitations we focus this discussion on the
behaviour of two systems under failure: the full fea-
tured client server system (P-FCS) and TierStore (P-
TierStore). Both are client-server based systems, but they
have very different consistency guarantees. We demon-
strate the systems are able to provide their corresponding
consistency guarantees despite failures.

Consistency, durability, and crash recovery in P-FCS
and P-TierStore Our experiment uses one server and
two clients. To highlight the interactions, we add a 50ms
delay on the network links between the clients and the
server. Client C1 repeatedly reads an object and then
sleeps for 500ms, and Client C2 repeatedly writes in-
creasing values to the object and sleeps for 2000ms. We
plot the start time, finish time, and value of each opera-
tion.

Figure 9 illustrates behavior of P-FCS under failures.
P-FCS guarantees sequential consistency by maintaining
per-object callbacks [11], maintaining object leases [8],
and blocking the completion of a write until the server
has stored the write and invalidated all other client
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to that in Figure 9.

caches. We configure the system with a 10 second lease
timeout. During the first 20 seconds of the experiment, as
the figure indicates, sequential consistency is enforced.
We kill (kill -9) the server process 20 seconds into the
experiment and restart it 10 seconds later. While the
server is down, writes block immediately but reads con-
tinue until the lease expires after which reads block as
well. When we restart the server, it recovers its local
state and then resumes processing requests. Both reads
and writes resume shortly after the server restarts, and the
subscription reestablishment and blocking policy ensure
that consistency is maintained.

We kill the reader, C1, at 50 seconds and restart it 15
seconds later. Initially, writes block, but as soon as the
lease expires, writes proceed. When the reader restarts,
reads resume as well.

Figure 10 illustrates a similar scenario using P-
TierStore. P-TierStore enforces monotonic reads coher-
ence rather than sequential consistency, and it propagates
updates via subscriptions when the network is available.
As a result, all reads and writes complete locally and
without blocking despite failures. During periods of no
failures, the reader receives updates quickly and reads re-
turn recent values. However, if the server is unavailable,

Ideal PADS Prototype
Subscription setup

Inval Subscription O(NSSPrevU pdates) O(Nnodes
with LOG catch-up +NSSPrevU pdates)
Inval Subscription O(NSSOb j) O(NSSOb j)
with CP from time=0
Inval Subscription O(NSSOb jU pd) O(Nnodes
with CP from time=VV +NSSOb jU pd)
Body Subscription O(NSSOb jU pd) O(NSSOb jU pd)

Transmitting updates
Inval Subscription O(NSSNewU pdates) O(NSSNewU pdates)
Body Subscription O(NSSNewU pdates) O(NSSNewU pdates)

Fig. 11: Network overheads of primitives. Here, Nnodes is the
number of nodes. NSSOb j is the number of objects in the sub-
scription set. NSSPrevU pdates and NSSOb jU pd are the number of
updates that occurred and the number objects in the subscrip-
tion set that were modified from a subscription start time to the
current logical time. NSSNewU pdates is the number of updates to
the subscription set that occur after the subscription has caught
up to the sender’s logical time.

writes still progress, and the reads return values that are
locally stored even if they are stale.

6.3 Performance
The programming model exposed to designers must have
predictable costs. In particular, the volume of data stored
and sent over the network should be proportional to the
amount of information a node is interested in.

We carry out performance evaluation of PADS in two
steps. First, we evaluate the fundamental costs associ-
ated with the PADS architecture. In particular, we ar-
gue that network overheads of PADS are within reason-
able bounds of ideal implementations and highlight when
they depart from ideal.

Second, we evaluate the absolute performance of the
PADS prototype. We quantify overheads associated with
the primitives via micro-benchmarks and compare the
performance of two implementations of the same sys-
tem: the original implementation with the one built over
PADS. We find that P-Coda is as much as 3.3 times worse
than Coda.

6.3.1 Fundamental overheads and scalability
Figure 11 shows the network cost associated with our
prototype’s implementation of PADS’s primitives and in-
dicates that our costs are close to the ideal of having ac-
tual costs be proportional to the amount of new infor-
mation transferred between nodes. Note that these ideal
costs may not be able always be achievable.

There are two ways that PADS sends extra informa-
tion.

First, during invalidation subscription setup in PADS
the sender transmits a version vector indicating the start
time of the subscription and catch-up information so that
the receiver can determine if the catch-up information
introduces gaps in the receiver’s consistency state. That
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cost is then amortized over all the updates sent on the
connection. Also, this cost can be avoided by starting a
subscription at logical time 0 with a checkpoint rather
than a log for catching up to the current time. Note,
checkpoint catch-up is particularly cheap when interest
sets are small.

Second, in order to support flexible consistency, inval-
idation subscriptions also carry extra information such as
imprecise invalidations [2]. Imprecise invalidations sum-
marize updates to objects out of the subscription set and
are sent to mark logical gaps in the casual stream of in-
validations. The number of imprecise invalidations sent
depends on the workload and is never more than the num-
ber of invalidations of updates to objects in the subscrip-
tion set sent. The size of imprecise invalidations depends
on the locality of the workload and how compactly the
invalidations compress into imprecise invalidations.

Overall, we expect PADS to scale well to systems with
large numbers of objects or nodes—subscription sets and
imprecise invalidations ensure that the number of records
transferred is proportional to amount of data of interest
(and not to the overall size of the database), and the per-
node overheads associated with the version vectors used
to set up some subscriptions can be amortized over all of
the updates sent.

6.3.2 Quantifying the constants
We run experiments to investigate the constant factors
in the cost model and quantify the overheads associated
with subscription setup and flexible consistency. Fig-
ure 12 illustrates the synchronization cost for a simple
scenario. In this experiment, there are 10,000 objects
in the system organized into 10 groups of 1,000 objects
each, and each object’s size is 10KB. The reader registers
to receive invalidations for one of these groups. Then, the
writer updates 100 of the objects in each group. Finally,
the reader reads all the objects.

We look at four scenarios representing combinations
of coarse-grained vs. fine-grained synchronization and
of writes with locality vs. random writes. For coarse-
grained synchronization, the reader creates a single inval-

1KB objects 100KB objects
Coda P-Coda Coda P-Coda

Cold read 1.51 4.95 (3.28) 11.65 9.10 (0.78)
Hot read 0.15 0.23 (1.53) 0.38 0.43 (1.13)
Connected 36.07 47.21 (1.31) 49.64 54.75 (1.10)
Write
Disconnected 17.2 15.50 (0.88) 18.56 20.48 (1.10)
Write

Fig. 13: Read and write latencies in milliseconds for Coda and
P-Coda. The numbers in parantheses indicate factors of over-
head. The values are averages of 5 runs.

idation subscription and a single body subscription span-
ning all 1000 objects in the group of interest and receives
100 updated objects. For fine-grained synchronization,
the reader creates 1000 invalidation subscriptions, each
for one object, and fetches each of the 100 updated bod-
ies. For writes with locality, the writer updates 100 ob-
jects in the ith group before updating any in the i + 1st
group. For random writes, the writer intermixes writes
to different groups in a random order.

Four things should be noted. First, the synchroniza-
tion overheads are small compared to the body data trans-
ferred. Second, the “extra” overheads associated with
PADS subscription setup and flexible consistency over
the best case is a small fraction of the total overhead
in all cases. Third, when writes have locality, the over-
head of flexible consistency drops further because larger
numbers of invalidations are combined into an impre-
cise invalidation. Fourth, coarse-grained synchronization
has lower overhead than fine-grained synchronization be-
cause it avoids per-object subscription setup costs.

Similarly, Figure 7 compares the bandwidth overhead
associated with using a PADS system implementation
with an ideal implementation. As the figure indicates, the
bandwidth to propagate updates is close to ideal imple-
mentations. The extra overhead is due to the meta-data
sent with each update.

6.3.3 Absolute Performance
Our goal is to provide sufficient performance to be use-
ful. We compare the performance of a hand-crafted im-
plementation of a system (Coda) that has been in produc-
tion use for over a decade and a PADS implementation of
the same system (P-Coda). We expect to pay some over-
heads for three reasons. First, PADS is a relatively un-
tuned prototype rather than well-tuned production code.
Second, our implementation emphasizes portability and
simplicity, so PADS is written in Java and stores data
using BerkeleyDB rather than running on bare metal.
Third, PADS provides additional functionality such as
tracking consistency metadata, some of which may not
be required by a particular hand-crafted system.

Figure 13 compares the client-side read and write la-
tencies under Coda and P-Coda. The systems are set up
in a two client configuration. To measure the read la-
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tencies, client C1 has a collection of 1,000 objects and
Client C2 has none. For cold reads, Client C2 randomly
selects 100 objects to read. Each read fetches the object
from the server and establishes a callback for the object.
C2 re-reads those objects to measure the hot-read latency.
To measure the connected write latency, both C1 and C2
initially store the same collection of 1,000 objects. C2
selects 100 objects to write. The write will cause the
server to store the update and break a callback with C1
before the write completes at C2. Disconnected writes
are measured by disconnecting C2 from the server and
writing to 100 randomly selected objects.

The performance of PADS’s implementation is com-
parable to hand-crafted C implementation in most cases
and is at most 3 times worse in the worst case we mea-
sured.

7 Related work
PADS and PRACTI. We use a modified version of
PRACTI [2, 35] as the data plane for PADS. Writing a
new policy in PADS differs from constructing a system
using PRACTI alone for three reasons.

1. PADS adds key abstractions not present in PRACTI
such as the separation of routing policy from blocking
policy, stored events, and commit actions.

2. PADS significantly changes abstractions from those
provided in PRACTI. We distilled the interface be-
tween mechanism and policy to the handful of calls
in Figures 3, 4, and 5, and we changed the underly-
ing protocols and mechanisms to meet the needs of
the data plane required by PADS. For example, where
the original PRACTI protocol provides the abstraction
of connections between nodes, each of which carries
one subscription, PADS provides the more lightweight
abstraction of subscriptions which forced us to re-
design the protocol to multiplex subscriptions onto
a single connection between a pair of nodes in or-
der to efficiently support fine-grained subscriptions
and dynamic addition of new items to a subscrip-
tion. Similarly, where PRACTI provides the abstrac-
tion of bound invalidations to make sure that bodies
and updates propagate together, PADS provides the
more flexible blocking predicates, and where PRACTI
hard-coded several mechanisms to track the progress
of updates through the system, PADS simply triggers
the routing policy and lets the routing policy handle
whatever notifications are needed.

3. PADS provides R/OverLog which has proven to be a
convenient way to design about, write, and debug rout-
ing policies.

The whole is more important than the parts. Building
systems with PADS is much simpler than without. In
some cases this is because PADS provides abstractions

not present in PRACTI. In others, it is “merely” because
PADS provides a better way of thinking about the prob-
lem.

R/OverLog and OverLog R/OverLog extends Over-
Log [17] by (1) adding type information to events, (2)
providing an interface to pass triggers, actions, and
stored events as tuples between PADS and the R/OverLog
program, and (3) restricting the syntax slightly to allow
us to implement a R/OverLog-to-Java compiler that pro-
duces executables that are more stable and faster than
programs under the more general P2 [17] runtime sys-
tem.

Other frameworks. A number of other efforts have
defined frameworks for constructing distributed storage
systems for different environments. Deceit [29] focuses
on distributed storage across a well-connected cluster of
servers. Stackable file systems [10] seek to provide a
way to add features and compose file systems, but it fo-
cuses on adding features to local file systems.

Some systems, such as Cimbiosys [24], distribute
data among nodes not based on object identifiers or file
names, but rather on content-based filters. We see no
fundamental barriers to incorporating filters in PADS to
identify sets of related objects. This would allow sys-
tem designers to set up subscriptions and maintain con-
sistency state in terms of filters rather than object-name
prefixes.

PADS follows in the footsteps of efforts to define run-
time systems or domain-specific languages to ease the
construction of routing [17], overlay [25], cache consis-
tency protocols [4], and routers [15].

8 Conclusion
Our goal is to allow developers to quickly build new dis-
tributed storage systems. This paper presents PADS, a
policy architecture that allows developers to construct
systems by specifying policy without worrying about
complex low-level implementation details. Our experi-
ence has led us to make two conclusions: First, the ap-
proach of constructing a system in terms of a routing pol-
icy and a blocking policy over a data plane greatly re-
duces development time. Second, the range of systems
implemented with the small number of primitives ex-
posed by the API suggest that the primitives adequately
capture the key abstractions for building distributed stor-
age systems.
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