
FatVAP: Aggregating AP Backhaul Capacity to
Maximize Throughput

SRIKANTH KANDULA KATE CHING-JU LIN TURAL BADIRKHANLI DINA KATABI

MIT NTU/MIT MIT MIT
KANDULA@MIT.EDU KATE@CSAIL.MIT.EDU TURALB@MIT.EDU DK@MIT.EDU

Abstract– It is increasingly common that computers
in residential and hotspot scenarios see multiple access
points (APs). These APs often provide high speed wire-
less connectivity but access the Internet via independent,
relatively low-speed DSL or cable modem links. Ideally,
a client would simultaneously use all accessible APs and
obtain the sum of their backhaul bandwidth. Past work
can connect to multiple APs, but can neither aggregate
AP backhaul bandwidth nor can it maintain concurrent
TCPs across them.

This paper introduces FatVAP, an 802.11 driver that
aggregates the bandwidth available at accessible APs and
also balances their loads. FatVAP has three key features.
First, it chooses the APs that are worth connecting to
and connects with each AP just long enough to collect
its available bandwidth. Second, it ensures fast switching
between APs without losing queued packets, and hence is
the only driver that can sustain concurrent high through-
put TCP connections across multiple APs. Third, it works
with unmodified APs and is transparent to applications
and the rest of the network stack. We experiment with
FatVAP both in our lab and hotspots and residential de-
ployments. Our results show that, in today’s deployments,
FatVAP immediately delivers to the end user a median
throughput gain of 2.6x, and reduces the median response
time by 2.8x.

1 INTRODUCTION

Today, WiFi users often see many access points
(APs), multiple of which are open [10], or accessible at a
small charge [9]. The current 802.11 connectivity model,
which limits a user to a single AP, cannot exploit this phe-
nomenon and, as a result, misses two opportunities.

• It does not allow a client to harness unused bandwidth
at multiple APs to maximize its throughput. Users in
hotspots and residential scenarios typically suffer low
throughput, despite the abundance of high-speed APs.
This is because these high-speed APs access the Inter-
net via low capacity (e.g., 1Mb/s or less) DSL or cable
modem links. Since the current connectivity model
ties a user to a single AP, a user’s throughput at home
or in a hotspot is limited by the capacity of a single
DSL line, even when there are plenty of high-speed

APs with underutilized DSL links.
• It does not facilitate load balancing across APs. WiFi

users tend to gather in a few locations (e.g., a con-
ference room, or next to the window in a cafe). The
current 802.11 connectivity model maps all of these
users to a single AP, making them compete for the
same limited resource, even when a nearby AP hardly
has any users [12, 24]. Furthermore, the mapping is
relatively static and does not change with AP load.

Ideally, one would like a connectivity model that ap-
proximates a fat virtual AP, whose backhaul capacity is
the sum of the access capacities of nearby APs. Users
then compete fairly for this fat AP, limited only by secu-
rity restrictions. A fat AP design benefits users because
it enables them to harness unused bandwidth at acces-
sible APs to maximize their throughput. It also benefits
AP owners because load from users in a campus, office,
or hotel is balanced across all nearby APs, reducing the
need to install more APs.

It might seem that the right strategy to obtain a fat vir-
tual AP would be to greedily connect to every AP. How-
ever, using all APs may not be appropriate because of the
overhead of switching between APs. In fact, if we have to
ensure that TCP connections simultaneously active across
multiple APs do not suffer timeouts, it might be impos-
sible to switch among all the APs. Also, all APs are not
equal. Some may have low load, others may have better
backhaul capacities or higher wireless rates (802.11a/g
vs. 802.11b). So, a client has to ascertain how valuable
an AP is and spend more time at APs that it is likely to
get more bandwidth from, i.e., the client has to divide its
time among APs so as to maximize its throughput. Fur-
ther, the efficiency of any system that switches between
APs on short time scales crucially depends on keeping the
switching overhead as low as possible. We need a system
architecture that not only shifts quickly between APs, but
also ensures that no in-flight packets are lost in the pro-
cess.

While prior work virtualizes a wireless card allowing
it to connect to multiple APs, card virtualization alone
cannot approximate a fat virtual AP. Past work uses this
virtualization to bridge a WLAN with an ad-hoc net-
work [6, 13], or debug wireless connectivity [11], but
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Figure 1: An example scenario where a client can potentially obtain the sum of
the backhaul bandwidth available at the two APs.

can neither aggregate AP backhaul bandwidth nor bal-
ance their load. This is because it cannot tell which APs
are worth connecting to and for how long. Further, it has a
large switching overhead of 30-600ms [7, 13] and hence
cannot be used for switching at short time-scales on the
order of 100 ms, which is required for high-throughout
TCP connections across these APs.

This paper introduces FatVAP, an 802.11 driver de-
sign that enables a client to aggregate the bandwidth
available at accessible APs and balance load across them.
FatVAP approximates the concept of a fat virtual AP
given the physical restrictions on the resources. To do so,
FatVAP periodically measures both the wireless and end-
to-end bandwidths available at each AP. It uses this infor-
mation as well as an estimate of the switching overhead
to connect to each AP for just enough time to collect its
available bandwidth and toggle only those APs that max-
imize user throughput.

The FatVAP driver has the following key features.

• It has an AP scheduler that chooses how to dis-
tribute the client’s time across APs so as to maximize
throughput.

• It ensures fast switching between APs (about 3 ms)
without losing queued packets, and hence is the only
driver that can sustain concurrent high throughput
TCP connections across multiple APs.

• It works with existing setups, i.e., single 802.11 card,
unmodified APs, and is transparent to applications
and the rest of the network stack.

FatVAP leverages today’s deployment scenarios to
provide immediate improvements to end users without
any modification to infrastructure or protocols. It does not
need fancy radios, access to the firmware, or changes to
the 802.11 MAC. FatVAP has been implemented in the
MadWifi driver [4], and works in conjunction with au-
torate algorithms, carrier-sense, CTS-to-self protection,
and all other features in the publicly released driver.

Experimental evaluation of our FatVAP prototype in
a testbed and actual hotspot deployments shows that:

• In today’s residential and Hotspot deployments (in
Cambridge/Somerville MA), FatVAP immediately
delivers to the end user a median throughput gain of
2.6x, and reduces the median response time by 2.8x.

• FatVAP is effective at harnessing unused bandwidth
from nearby APs. For example, with 3 APs bottle-
necked at their backhaul links, FatVAP’s throughput
is 3x larger than an unmodified MadWifi driver.

• FatVAP effectively balances AP loads. Further, it
adapts to changes in the available bandwidth at an AP
and re-balances load with no perceivable delay.

• FatVAP coexists peacefully. At each AP, FatVAP
competes with unmodified clients as fairly as an un-
modified MadWifi driver and is sometimes fairer as
FatVAP will move to an alternate if the AP gets con-
gested. Further, FatVAP clients compete fairly among
themselves.

2 MOTIVATING EXAMPLES

Not all access points are equal. An 802.11 client
might have a low loss-rate to one access point; another
access point might be less congested; yet another may
have a high capacity link to the Internet or support higher
data rates (802.11g rather than 802.11b). How should an
802.11 client choose which access points to connect to
and what fraction of its time to stay connected to each
AP?

To better understand the tradeoffs in switching APs,
let us look at a few simple examples. Consider the sce-
nario in Fig. 1, where the wireless client is in the range
of 2 open APs. Assume the APs operate on orthogonal
802.11 channels. For each AP, let the wireless available
bandwidth, w, be the rate at which the client communi-
cates with the AP over the wireless link, and the end-
to-end available bandwidth, e, be the client’s end-to-end
data rate when connected to that AP. Note that these
values do not refer to link capacities but the through-
put achieved by the client and in particular subsume link
losses, driver’s rate selection and competition from other
clients at the AP. Note also that the end-to-end bandwidth
is always bounded by the wireless available bandwidth,
i.e., e ≤ w. How should the client in Fig. 1 divide its time
between connecting to AP1 and AP2? The answer to this
question depends on a few factors.

First, consider a scenario in which the bottlenecks to
both APs are the wireless links (i.e., w = e at both APs).
In this case, there is no point toggling between APs. If
the client spends any time at the AP with lower available
wireless bandwidth, it will have to send at a lower rate for
that period, which reduces the client’s overall throughput.
Hence, when the wireless link is the bottleneck, the client
should stick to the best AP and avoid AP switching.

Now assume that the bottlenecks are the APs’ access
links (i.e., w > e for both APs). As a concrete example,
say that the client can achieve 5 Mb/s over either wireless
link, i.e., w1 = w2 = 5 Mb/s, but the client’s end-to-end
available bandwidth across either AP is only 2 Mb/s, i.e.,
e1 = e2 = 2 Mb/s. If the client picks one of the two

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association90



Figure 2: Choosing APs greedily based on higher end-to-end available bandwidth
is not optimal.
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Figure 3: Choosing APs greedily based on higher wireless available bandwidth
is not practical because it doesn’t account for switching overheads.

APs and sticks to it, as is the case with current drivers, its
throughput will be limited to 2 Mb/s. We observe how-
ever that the client need not spend 100% of its time at
an AP to obtain its end-to-end available bandwidth. It is
sufficient to connect to each AP for 2

5 of the client’s time.
While connected, the client sends (and receives) its data
at 5 Mb/s, i.e., according to its wireless available band-
width. The AP drains the client’s data upstream (or re-
ceives new data for the client) at the lower rate of 2 Mb/s,
which is the end-to-end bandwidth available to our client.
Until the AP drains the previous burst (or gets new data
for the client), there is no point for the client to stay con-
nected to the AP. As long as the client spends more than
2
5 of its time on each AP, it can achieve the sum of their
end-to-end rates, i.e., in our example it achieves 4 Mb/s.

Thus, to obtain the bandwidth available at an AP, a
client should connect to it for at least a fraction fi = e

w
of its time. This means that when the wireless link is the
bottleneck at an AP, i.e., w = e, a client needs to spend
100% of its time at that AP in order to collect its available
bandwidth. Otherwise, the client can use its spare time to
get then unused bandwidth at other APs. But since the
sum of the fi’s across all APs can exceed 1, a client will
need to select a subset of the available APs. So, which
APs does a client pick?

One may think of making greedy decisions. In par-
ticular, the client can order the APs according to their
end-to-end available bandwidth, and greedily add APs to
its schedule until the sum of the fractions fi’s reaches 1–
i.e., 100% of the client’s time is used up. Such a sched-
uler however is suboptimal. Fig. 2 shows a counter ex-
ample, where AP1 has the highest end-to-end rate of
5Mb/s, yet picking AP1 means that the client has to spend
ei
wi

= 5
5 = 100% of its time at AP1 leaving no time to

connect to other APs. The optimal scheduler here picks
{AP2, AP3} and achieves 7 Mb/s throughput; the client
spends ei

wi
= 4

8 = 50% of its time at AP2 and 3
8 = 38% at

AP3 for a total of 88% of busy time. The remaining 12%
of time can compensate for the switching overhead and
increase robustness to inaccurate estimates of AP band-
width.

In practice, one also cannot pick APs greedily based
on their wireless available bandwidth. Consider the ex-
ample in Fig. 3. One may think that the client should
toggle between AP1, AP2, AP3, AP4, and AP5, spend-
ing 20% of its time on each AP. This would have been
true if switching APs takes no time. In practice, switch-
ing between APs incurs a delay to reset the hardware
to a different channel, to flush packets within the driver,
etc., and this overhead adds up over the number of APs
switched. Consider again the scenario in Fig. 3. Let the
switching delay be 5 ms, then each time it toggles be-
tween 5 APs, the client wastes 25 ms of overhead. This
switching overhead cannot be amortized away by switch-
ing infrequently between APs. To ensure that TCP con-
nections via an AP do not time out, the client needs to
serve each AP frequently, say once every 100ms. With a
duty cycle of 100ms, and a switching overhead of 25ms
a client has only 75% of its time left for useful work. Di-
viding this over the five APs results in a throughput of
5 × .75=3.25 Mb/s, which is worse than sticking to AP6
for 100% of the time, and obtaining 4.5 Mb/s.

In §3.1, we formalize and solve a scheduling prob-
lem that maximizes client throughput given practical con-
straints on switching overhead and the switching duty cy-
cle.

3 FATVAP

FatVAP is an 802.11 driver design that aggregates the
bandwidth available at nearby APs and load balances traf-
fic across them. We implemented FatVAP as a modifica-
tion to the MadWifi driver [4]. FatVAP incorporates the
following three components:
• An AP scheduler that maximizes client throughput;
• A load balancer that maps traffic to APs according to

their available bandwidth;
• An AP switching mechanism that is fast, loss-free,

and transparent to both the APs and the host network
stack.

At a high level, FatVAP works as follows. Fat-
VAP scans the various channels searching for available
access-points (APs). It probes these APs to estimate their
wireless and end-to-end available bandwidths. FatVAP’s
scheduler decides which APs are worth connecting to
and for how long in order to maximize client throughput.
FatVAP then toggles connections to APs in accordance
to the decision made by the scheduler. When switch-
ing away from an AP, FatVAP informs the AP that the
client is entering the power-save mode. This ensures that
the AP buffers the client’s incoming packets, while it is
away collecting traffic from another AP. Transparent to
user’s applications, FatVAP pins flows to APs in a way
that balances their loads. FatVAP continually estimates
the end-to-end and wireless available bandwidths at each
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AP by passively monitoring ongoing traffic, and adapts to
changes in available bandwidth by re-computing the best
switching schedule.

3.1 The AP Scheduler

The scheduler chooses which APs to toggle between
to maximize client throughput, while taking into account
the bandwidth available at the APs and the switching
overhead.

We formalize the scheduling problem as follows. The
scheduler is given a set of accessible APs. It assigns to
each AP a value and a cost. The value of connecting to a
particular AP is its contribution to client throughput. If fi
is the fraction of time spent at APi, and wi is APi’s wire-
less available bandwidth, then the value of connecting to
APi is:

valuei = fi × wi. (1)

Note that as discussed in §2, a client can obtain no more
than the end-to-end available bandwidth at APi, ei, and
thus need not connect to APi for more than ei

wi
of its time.

Hence,
0 ≤ fi ≤

ei

wi
⇒ valuei ≤ ei. (2)

The cost of an AP is equal to the time that a client
has to spend on it to collect its value. The cost also in-
volves a setup delay to pick up in-flight packets and re-
tune the card to a new channel. Note that the setup delay
is incurred only when the scheduler spends a non-zero
amount of time at APi. Hence, the cost of APi is:

costi = fi × D + dfie × s, (3)

where D is the scheduler’s duty cycle, i.e., the total time
to toggle between all scheduled APs, s is the switching
setup delay, and dfie is the ceiling function, which is one
if fi > 0 and zero otherwise.

The objective of the scheduler is to maximize client
throughput. The scheduler, however, cannot have too
large a duty cycle. If it did, the delay can hamper the
TCP connections, increasing their RTTs, causing poor
throughput and potential time-outs. The objective of the
scheduler is to pick the fi’s to maximize the switching
value subject to two constraints: the cost in time must be
no more than the chosen duty cycle, D, and the fraction
of time at an AP has to be positive and no more than ei

wi
,

i.e.,

max
fi

∑

i

fiwi (4)

s.t.
∑

i

(fiD + dfies) ≤ D (5)

0 ≤ fi ≤
ei

wi
, ∀i. (6)

How do we solve this optimization? In fact, the op-
timization problem in Eqs. 4-6 is similar to the known

knapsack problem [3]. Given a set of items, each with a
value and a weight, we would like to pack a knapsack
so as to maximize the total value subject to a constraint
on the total weight. Our items (the APs) have both frac-
tional weights (costs) fi×D and zero-one weights dfie×s.
The knapsack problem is typically solved using dynamic
programming. The formulation of this dynamic program-
ming solution is well-known and can be used for our
problem [3].

A few points are worth noting.

• FatVAP’s solution based on dynamic programming is
efficient and stays within practical bounds. Even with
5 APs, our implementation on a 2GHz x86 machine
solves the optimization in 21 microseconds (see §4.2).

• So far we have assumed that we know both the
wireless and end-to-end bandwidths of all acces-
sible APs. FatVAP estimates these values pas-
sively (§3.1.1, §3.1.2).

• The scheduler takes AP load into account. Both the
wireless and end-to-end bandwidths refer to the rate
obtained by the client as it competes with other
clients.

• It is important to include the switching overhead, s,
in the optimization. This variable accounts for vari-
ous overheads such as switching the hardware, chang-
ing the driver’s state, and waiting for in-flight pack-
ets. It also ensures that the scheduler shies away from
switching APs whenever a tie exists, or when switch-
ing does not yield a throughput increase. FatVAP con-
tinuously measures the switching delay and updates
s if the delay changes (we show microbenchmarks
in §4.2).

• Our default choice for duty cycle is D = 100 ms.
This value is long enough to enable the scheduler to
toggle a handful of APs and small enough to ensure
that the RTTs of the TCP flows stay in a reasonable
range [19].

3.1.1 Measuring Wireless Available Bandwidth

The wireless available bandwidth is the rate at which
the client and AP communicate over the wireless link. If
the client is the only contender for the medium, the wire-
less available bandwidth is the throughput of the wireless
link. If other clients are contending for the medium, it
reduces to the client’s competitive share of the wireless
throughput after factoring in the effect of auto-rate. Here,
we describe how to estimate the wireless available band-
width from client to the AP, i.e., on the uplink. One can
have separate estimates for uplink and downlink. How-
ever, in our experience the throughput gain from this im-
proved accuracy is small in comparison to the extra com-
plexity.

How does a client estimate the uplink wireless avail-
able bandwidth? The client can estimate it by measur-
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ing the time between when a packet reaches the head of
the transmit queue and when the packet is acked by the
AP. This is the time taken to deliver one packet, td, given
contention for the medium, autorate, retransmissions, etc.
We estimate the available wireless bandwidth by dividing
the packet’s size in bytes, B, by its delivery time td. The
client takes an exponentially weighted average over these
measurements to smooth out variability, while adapting
to changes in load and link quality.

Next, we explain how we measure the delivery time
td. Note that the delivery time of packet j is:

tdj = taj − tqj, (7)

where tqj is the time when packet j reaches the head of the
transmit queue, and taj is the time when packet j is acked.
It is easy to get taj because the Hardware Abstraction
Layer (HAL) timestamps each transmitted packet with
the time it was acked. Note that the HAL does raise a
tx interrupt to tell the driver to clean up the resources of
transmitted packets but it does this only after many pack-
ets have been transmitted. Hence, the time when the tx
interrupt is raised is a poor estimate of taj.

Obtaining tqj, however, is more complex. The driver
hands the packet to the HAL, which queues it for trans-
mission. The driver does not know when the packet
reaches the head of the transmission queue. Further, we
do not have access to the HAL source, so we cannot
modify it to export the necessary information.1 We work
around this issue as follows. We make the driver times-
tamp packets just before it hands them to the HAL. Sup-
pose the timestamp of packet j as it is pushed to the HAL
is thj, we can then estimate tqj as follows:

tqj = max(thj, taj−1) (8)

The intuition underlying Eq. 8 is simple; either the HAL’s
queue is empty and thus packet j reaches the head of the
queue soon after it is handed to the HAL, i.e., at time thj,
or the queue has some previous packets, in which case
packet j reaches the head of the queue only when the HAL
is done with delivering packet j − 1, i.e., at time taj−1.

Two practical complications exist however. First, the
timer in the HAL has millisecond accuracy. As a re-
sult, the estimate of the delivery time td in Eq. 7 will
be equally coarse, and mostly either 0 ms or 1 ms. To
deal with this coarse resolution, we need to aggregate
over a large number of measurements. In particular, Fat-
VAP produces a measurement of the wireless available
throughput at APi by taking an average over a window of
T seconds (by default T = 2s), as follows:

wi =

∑
j∈T Bj∑
j∈T tdj

. (9)

1An open source project named OpenHAL allows access to the HAL
but is too inefficient to be used in practice.

The scheduler continuously updates its estimate by using
an exponentially weighted average over the samples in
Eq. 9.

A second practical complication occurs because both
the driver’s timer and the HAL’s timer are typically syn-
chronized with the time at the AP. This synchronization
happens with every beacon received from the AP. But as
FatVAP switches APs, the timers may resynchronize with
a different AP. This is fine in general as both timers are
always synchronized with respect to the same AP. The
problem, however, is that some of the packets in the trans-
mit queue may have old timestamps taken with respect
to the previous AP. To deal with this issue, the FatVAP
driver remembers the id of the last packet that was pushed
into the HAL. When resynchronization occurs (i.e., the
beacon is received), it knows that packets with ids smaller
than or equal to the last pushed packet have inaccurate
timestamps and should not contribute to the average in
Eq. 9.

Finally, we note that FatVAP’s estimation of available
bandwidth is mostly passive and leverages transmitted
data packets. FatVAP uses probes only during initializa-
tion, because at that point the client has no traffic travers-
ing the AP. FatVAP also occasionally probes the unused
APs (i.e., APs not picked by the scheduler) to check that
their available bandwidth has not changed.

3.1.2 Measuring End-to-End Available Bandwidth

The available end-to-end bandwidth via an AP is
the average throughput that a client obtains when using
the AP to access the Internet.2 The available end-to-end
bandwidth is lower when there are more contenders caus-
ing a FatVAP client to avoid congested APs in favor of a
balanced load.

How do we measure an AP’s end-to-end available
bandwidth? The naive approach would count all bytes re-
ceived from the AP in a certain time window and divide
the count by the window size. The problem, however, is
that no packets might be received either because the host
has not demanded any, or the sending server is idle. To
avoid underestimating the available bandwidth, FatVAP
guesses which of the inter-packet gaps are caused by idle-
ness and removes those gaps. The algorithm is fairly sim-
ple. It ignores packet gaps larger than one second. It also
ignores gaps between small packets, which are mostly AP
beacons and TCP acks, and focuses on the spacing be-
tween pairs of large packets. After ignoring packet pairs
that include small packets and those that are spaced by
excessively long intervals, FatVAP computes an estimate

2Note that our definition of available end-to-end bandwidth is not
the typical value [17, 26] that is computed between a source-destination
pair, but is an average over all paths through the AP.
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Figure 4: The estimate of end-to-end available bandwidth is different from the
true value because the AP buffers data when the client is not listening and buffered
data drains at the wireless available bandwidth. FatVAP corrects for this by spend-
ing slightly longer than necessary at each AP, i.e., operating at the red dot rather
than the black dot.

of the end-to-end available bandwidth at APi as:

êi =

∑
Bj∑
gj

, (10)

where Bj is the size of the second packet in the jth pair,
and gj is the gap separating the two packets, and the sum
is taken over a time window of T = 2 seconds.

One subtlety remains however. When a client re-
connects to an AP, the AP first drains out all packets that it
buffered when the client was away. These packets go out
at the wireless available bandwidth wi. Once the buffer is
drained out, the remaining data arrives at the end-to-end
available bandwidth ei. Since the client receives a por-
tion of its data at the wireless available bandwidth and
wi ≥ ei, simply counting how quickly the bytes are re-
ceived, as in Eq. 10, over-estimates the end-to-end avail-
able bandwidth.

Fig. 4 plots how the estimate of end-to-end available
bandwidth êi relates to the true value ei. There are two
distinct phases. In one phase, the estimate is equal to wi,
which is shown by the flat part of the solid blue line. This
phase corresponds to connecting to APi for less time than
needed to collect all buffered data, i.e., fi < ei

wi
. Since the

buffered data drains at wi, the estimate will be êi = wi. In
the other phase, the estimate is systematically inflated by
1
fi

, as shown by the tilted part of the solid blue line. This
phase corresponds to connecting to APi for more time
than needed to collect all buffered data, i.e., fi > ei

wi
. The

derivation for this inflation is in Appendix A. Here, we
note the ramifications.

Inflated estimates of the end-to-end available band-
width make the ideal operating point unstable. A client
would ideally operate at the black dot in Fig. 4, where it
connects to APi for exactly f ∗i = ei

wi
of its time. But, if the

client does so, the estimate êi will be êi = ei
f∗i

= wi. In this
case, the client cannot figure out the amount of inflation
in ei and compensate for it because the true end-to-end
available bandwidth can be any value corresponding to
the flat thick blue line in Fig. 4. Even worse, if the ac-
tual end-to-end available bandwidth were to increase, say
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Figure 5: FatVAP’s reverse NAT architecture.
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because a contending client shuts off, the client cannot
observe this change, because its estimate will still be wi.

To fix this, FatVAP clients operate at the red dot, i.e.,
they spend slightly longer than necessary at each AP in
order to obtain an accurate estimate of the end-to-end
bandwidth. Specifically, if êi ≈ wi, FatVAP knows that it
is operating near or beyond the black dot and thus slightly
increases fi to go back to the red dot. The red arrows in the
figure show how a FatVAP client gradually adapts its fi to
bring it closer to the desired range. As long as fi is larger
than the optimal value, we can compensate for the infla-
tion knowing that ei = fiêi, i.e., Eq. 10 can be re-written
as:

ei = fi

∑
Bj∑
gj

. (11)

3.2 Load Balancing Traffic Across APs

The scheduler in §3.1 gives an opportunity to obtain
the sum of available bandwidth at all APs, but to fulfill
that opportunity, the FatVAP driver should map traffic to
APs appropriately. There are two parts to mapping traffic:
a load balancer that splits traffic among the APs, and a
reverse-NAT that ensures traffic goes through the desired
APs.

3.2.1 The Load Balancer

The load balancer assigns traffic to APs proportion-
ally to the end-to-end bandwidth obtainable from an AP.
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Thus, the traffic ratio assigned to each AP, ri, is:

ri =
fiwi∑
j fjwj

, (12)

where fi is the fraction of time that the client connects to
APi and fiwi is the value of APi (see Eqs. 1, 2).

When splitting traffic, the first question is whether the
traffic allocation unit should be a packet, a flow, or a desti-
nation? FatVAP allocates traffic to APs on a flow-by-flow
basis. A flow is identified by its destination IP address
and its ports. FatVAP records the flow-to-AP mapping in
a hash-table. When a new flow arrives, FatVAP decides
which AP to assign this flow to and records the assign-
ment in the hash table. Subsequent packets in the flow are
simply sent through the AP recorded in the hash table.

Our decision to pin flows to APs is driven by practi-
cal considerations. First, it is both cumbersome and inef-
ficient to divide traffic at a granularity smaller than a flow.
Different APs usually use different DHCP servers and ac-
cept traffic only when the client uses the IP address pro-
vided by the AP’s DHCP server. This means that in the
general case, a flow cannot be split across APs. Further,
splitting a TCP flow across multiple paths often reorders
the flow’s packets hurting TCP performance [25]. Sec-
ond, a host often has many concurrent flows, making it
easy to load balance traffic while pinning flows to APs.
Even a single application can generate many flows. For
example, browsers open parallel connections to quickly
fetch the objects in a web page (e.g., images, scripts) [18],
and file-sharing applications like BitTorrent open concur-
rent connections to peers.

But, how do we assign flows to APs to satisfy the ra-
tios in Eq.12? The direct approach assigns a new flow to
the ith AP with a random probability ri. Random assign-
ment works when the flows have similar sizes. But flows
vary significantly in their sizes and rates [15, 22, 25].
To deal with this issue, FatVAP maintains per-AP token
counters, C, that reflect the deficit of each AP, i.e., how
far the number of bytes mapped to an AP is from its de-
sired allocation. For every packet, FatVAP increments all
counters proportionally to the APs’ ratios in Eq. 12. The
counter of the AP that the packet was sent/received on is
decremented by the packet size B. Hence, every window
of Tc seconds (default is T = 60s) we compute:

Ci =

{
Ci + ri × B − B Packet is mapped to APi

Ci + ri × B Otherwise.
(13)

It is easy to see that APs with more traffic than their
fair share have negative counters and those with less than
their fair share have positive counter values. When a new
flow arrives, FatVAP assigns the flow to the AP with the
most positive counters and decreases that AP’s counters

by a constant amount F (default 10, 000) to accommo-
date for TCP’s slow ramp-up. Additionally, we decay all
counters every Tc = 60s to forget biases that occurred a
long time ago.

3.2.2 The Reverse-NAT

How do we ensure that packets in a particular flow
are sent and received through the AP that the load bal-
ancer assigns the flow to? If we simply present the kernel
with multiple interfaces, one interface per AP like prior
work [13], the kernel would send all flows through one
AP. This is because the kernel maps flows to interfaces
according to routing information, not load. When all APs
have valid routes, the kernel simply picks the default in-
terface.

To address this issue, FatVAP uses a reverse NAT as a
shim between the APs and the kernel, as shown in Fig. 5.
Given a single physical wireless card, the FatVAP driver
exposes just one interface with a dummy IP address to the
kernel. To the rest of the MadWifi driver, however, Fat-
VAP pretends that the single card is multiple interfaces.
Each of the interfaces is associated to a different AP, us-
ing a different IP address. Transparent to the host kernel,
FatVAP resets the addresses in a packet so that the packet
can go through its assigned AP.

On the send side, and as shown in Fig. 6, FatVAP
modifies packets just as they enter the driver from the
kernel. If the flow is not already pinned to an AP, Fat-
VAP uses the load balancing algorithm above to pin this
new flow to an AP. FatVAP then replaces the source IP
address in the packet with the IP address of the inter-
face that is associated with the AP. Of course, this means
that the IP checksum has to be re-done. Rather than re-
compute the checksum of the entire packet, FatVAP uses
the fact that the checksum is a linear code over the bytes
in the packet. So analogous to [14], the checksum is re-
computed by subtracting some f (the dummy IP address)
and adding f (assigned interface’s IP). Similarly, trans-
port layer checksums, e.g., TCP and UDP checksums,
need to be redone as these protocols use the IP header
in their checksum computation. After this, FatVAP hands
over the packet to standard MadWifi processing, as if this
were a packet the kernel wants to transmit out of the as-
signed interface.

On the receive side, FatVAP modifies packets after
standard MadWifi processing, just before they are handed
up to the kernel. If the packet is not a broadcast packet,
FatVAP replaces the IP address of the actual interface the
packet was received on with the dummy IP of the inter-
face the kernel is expecting the packets on. Checksums
are re-done as on the send side, and the packet is handed
off to the kernel.
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3.3 Fast, Loss-Free, and Transparent AP Switching

To maximize user throughput, FatVAP has to toggle
between APs according to the scheduler in §3.1 while
simultaneously maintaining TCP flows through multi-
ple APs (see §3.2). Switching APs requires switching
the HAL and potentially resetting the wireless channel.
It also requires managing queued packets and updating
the driver’s state. These tasks take time. For example,
the Microsoft virtual WiFi project virtualizes an 802.11
card, allowing it to switch from one AP to another. But
this switching takes 30-600 ms [7] mostly because a new
driver module needs to be initialized when switching to
a new AP. Though successful in its objective of bridg-
ing wireless networks, the design of Virtual WiFi is not
sufficient to aggregate AP bandwidth. FatVAP needs to
support fast AP switching, i.e., a few milliseconds, oth-
erwise the switching overhead may preclude most of the
benefits. Further, switching should not cause packet loss.
If the card or the AP loses packets in the process, switch-
ing will hurt TCP traffic [25]. Finally, most of the switch-
ing problems would be easily solved if one can modify
both APs and clients. Such a design, however, will not be
useful in today’s 802.11 deployments.

3.3.1 Fast and Loss-Free Switching

The basic technique that enables a card to toggle be-
tween APs is simple and is currently used by the Mad-
WiFi [4] driver to background scan for better APs and
others. Before a client switches away from an AP, it tells
the AP that it is going to power save mode. This causes
the AP to buffer the client’s packets for the duration of
its absence. When the client switches again to the AP, it
sends the AP a frame to inform the AP of its return, and
the AP then, forwards the buffered packets.

So, how do we leverage this idea for quickly switch-
ing APs without losing packets? Two fundamental issues
need to be solved. First, when switching APs, what does
one do with packets inside the driver destined for the old
AP? An AP switching system that sits outside the driver,
like MultiNet [13] has no choice but to wait until all pack-
ets queued in the driver are drained, which could take
a while. Systems that switch infrequently, such as Mad-
Wifi that does so to scan in the background, drop all the
queued packets. To make AP switching fast and loss-free,
FatVAP pushes the switching procedure to the driver,
where it maintains multiple transmit queues, one for each
interface. Switching APs simply means detaching the old
AP’s queue and reattaching the new AP’s queue. This
makes switching a roughly constant time operation and
avoids dropping packets. It should be noted that packets
are pushed to the transmit queue by the driver and read by
the HAL. Thus, FatVAP still needs to wait to resolve the
state of the head of the queue. This is, however, a much

Trap all further packets from 

kernel to old AP and buffer them

Send to old AP, a going 

into power-save notification

Wait for a bit

Halt hardware and 

detach transmit q’s
Reset hardware to 

change channels etc.

Attach transmit q’s of new AP

and restart hardware

Send to new AP, a coming

out of power-save notification

Ready all buffered packets for transmit,

don’t trap packets to new AP further

Disconnecting Old Interface-AP Pair Connecting New Interface-AP Pair

Figure 7: FatVAP’s approach to switching between interfaces

Interface2Interface1
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Interface2Interface1

FatVAP

ESSID X ESSID Y

(b) No benefit in connecting to multiple light-weight APs

Figure 8: Challenges in transparently connecting to multiple APs.

shorter wait (a few milliseconds) with negligible impact
on TCP and the scheduler.

Second, how do we maintain multiple 802.11 state
machines simultaneously within a single driver? Con-
necting with an AP means maintaining an 802.11 state
machine. For example, in 802.11, a client transitions from
INIT to SCAN to AUTH to ASSOC before reaching
RUN, where it can forward data through the AP. It is cru-
cial to handle state transitions correctly because other-
wise no communication may be possible. For example, if
an association request from one interface to its AP is sent
out when another interface is connected to its AP, perhaps
on a different channel, the association will fail preventing
further communication. To maintain multiple state ma-
chines simultaneously, FatVAP adds hooks to MadWifi’s
802.11 state-machine implementation. These hooks trap
all state transitions in the driver. Only transitions for the
interface that is currently connected to its AP can pro-
ceed, all other transitions are held pending and handled
when the interface is scheduled next. Passive changes to
the state of an interface such as receiving packets or up-
dating statistics are allowed at all times.

Fig. 7 summarizes the FatVAP drivers’ actions when
switching from an old interface-AP pair to a new pair.

• First, FatVAP traps all future packets handed down
by the kernel that need to go out to the old AP and
buffers them until the next time this interface-AP pair
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is connected.
• Second, FatVAP sends out an 802.11 management

frame indicating to the old AP that the host is going
into power save mode. The AP then buffers all future
packets that need to go to the host.

• Unfortunately, these above two cases do not cover
packets that may already be on-the-way, i.e., pack-
ets might be in the card’s transmit queue waiting to
be sent or might even be in the air. To prevent packet
loss, FatVAP waits a little bit for the current packet
on the air to be received before halting the hardware.
FatVAP also preserves the packets waiting in the in-
terface’s transmit queue. The transmit queue of the
old interface is simply detached from the HAL and is
re-attached when the interface is next scheduled.

• Fourth, FatVAP resets the hardware settings of the
card and pushes the new association state into the
HAL. If the new AP is on a different channel, the card
changes channels and listens at the new frequency
band.

• Finally, waking up the new interface is simple as the
hardware is now on the right channel. FatVAP sends
out a management frame telling the new AP that the
host is coming out of power save, the AP immediately
starts forwarding buffered packets to the host.

3.3.2 Transparent Switching

We would like FatVAP to work with unmodified APs.
Switching APs transparently involves handling these
practical deployment scenarios.

(a) Cannot Use a Single MAC Address: When two APs
are on the same 802.11 channel (operate in the same fre-
quency band), as in Fig. 8a, you cannot connect to both
APs with virtual interfaces that have the same MAC ad-
dress. To see why this is the case, suppose the client uses
both AP1 and AP2 that are on the same 802.11 channel.
While exchanging packets with AP2, the client claims to
AP1 that it has gone into the power-save mode. Unfor-
tunately, AP1 overhears the client talking to AP2 as it
is on the same channel, concludes that the client is out
of power-save mode, tries to send the client its buffered
packets and when un-successful, forcefully deauthenti-
cates the client.

FatVAP confronts MAC address problems with an
existing feature in many wireless chipsets that allows a
physical card to have multiple MAC addresses [4]. The
trick is to change a few of the most significant bits across
these addresses so that the hardware can efficiently listen
for packets on all addresses. But, of course, the number of
such MAC addresses that a card can fake is limited. Since
the same MAC address can be reused for APs that are on
different channels, FatVAP creates a pool of interfaces,
half of which have the primary MAC, and the rest have

unique MACs. When FatVAP assigns a MAC address to
a virtual interface, it ensures that interfaces connected to
APs on the same channel do not share the MAC address.

(b) Light-Weight APs (LWAP): Some vendors allow a
physical AP to pretend to be multiple APs with differ-
ent ESSIDs and different MAC addresses that listen on
the same channel, as shown in Fig. 8b. This feature is of-
ten used to provide different levels of security (e.g., one
light-weight AP uses WEP keys and the other is open)
and traffic engineering (e.g., preferentially treat authen-
ticated traffic). For our purpose of aggregating AP band-
width, switching between light weight APs is useless as
the two APs are physically one AP.

FatVAP uses a heuristic to identify light-weight APs.
LWAPs that are actually the same physical AP share
many bits in their MAC addresses. FatVAP connects to
only one AP from any set of APs that have fewer than
five bits different in their MAC addresses.

4 EVALUATION

We evaluate our implementation of FatVAP in the
Madwifi driver in an internal testbed we built with APs
from Cisco and Netgear, in hotspots served by com-
mercial providers like T-Mobile, and in residential areas
which have low-cost APs connected to DSL or cable mo-
dem backends.

Our results reveal three main findings.

• In the testbed, FatVAP performs as expected. It bal-
ances load across APs and aggregates their avail-
able backhaul bandwidth, limited only by the wire-
less capacity and application demands. This result is
achieved even when the APs are on different wireless
channels.

• In today’s residential and Hotspot deployments (in
Cambridge/Somerville, MA), FatVAP delivers to the
end user a median throughput gain of 2.6x, and re-
duces the median response time by 2.8x.

• FatVAP safely co-exists with unmodified drivers and
other FatVAP clients. At each AP, FatVAP com-
petes with unmodified clients as fairly as an unmodi-
fied MadWifi driver, and is sometimes fairer because
FatVAP moves away from congested APs. FatVAP
clients are also fair among themselves.

4.1 Experimental Setup

(a) Drivers We compare the following two drivers.
• Unmodified Driver: This refers to the madwifi

v0.9.3 [4] driver. On linux, MadWifi is the current
defacto driver for Atheros chipsets and is a natural
baseline.

• FatVAP: This is our implementation of FatVAP as an
extension of madwifi v0.9.3. Our implementation in-
cludes the features described in §3, and works in con-
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Operation
Time (µs)

Mean STD
IP Checksum Recompute 0.10 0.09

TCP/UDP Checksum Recompute 0.12 0.14
Flow Lookup/Add in HashTable 2.52 2.30

Running the Scheduler 16.21 4.85
Switching Delay 2897.48 2780.71

Table 1: Latency overhead of various FatVAP operations.

junction with autorate algorithms, carrier-sense, CTS-
to-self protection, etc.

(b) Access Points: Our testbed uses Cisco Aironet
1130AG Series access points and Netgear’s lower-cost
APs. We put the testbed APs in the 802.11a band so as
to not interfere with our lab’s existing infrastructure. Our
outside experiments run in hotspots and residential de-
ployments and involve a variety of commercial APs in the
802.11b/g mode, which shows that FatVAP works across
802.11a/b/g. The testbed APs can buffer up to 200 KB for
a client that enters the power-save mode.3 Testbed APs
are assigned different 802.11a channels (we use channels
40, 44, 48, 52, 56 and 60). The wireless throughput to all
APs in our testbed is in the range [19− 22] Mb/s. The ac-
tual value depends on the AP, and differs slightly between
uplink and downlink scenarios. APs in hotspots and res-
idential experiments have their own channel assignment
which we do not control.

(c) Wireless Clients: We have tested with a few differ-
ent wireless cards, from the Atheros chipsets in the lat-
est Thinkpads (Atheros AR5006EX) to older Dlink and
Netgear cards. Clients are 2GHz x86 machines that run
Linux v2.6. In each experiment, we make sure that Fat-
VAP and the compared unmodified driver use similar ma-
chines with the same kernel version/revision and the same
card.

(d) Traffic Shaping: To emulate an AP backhaul link,
we add a traffic shaper behind each of our test-bed APs.
This shaper is a Linux box that bridges the APs traffic
to the Internet and has two Ethernet cards, one of which
is plugged into the lab’s (wired) GigE infrastructure, and
the other is connected to the AP. The shaper controls the
end-to-end bandwidth through a token bucket based rate-
filter whose rate determines the capacity of AP’s access
link. We use the same access capacity for both downlink
and uplink.

(e) Traffic Load: All of our experiments use TCP. A
FatVAP client assigns traffic to APs at the granularity of
a TCP flow as described in §3.2. An unmodified client
assigns traffic to the single AP chosen by its unmodified
driver [4]. Each experiment uses one these traffic loads.

3We estimate this value by computing the maximum burst size that
a client obtains when it re-connects after spending a long time in the
power-save mode.

• Long-lived iperf TCP flows: In this traffic load, each
client has as many parallel TCP flows as there are
APs. Flows are generated using iperf [2] and each
flow lasts for 5 minutes.

• Web Traffic: This traffic load mimics a user browsing
the Web. The client runs our modified version of Web-
Stone 2.5 [8] a tool for benchmarking Web servers.
Requests for new Web pages arrive as a Poisson pro-
cess with a mean of 2 pages/s, the number of objects
on a page is exponentially distributed with a mean
of 20 objects/page, the objects themselves are copies
of actual content on the CSAIL Web server and have
sizes that are roughly a power-law with mean equal to
15KB. Note that popular browsers usually open mul-
tiple parallel connections to the same server or differ-
ent servers to quickly download the various objects on
a web page (e.g., images, scripts) [18].

• BitTorrent: Here, we use the Azureus [1] BitTorrent
client to fetch a 500MB file. The tracker is on a
CSAIL machine, and 8 Planetlab nodes act as peers.
Note that BitTorrent fetches data in parallel from mul-
tiple peers.

4.2 Microbenchmarks

To profile the various components of FatVAP, we use
the x86 rdtscll instruction for fine-grained timing infor-
mation. rdtscll reads a hardware timestamp counter that is
incremented once every CPU cycle. On our 2 GHz client,
this yields a resolution of 0.5 nano seconds.

Table 1 shows our microbenchmarks. The table shows
that the delay seen by packets on the fast-path (e.g., flow
lookup to find which AP the packets need to go to, re-
computing checksums) is negligible. Similarly, the over-
head of computing and updating the scheduler is mini-
mal. The bulk of the overhead is caused by AP switching.
It takes an average of 3 ms to switch from one AP to
another. This time includes sending a power save frame,
waiting until the HAL has finished sending/receiving the
current packet, switching both the transmit and receive
queues, switching channel/AP, and sending a manage-
ment frame to the new AP informing it that the client is
back from power save mode. The standard deviation is
also about 3 ms, owing to the variable amount of pend-
ing interrupts that have to be picked up. Because FatVAP
performs AP switching in the driver, its average switching
delay is much lower than prior systems (3ms as opposed
to 30-600ms). We note that switching cost directly affects
the throughput a user can get. A user switching between
two APs every 100ms, would only have 40ms of usable
time left if each switch takes 30ms, as opposed to 94ms
of usable time when each switch takes 3ms and hence can
more than double his throughput (94% vs. 40% use).
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Figure 10: At time t = 100s, the available bandwidth at the first access link
changes from 15Mb/s to 5Mb/s, whereas the available bandwidth at the second
access link changes from 5Mb/s to 15Mb/s. FatVAP quickly rebalances the load
and continues to deliver the sum of the APs’ available end-to-end bandwidth. In
the scenario, an unmodified driver limits the client to AP1’s available bandwidth.

4.3 Can FatVAP Aggregate AP Backhaul Rates?

FatVAP’s main goal is to allow users in a hotspot or at
home to aggregate the bandwidth available at all accessi-
ble APs. Thus, in this section we check whether FatVAP
can achieve this goal.

Our experimental setup shown in Fig. 9(a) has n =
{1, 2, 3, 4, 5}APs. The APs are on different channels and
each AP has a relatively thin access link to the Inter-
net (capacity 6Mb/s), which we emulate using the traf-
fic shaper described in §4.1(c). The wireless bandwidth
to the APs is about [20 − 22]Mb/s. The traffic consti-
tutes of long-lived iperf TCP flows, and there are as many
TCPs as APs, as described in §4.1(d). Each experiment is
first performed by FatVAP, then repeated with an unmod-
ified driver. We perform 20 runs and compute the average
throughput across them. The question we ask is: does Fat-
VAP present its client with a fat virtual AP, whose back-
haul bandwidth is the sum of the AP’s backhaul band-
widths?

Figs. 9(b) and 9(c) show the aggregate throughput of
the FatVAP client both on the uplink and downlink, as a

function of the number of APs that FatVAP is allowed to
access. When FatVAP is limited to a single AP, the TCP
throughput is similar to running the same experiment
with an unmodified client. Both throughputs are about
5.8Mb/s, slightly less than the access capacity because
of TCP’s sawtooth behavior. But as FatVAP is given ac-
cess to more APs, its throughput doubles, and triples. At
3 APs, FatVAP’s throughput is 3 times larger than the
throughput of the unmodified driver. As the number of
APs increases further, we start hitting the maximum wire-
less bandwidth, which is about 20-22Mb/s. Note that Fat-
VAP’s throughput stays slightly less than the maximum
wireless bandwidth due to the time lost in switching be-
tween APs. FatVAP achieves its maximum throughput
when it uses 4 APs. In fact, as a consequence of switching
overhead, FatVAP chooses not to use the fifth AP even
when allowed access to it. Thus, one can conclude that
FatVAP effectively aggregates AP backhaul bandwidth
up to the limitation imposed by the maximum wireless
bandwidth.

4.4 Can FatVAP Adapt to Changes in Bandwidth?

Next, if an AP’s available bandwidth changes, we
would like FatVAP to re-adjust and continue delivering
the sum of the bandwidths available across all APs. Note
that an unmodified MadWifi cannot respond to changes
in backhaul capacity. On the other hand, FatVAP’s con-
stant estimation of both end-to-end and wireless band-
width allows it to react to changes within a couple of sec-
onds. We demonstrate this with the experiment in Fig. 10,
where two APs are bottlenecked at their access links. As
before, the APs are on two different channels, and the
bandwidth of the wireless links to the APs is about [21-
22]Mb/s. At the beginning, AP1 has 15Mb/s of avail-
able bandwidth, whereas AP2 has only 5Mb/s. At time
t = 100s, we change the available bandwidth at the two
APs, such that AP1 has only 5Mb/s and AP2 has 15 Mb/s.
Note that since the aggregated available bandwidth re-
mains the same, FatVAP should deliver constant through-
put across this change. We perform the experiment with
a FatVAP client, and repeat it with an unmodified client
that connects to AP1 all the time. In both cases, the client
uses iperf [2] to generate large TCP flows, as described
in §4.1(d).

Fig. 10(b) shows the client throughput, averaged over
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Figure 11: Because it balances the load across the two APs, FatVAP achieves a significantly lower response time for Web traffic in comparison with an unmodified
driver.

2s intervals, as a function of time. The figure shows that if
the client uses an unmodified driver connected to AP1, its
throughput will change from 15Mb/s to 5Mb/s in accor-
dance with the change in the available bandwidth on that
AP. FatVAP, however, achieves a throughput of about 18
Mb/s, and is limited by the sum of the APs’ access capac-
ities rather than the access capacity of a single AP. Fat-
VAP also adapts to changes in AP available bandwidth,
and maintains its high throughput across such changes.

4.5 Does FatVAP Balance the Load across APs?

A second motivation in designing FatVAP is to bal-
ance load among nearby APs. To check that FatVAP in-
deed balances AP load, we experiment with two APs
and one client, as shown in Fig. 11(a). We emulate a
user browsing the Web. Web sessions are generated using
WebStone 2.5, a benchmarking tool for Web servers [8]
and fetch Web pages from a Web server that mirrors our
CSAIL Web-server, as described in §4.1(d).

Fig. 11(b) shows that FatVAP effectively balances the
utilization of the APs’ access links, whereas the unmod-
ified driver uses only one AP, congesting its access link.
Fig. 11(c) shows the corresponding response times. It
shows that FatVAP’s ability to balance the load across
APs directly translates to lower response times for Web
requests. While the unmodified driver congests the de-
fault APs causing long queues, packet drops, TCP time-
outs, and thus long response times, FatVAP balances AP
loads to within in a few percent, preventing congestion,
and resulting in much shorter response times.

4.6 Does FatVAP Compete Fairly with Unmodified
Drivers?

We would like to confirm that regardless of how
FatVAP schedules APs, a competing unmodified driver
would get its fair share of bandwidth at an AP. We run the
experiment in Fig. 12(a), where a FatVAP client switches
between AP1 and AP2, and shares AP1 with an unmod-
ified driver. In each run, both clients use iperf to gener-
ate long-lived TCP flows, as described in §4.1(d). For the
topology in Fig. 12(a), since AP1 is shared by two clients,
we have w1 = 19/2 = 9.5Mb/s, and e1 = 10/2 =
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(b) Throughput of FatVAP and a competing unmodified driver

Figure 12: FatVAP shares the bandwidth of AP1 fairly with the unmodified driver.
Regardless of how much time FatVAP connects to AP1, the unmodified driver gets
half of AP1’s capacity, and sometimes more. The results are for the downlink. The
uplink shows a similar behavior.

5Mb/s. AP2 is not shared, and has w2 = 20Mb/s, and
e2 = 5Mb/s.

Fig. 12(b) plots the throughput of both FatVAP and an
unmodified driver when we impose different time-sharing
schedules on FatVAP. For reference, we also plot a hor-
izontal line at 5Mb/s, which is one half of AP1’s access
capacity. The figure shows that regardless of how much
time FatVAP connects to AP1, it always stays fair to the
unmodified driver, that is, it leaves the unmodified driver
about half of AP1’s capacity, and sometimes more. Fat-
VAP achieves the best throughput when it spends about
55-70% of its time on AP1. Its throughput peaks when it
spends about 64% of its time on AP1, which is, in fact,
the solution computed by our scheduler in §3.1 for the
above bandwidth values. This shows that our AP sched-
uler is effective in maximizing client throughput.

4.7 Are FatVAP Clients Fair Among Themselves?

When unmodified clients access multiple APs the ag-
gregate bandwidth is divided at the coarse granularity of a
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(b) Average throughput of five clients contending for two APs.

Figure 13: FatVAP clients compete fairly among themselves and have a fairer
throughput allocation than unmodified clients under the same conditions.

client. This causes significant unfairness between clients
that use different APs. The situation is further aggra-
vated since unmodified clients pick APs based on signal
strength rather than available bandwidth, and hence can
significantly overload an AP.

Here, we look at 5 clients that compete for two
APs, where AP1 has 2Mb/s of available bandwidth and
AP2 has 12 Mb/s, as shown in Fig. 13(a). The traffic
load consists of long-lived iperf TCP flows, as described
in §4.1(d). Fig. 13(b) plots the average throughput of
clients with and without FatVAP. With an unmodified
driver, clients C1 and C2 associate with AP1, thereby
achieving a throughput of less than 1Mb/s. The remaining
clients associate with AP2 for roughly 4Mb/s through-
put for each. However, FatVAP’s load balancing and fine-
grained scheduling allow all five clients to fairly share the
aggregate bandwidth of 14 Mb/s, obtaining a throughput
of roughly 2.8 Mb/s each, as shown by the dark bars in
Fig. 13(b).

4.8 FatVAP in Residential Deployments

We demonstrate that FatVAP can bring real and im-
mediate benefits in today’s residential deployments. To
do so, we experiment with FatVAP in three residential
locations in Cambridge, MA, shown in Fig. 14. Each of
these locations has two APs, and all of them are homes
of MIT students, where neighbors are interested in com-
bining the bandwidth of their DSL lines. Again, in these
experiments, we run Web sessions that access a mirror of
the CSAIL Web-server, as explained in §4.1(d). In each
location, we issue Web requests for 10 min, and repeat
the experiment with and without FatVAP.

Fig. 15(a) plots the CDF of throughput taken over all

Figure 14: Location of residential deployments (in red) and hotspots (in blue)
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(a) CDF of throughput taken over all Web requests
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(b) CDF of response time taken over all Web requests

Figure 15: FatVAP’s performance in three residential deployments in Cambridge,
MA. The figure shows that FatVAP improves the median throughput by 2.6x and
reduces the median response time by 2.8x.

the web requests in all three locations. The figure shows
that FatVAP increases the median throughput in these res-
idential deployments by 2.6x. Fig. 15(b) plots the CDF
of the response time taken over all requests. The figure
shows that FatVAP reduces the median response time by
2.8x. Note that though all these locations have only two
APs, Web performance more than doubled. This is due to
FatVAP’s ability to balance the load across APs. Specifi-
cally, most Web flows are short lived and have relatively
small TCP congestion windows. Without load balancing,
the bottleneck drops a large number of packets, causing
these flows to time out, which results in worse through-
puts and response times. In short, our results show that
FatVAP brings immediate benefit in today’s deployments,
improving both client’s throughput and response time.

4.9 Hotspots

Results in Hotspots show that FatVAP can aggregate
throughput across commercial access points. The traf-
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Figure 16: FatVAP’s performance in two hotspots in Cambridge/Somerville, MA,
showing that FatVAP improves throughput for Web downloads and BitTorrent.

fic load uses both Web downloads and BitTorrent and is
generated as described in §4.1(d). Our results show that
both Web sessions and BitTorrent obtain much improved
throughput compared to the unmodified driver. Fig. 16
shows that, depending on the Hotspot, FatVAP delivers
an average throughput gain of 1.5-10x to Web traffic,
and 2 − 6x to BitTorrent. The huge gains obtained in the
Broadway site are because the AP with the highest RSSI
was misconfigured with a very large queue size. When
congested, TCPs at this AP experienced a huge RTT in-
flation, time-outs, and poor throughput.

5 RELATED WORK

Related work falls in two main areas.
(a) Connecting to Multiple APs: There has been much
interest in connecting a wireless user to multiple net-
works. Most prior work uses separate cards to connect
to different APs or cellular base stations [5, 23, 27].
PERM [27] connects multiple WiFi cards to different res-
idential ISPs, probes the latency via each ISP, and assigns
flows to cards to minimize latency. Horde [23] uses mul-
tiple cellular connections via different providers. In con-
trast to this work which stripes traffic across independent
connections, FatVAPuses the same card to associate and
exchange data with multiple APs. Further, FatVAP uses
virtual connections to these APs that are very much de-
pendent and so are the throughput estimates that FatVAP
uses to choose APs.

The closest to our work is the MultiNet project [13],
which was later named VirtualWiFi [6]. MultiNet ab-
stracts a single WLAN card to appear as multiple vir-
tual WLAN cards to the user. The user can then config-
ure each virtual card to connect to a different wireless

network. MultiNet applies this idea to extend the reach
of APs to far-away clients and to debug poor connectiv-
ity. We build on this vision of MultiNet but differ in de-
sign and applicability. First, MultiNet provides switching
capabilities but says nothing about which APs a client
should toggle and how long it should remain connected
to an AP to maximize its throughput. In contrast, FatVAP
schedules AP switching to maximize throughput and bal-
ance load. Second, FatVAP can switch APs at a fine time
scale and without dropping packets; this makes it the
only system that maintains concurrent TCP connections
on multiple APs.

(b) AP Selection: Current drivers select an AP based on
signal strength. Prior research has proposed picking an
AP based on load [20], potential bandwidth [28], and a
combination of metrics [21]. FatVAP fundamentally dif-
fers from these techniques in that it does not pick a single
AP, but rather multiplexes the various APs in a manner
that maximizes client throughput.

6 DISCUSSION

Here, we discuss some related issues and future work.
(a) Multiple WiFi Cards: While FatVAP benefits from

having multiple WiFi cards on the client’s machine, it
does not rely on their existence. We made this design de-
cision for various reasons. First most wireless equipments
naturally come with one card and some small handheld
devices cannot support multiple cards. Second, without
FatVAP the number of cards equals the number of APs
that one can connect with, which limits such a solution
to a couple of APs. Third, cards that are placed very
close to each other may interfere; WiFi channels over-
lap in their frequency masks [16] and could leak power to
each other’s bands particularly if the antennas are placed
very close. Forth, even with multiple cards, the client still
needs to pick which APs to connect to and route traf-
fic over these APs as to balance the load. FatVAP does
not constrain the client to having multiple cards. If the
client however happens to have multiple cards, FatVAP
would allow the user to exploit this capability to expand
the number of APs that it switches between and hence
improve the overall throughput.

(b) Channel Bonding and Wider Bands: Advances
like channel bonding (802.11n) and wider bands (40MHz
wide channels) increase wireless link capacity to hun-
dreds of Mb/s. Such schemes widen the gap between the
capacity of the wireless link and the AP’s backhaul link,
making FatVAP more useful. In such settings, FatVAP
lets one wireless card collect bandwidth from tens of APs.

(c) WEP and Splash Screens: We are in the process of
adding WEP and splash-screen login support to our Fat-
VAP prototype. Supporting WEP keys is relatively easy,
the user needs to provide a WEP key for every secure AP
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that he wants to access. FatVAP reads a pool of known
<WEP key, ESSID> tuples and uses the right key to
talk to each protected AP. Supporting splash screen lo-
gins used by some commercial hot-spots, is a bit more
complex. One would need to pin all traffic to an AP for
the duration of authentication, after which FatVAP can
distribute traffic as usual.

7 CONCLUSION

Prior work has documented the abundance of 802.11
access points and the fact that APs occur in bunches—
if you see one, it is likely that many others are close by.
This paper takes the next step by aggregating bandwidth
across the many available APs, that may be spread across
different channels. To the best of our knowledge, FatVAP
is the first driver to choose how to long to connect to each
AP, maintain concurrent TCP flows through multiple APs
and provide increased throughput to unmodified applica-
tions. FatVAP requires no changes to the 802.11 MAC or
to access points. Fundamentally, FatVAP relaxes the con-
straint that a user with one card can only connect with
one access point to achieve both better performance for
users and a better distribution of load across APs.
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A END-TO-END AVAILABLE RATE INFLATION

Suppose that the client spends fi of its duty cycle D at an AP that
has wireless and end-to-end available bandwidths, wi and ei. Thus, the
client spends fi ×D time at this AP and the remaining (1 − fi)D time at
other APs. The AP buffers data that it receives when the client is away
and delivers this data when the client next connects to the AP. Let x be
the amount served out of the AP’s buffer, then

x = ei

„

(1 − fi)D +
x

wi

«

(14)

Eq. 14 means that the buffer gets data at rate ei during two phases: when
the client is away from the AP and when data in the buffer is being
delivered to the client. The first phase lasts for (1− fi)D and the second
lasts for x

wi
. The total data received by the client in D seconds is,

DataReceived = x + ei(fiD −

x

wi
). (15)

This means simply that the client receives x units from the buffer in time
x

wi
and once the buffer is depleted, receives data at the end-to-end rate

ei for the remaining fiD −
x

wi
. Since the client listens at the AP for

ListenTime = fiD, (16)

the client’s estimate of end-to-end available bandwidth is

Estimate =
DataReceived

ListenTime
=

ei

fi
. (17)

Eq 17 is obtained by eliminating x from Eqs. 14, 15, 16. But, if the
fraction of time that the client listens to the AP is smaller than ei

wi
, it is

easy to see that the client will always be served data from the AP buffer
at the wireless available bandwidth wi. Hence, the estimate is

Estimate = max

„

ei

fi
, wi

«

. (18)
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