
Wedge: Splitting Applications into Reduced-Privilege Compartments
Andrea Bittau Petr Marchenko Mark Handley Brad Karp

University College London

Abstract
Software vulnerabilities and bugs persist, and so exploits
continue to cause significant damage, particularly by di-
vulging users’ sensitive data to miscreants. Yet the vast
majority of networked applications remain monolithi-
cally structured, in stark contravention of the ideal of
least-privilege partitioning. Like others before us, we be-
lieve this state of affairs continues because today’s op-
erating systems offer isolation primitives that are cum-
bersome. We present Wedge, a system well suited to the
splitting of complex, legacy, monolithic applications into
fine-grained, least-privilege compartments. Wedge con-
sists of two synergistic parts: OS primitives that create
compartments with default-deny semantics, which force
the programmer to make compartments’ privileges ex-
plicit; and Crowbar, a pair of run-time analysis tools
that assist the programmer in determining which code
needs which privileges for which memory objects. By
implementing the Wedge system atop Linux, and apply-
ing it to the SSL-enabled Apache web server and the
OpenSSH login server, we demonstrate that Wedge al-
lows fine-grained compartmentalization of applications
to prevent the leakage of sensitive data, at acceptable per-
formance cost. We further show that Wedge is powerful
enough to prevent a subtle man-in-the-middle attack that
succeeds on a more coarsely privilege-separated Apache
web server.

1 Introduction
In the era of ubiquitous network connectivity, the conse-
quences of vulnerabilities in server software grow ever
more serious. The principle of least privilege [16] entails
dividing the code into compartments, each of which ex-
ecutes with the minimum privileges needed to complete
its task. Such an approach not only limits the harm mali-
cious injected code may cause, but can also prevent bugs
from accidentally leaking sensitive information.

A programmer frequently has a good idea which data
manipulated by his code is sensitive, and a similarly good
idea which code is most risky (typically because it han-
dles user input). So why do so few programmers of net-
worked software divide their code into minimally priv-
ileged compartments? As others have noted [2, 6], one
reason is that the isolation primitives provided by today’s
operating systems grant privileges by default, and so are
cumbersome to use to limit privilege.

Consider the use of processes as compartments, and
the behavior of the fork system call: by default a child
process inherits a clone of its parent’s memory, including
any sensitive information therein. To prevent such im-
plicit granting of privilege to a child process, the parent
can scrub all sensitive data from memory explicitly. But
doing so is brittle; if the programmer neglects to scrub
even a single piece of sensitive data in the parent, the
child gains undesired read privileges. Moreover, the pro-
grammer may not even know of all sensitive data in a
process’s memory; library calls may leave behind sensi-
tive intermediate results.

An obvious alternative is a default-deny model, in
which compartments share no data unless the program-
mer explicitly directs so. This model avoids unintended
privilege sharing, but the difficulties lie in how precisely
the programmer can request data sharing, and how he
can identify which data must be shared. To see why, con-
sider as an example the user session-handling code in the
Apache web server. This code makes use of over 600 dis-
tinct memory objects, scattered throughout the heap and
globals. Just identifying these is a burden. Moreover, the
usual primitives of fork to create a compartment, exec
to scrub all memory, and inter-process communication
to share only the intended 600 memory objects are un-
wieldy at best in such a situation.

In this paper, we present Wedge, a system that provides
programming primitives to allow the creation of com-
partments with default-deny semantics, and thus avoids
the risks associated with granting privileges implicitly
upon process creation. To abbreviate the explicit granting
of privileges to compartments, Wedge offers a simple and
flexible memory tagging scheme, so that the programmer
may allocate distinct but related memory objects with the
same tag, and grant a compartment memory privileges at
a memory-tag granularity.

Because a compartment within a complex, legacy,
monolithic application may require privileges for many
memory objects, Wedge importantly includes Crowbar,
a pair of tools that analyzes the run-time memory ac-
cess behavior of an application, and summarizes for the
programmer which code requires which memory access
privileges.

Neither the primitives nor the tools alone are suf-
ficient. Default-deny compartments demand tools that
make it feasible for the programmer to identify the mem-

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 309

ory objects used by a piece of code, so that he can explic-
itly enumerate the correct privileges for that code’s com-
partment. And run-time analysis reveals memory priv-
ileges that a programmer should consider granting, but
cannot enumerate those that should be denied; it thus fits
best with default-deny compartments. The synergy be-
tween the primitives and tools is what we believe will
yield a system that provides fine-grained isolation, and
yet is readily usable by programmers.

To demonstrate that Wedge allows fine-grained sepa-
ration of privileges in complex, legacy, monolithic appli-
cations, we apply the system to the SSL-enabled Apache
web server and the OpenSSH remote login server for
Linux. Using these two applications, we demonstrate
that Wedge can protect against several relatively sim-
ple attacks, including disclosure of an SSL web server’s
or OpenSSH login server’s private key by an exploit,
while still offering acceptable application performance.
We further show how the fine-grained privileges Wedge
supports can protect against a more subtle attack that
combines man-in-the middle interposition and an exploit
of the SSL web server.

2 A Motivating Example
To make least-privilege partitioning a bit more concrete,
consider how one might partition a POP3 server, as de-
picted in Figure 1. One can split the server into three
logical compartments: a client handler compartment that
deals with user input and parses POP3 commands; a lo-
gin compartment that authenticates the user; and an e-
mail retriever compartment that obtains the relevant e-
mails. The login compartment will need access to the
password database, and the e-mail retrieval compartment
will need access to the actual e-mails; these two are priv-
ileged in that they must run with permissions that allow
them to read these data items. The client handler, how-
ever, is a target for exploits because it processes untrusted
network input. It runs with none of these permissions,
and must authenticate users and retrieve e-mails through
the restricted interface to the two privileged compart-
ments.

Because of this partitioning, an exploit within the
client handler cannot reveal any passwords or e-mails,
since it has no access to them. Authentication cannot be
skipped since the e-mail retriever will only read e-mails
of the user id specified in uid, and this can only be set
by the login component. One must, however, ensure that
code running in the privileged compartments cannot be
exploited. This task is simplified since the code that re-
quires audit has been greatly reduced in size by factoring
out the client handler, which most likely consists of the
bulk of the code. A typical monolithic implementation
would combine the code from all three compartments
into a single process. An exploit anywhere in the code

Figure 1: A partitioned POP3 server. Ovals represent code segments
and those shaded are privileged. Dashed arrows between ovals indicate
the capability of invoking a privileged code segment. Boxes represent
memory regions and a one-way arrow from memory to code indicates
read permission; two-way arrows indicate read-write.

could cause anything in the process’s memory, including
passwords and e-mails, to be leaked. Hence, partitioning
can reduce the impact of exploits.

Our aim in building Wedge is to allow the program-
mer to create an arbitrary number of compartments, each
of which is granted no privileges by default, but can be
granted fine-grained privileges by the programmer. To
the extent possible, we would like the primitives we in-
troduce to resemble familiar ones in today’s operating
systems, so that programmers find them intuitive, and
minimally disruptive to introduce into legacy application
code.

Wedge achieves this goal with three isolation primi-
tives, which naturally apply to the POP3 example:

Sthreads An sthread defines a compartment within an
application. The programmer assigns access rights to
memory and other resources per-sthread. In Figure 1, the
unshaded oval is an sthread.

Tagged Memory When allocating memory, the pro-
grammer may mark that memory with a single tag. Ac-
cess rights to memory are granted to sthreads in terms
of these tags (e.g., “read/write for memory with tag t”).
In Figure 1, each rectangle is a memory region with a
distinct tag.

Callgates A callgate executes code with different priv-
ileges than its caller. An sthread typically runs with the
least privilege possible. When it must perform an oper-
ation requiring enhanced privilege, it invokes a callgate
that performs the operation on its behalf. A callgate de-
fines a narrow interface to privileged code and any sen-
sitive data it manipulates, and thus allows improved ad-
herence to least-privilege partitioning. In Figure 1, each
shaded oval is a callgate.

3 System Design
We now describe the operating system primitives that
Wedge introduces, and thereafter, the Crowbar run-time
analysis tools that ease programmer use of these primi-
tives.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association310

3.1 Sthreads
An sthread is the embodiment of a compartment in a par-
titioned application. It consists of a thread of control and
an associated security policy that specifies:

• The memory tags the sthread may access, and the per-
missions for each (read, read-write, copy-on-write).

• The file descriptors the sthread may access, and the
permissions for each (read, write, read-write).

• The callgates the sthread may invoke.

• A UNIX user id, root directory, and an SELinux pol-
icy [10], which limits the system calls that may be in-
voked.

A newly created sthread holds no access rights by de-
fault, apart from copy-on-write access to a pristine snap-
shot of the original parent process’s memory, taken just
before the execution of main, including the sthread’s (as
yet unused) private stack and heap. (We explain further in
Section 4.1 why this snapshot does not contain sensitive
data, and is essential for correct execution.) It is unable
to access any other memory nor any file descriptor from
its creator, nor invoke any callgates or system calls. Note
that all system calls retain the standard in-kernel privi-
lege checks, based on the caller’s user id, root directory,
and SELinux policy. A parent may grant a child sthread
access to its resources simply by attaching an appropriate
security policy to the child sthread when creating it.

An sthread can only create a child sthread with equal
or lesser privileges than its own. Specifically, a parent
can only grant a child access to subsets of its memory
tags, file descriptors, and authorized callgates. Similarly,
the userid and filesystem root of a child sthread can be
changed only according to UNIX semantics (i.e., only
if the parent runs as superuser), and any changes in the
SELinux policy must be explicitly allowed as domain
transitions in the system-wide SELinux policy.

Because most CPUs do not support write-only mem-
ory permissions, Wedge does not allow them; the pro-
grammer must instead grant read-write permissions.

3.2 Tagged Memory
The programmer expresses memory privileges for
sthreads in terms of tags, which are assigned to mem-
ory regions at allocation time. When he wishes to share
tagged memory, he grants privileges for that tag to a
newly created sthread. The tag namespace is flat, so priv-
ileges for one tag never imply privileges for other tags.

Programmers allocate tagged memory in two steps.
First, the programmer must create a tag. This opera-
tion essentially allocates a memory segment and stores
a mapping from the tag to the segment. Next, the pro-
grammer invokes a tagged memory allocation (smalloc):

he specifies a tag and a desired size, and thus allocates
a buffer of that size from the segment with that tag. The
ability to identify many memory regions with a single
tag simplifies policy specification. Note that any memory
an sthread allocates without using this two-stage process
(tag, then smalloc) has no tag, and thus cannot be ac-
cessed by other sthreads: it cannot even be named in a
security policy. In this way, computations performed on
an sthread’s stack or heap are by default strongly isolated
from other sthreads. We use the standard hardware page
protection mechanism to enforce the access permissions
for tagged memory specified in an sthread’s security pol-
icy.

When writing new applications, the mechanisms de-
scribed so far suffice for tagging memory. But when
partitioning existing applications, one may need to tag
global variables, or convert many malloc calls within
a function to use smalloc instead, which may not even
be possible for allocations in binary-only libraries. We
therefore provide two additional mechanisms for tagging
memory, specifically tailored for splitting legacy appli-
cations. The first allows declaring globals with a tag,
and works by placing all globals with the same tag in
a distinct, contiguous section of the ELF binary. The sec-
ond allows the programmer to specify that all calls to
the standard C malloc between two points in a program
should be replaced with smalloc calls with a particular
tag. To do so, the programmer simply places calls to
utility functions smalloc on and smalloc off at the de-
sired start and end points, respectively. These aids greatly
simplify the introduction of compartments; much of the
work of partitioning consists of identifying and tagging
memory correctly.

3.3 Callgates
A callgate is a portion of code that runs with different
(typically higher) privileges than its caller. In our POP3
example in Figure 1, the login and e-mail retriever enti-
ties are callgates. Instantiating a callgate with access to
sensitive data isolates the sensitive data from access by
untrusted code, such as the sthread that parses network
input in the POP3 server.

A callgate is defined by an entry point, a set of permis-
sions, and a trusted argument supplied by the callgate’s
creator (usually a pointer into trusted memory), that the
kernel will pass to the entry point when the callgate is in-
voked. The trusted argument allows the callgate’s creator
to pass the callgate input that cannot be tampered with by
its caller. A callgate also inherits the filesystem root and
user id of its creator. A callgate’s permissions must be a
subset of those of the sthread that creates the callgate. Af-
ter a privileged sthread creates a callgate, it may spawn a
child sthread with reduced privilege, but grant that child
permission to invoke the callgate. Upon callgate invoca-

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 311

tion, a new sthread with the callgate’s permissions is cre-
ated, and begins execution at the entry point specified by
the callgate’s original creator. The caller blocks until the
callgate terminates, and then collects any return values.

The dominant costs of invoking a short-lived callgate
are those incurred creating and destroying the underly-
ing sthread. For throughput-critical applications, we pro-
vide long-lived recycled callgates, which amortize their
creation cost over many invocations. Because they are
reused, recycled callgates do trade some isolation for per-
formance, and must be used carefully; should a recycled
callgate be exploited, and called by sthreads acting on
behalf of different principals, sensitive arguments from
one caller may become visible to another.

3.4 Crowbar: Partitioning Assistance
To identify the many memory dependencies between dif-
ferent blocks of code, and hence make default-deny par-
titioning primitives usable in practice, we provide Crow-
bar, a pair of Linux tools that assist the programmer in
applying the primitives in applications. Broadly speak-
ing, these tools analyze the run-time behavior of a legacy
monolithic application to identify exactly which items in
memory are used by which specific pieces of code, with
what modes of access, and where all those items were
allocated. This analysis suggests a set of privileges that
appear required by a particular piece of code.

The programmer uses Crowbar in two phases. In
Crowbar’s run-time instrumentation phase, the cb-log
tool logs memory allocations and accesses made by the
target application. In Crowbar’s analysis phase, the pro-
grammer uses the cb-analyze tool to query the log for
complex memory access patterns during the application’s
run that are relevant when partitioning the application in
accordance with least privilege.

First, cb-log produces a trace of all memory accesses.
cb-log stores a complete backtrace for every memory
read or write during execution, so that the programmer
can determine the context of each access. These back-
traces include function names and source filenames and
line numbers. cb-log identifies global memory accesses
by variable name and source code location; stack mem-
ory accesses by the name of the function in whose stack
frame the access falls; and heap memory accesses by a
full backtrace for the original malloc where the accessed
memory was first allocated. This information helps pro-
grammers identify which globals to tag using our mech-
anisms, which stack allocations to convert to heap ones,
and which specific malloc calls (revealed in our trace) to
convert to smalloc calls.

Second, after cb-log produces a trace, the programmer
uses cb-analyze to query it for specific, summarized in-
formation. The supported queries are:

• Given a procedure, what memory items do it and all
its descendants in the execution call graph access dur-
ing their execution, and with what modes of access?
When the programmer wishes to execute a procedure
in a least-privilege sthread, he uses this query to learn
the memory items to which he must grant that sthread
access, and with what permissions.

• Given a list of data items, which procedures use any of
them? When the programmer wishes to create a call-
gate with elevated privileges to access sensitive data,
he uses this query to learn which procedures should
execute within the callgate.

• Given a procedure known to generate sensitive data,
where do it and all its descendants in the execution
call graph write data? When the programmer wishes
to learn which data may warrant protection with call-
gates, he uses this query to identify the memory that
should be kept private to that callgate. This query is
particularly useful in cases where a single procedure
(and its children) may generate large volumes of sensi-
tive data; it produces data items of interest for queries
of the previous type.

We stress that for the first and third query types, in-
cluding children in the execution call graph makes cb-
analyze particularly powerful; one often need not under-
stand the complex call graph beneath a procedure to par-
tition an application.

Crowbar is useful even after the initial partitioning ef-
fort. For example, after code refactoring, an sthread may
stop functioning, as it may access additional memory re-
gions not initially specified in its policy. We provide an
sthread emulation library, which grants sthreads access
to all memory, so that protection violations do not termi-
nate sthreads. The programmer may use this library with
Crowbar to learn of all protection violations that occur
during a complete program execution.

Because Crowbar is trace-driven, the programmer will
only obtain the memory permissions used during one
particular run. To ensure coverage of as broad a portion
of the application as possible, the programmer may gen-
erate traces by running the application on diverse innocu-
ous workloads with cb-log, and running cb-analyze on
the aggregation of these traces.

4 Implementation
Wedge’s implementation consists of two parts: the OS
isolation primitives, for Linux kernel version 2.6.19, and
the userland Crowbar tools, cb-log and cb-analyze.

4.1 Isolation Primitives
Table 1 shows Wedge’s programming interface.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association312

Sthread-related calls
int sthread create(sthread t *thrd, sc t *sc, cb t cb, void *arg);
int sthread join(sthread t thrd, void **ret);
Memory-related calls
tag t tag new(); int tag delete(tag t);
void* smalloc(int sz, tag t tag); void sfree(void *x);
void smalloc on(tag t tag); void smalloc off();
BOUNDARY VAR(def, id); BOUNDARY TAG(id);
Policy-related calls
void sc mem add(sc t *sc, tag t t, unsigned long prot);
void sc fd add(sc t *sc, int fd, unsigned long prot);
void sc sel context(sc t *sc, char *sid);
Callgate-related calls
void sc cgate add(sc t *sc, cg t cgate, sc t *cgsc, void *arg);
void* cgate(cg t cb, sc t *perms, void *arg);

Table 1: The Wedge programming interface.

Sthread-related Calls The programming interface for
sthreads closely resembles that for pthreads, apart from
the introduction of a security policy argument (sc). We
implement sthreads as a variant of Linux processes.
Rather than inheriting the entire memory map and all
file descriptors from its parent, a newly spawned sthread
inherits only those memory regions and file descriptors
specified in the security policy. As with fork, the new
sthread will have its own private signal handlers and file
descriptor copies, so receiving a signal, closing a file de-
scriptor, and exiting do not affect the parent.

Sthreads also receive access to a private stack and
a private copy of global data. The latter represents the
memory map of the application’s first-executed process,
just before the calling of the C entry point main. This
memory is vital to sthread execution, as it contains ini-
tialized state for shared libraries and the dynamic loader.
It does not typically, however, contain any sensitive data,
since the application’s code has yet to execute. In cases
where statically initialized global variables are sensitive,
we provide a mechanism (BOUNDARY VAR) for tagging
these, so that sthreads do not obtain access to them by
default. Our implementation stores a copy of the pages
of the program just before main is called, and marks
these pages copy-on-write upon main’s invocation or any
sthread creation.

Memory-related Calls smalloc and sfree mimic the
usual malloc and free, except that smalloc requires speci-
fication of the tag with which the memory should be allo-
cated. Tags are created using tag new, a system call that
behaves like anonymous mmap. Unlike mmap, tag new
does not merge neighboring mappings, as they may be
used in different security contexts. Apart from creating a
new memory area, tag new also initializes internal book-
keeping structures used by smalloc and sfree on mem-
ory with that tag. The smalloc implementation is derived
from dlmalloc [9].

Much of tag new’s overhead comes from system call
overhead and initializing the smalloc bookkeeping struc-

tures for that tag. We mitigate system call overhead by
caching a free-list of previously deleted tags (i.e., mem-
ory regions) in userland, and reusing them if possible,
hence avoiding the system call. To provide secrecy, we
scrub a tag’s memory contents upon tag reuse. Rather
than scrubbing with (say) zeros, we copy cached, pre-
initialized smalloc bookkeeping structures into it, and
thus avoid the overhead of recomputing these contents.

As described in Section 3.2, smalloc on and smal-
loc off ease the tagging of heap memory. They convert
any standard malloc which occurs between them into
an smalloc with the tag indicated in smalloc on. To im-
plement this feature, Wedge intercepts calls to malloc
and free using LD PRELOAD, and checks the state of a
global flag indicating whether smalloc on is active; if so,
smalloc is invoked, and if not, malloc is. In our current
implementation, this flag is a single per-sthread variable.
Thus, smalloc on will not work if invoked recursively,
and is neither signal- nor thread-safe. In practice, how-
ever, these constraints are not limiting. The programmer
can easily save and restore the smalloc on state at the
start and end of a signal handler. Should a programmer
need to use smalloc on in recursive or thread-concurrent
code (within the same sthread), he can easily save-and-
restore or lock the smalloc on state, respectively.

The BOUNDARY VAR macro supports tagging of
globals, by allowing each global declaration to include an
integer ID, and placing all globals declared with the same
ID in the same, separate, page-aligned section in the ELF
binary. This allows for specific pages, in this case global
variables, to be carved out of the data segment, if neces-
sary. At runtime, the BOUNDARY TAG macro allocates
and returns a unique tag for each such ID, which the pro-
grammer can use to grant sthreads access to globals in-
stantiated with BOUNDARY VAR. This mechanism can
be used to protect sensitive data that is statically initial-
ized, or simply to share global data structures between
sthreads.

Policy-related Calls These calls manipulate an sc t
structure, which contains an sthread policy; they are used
to specify permissions for accessing memory and file
descriptors. To attach an SELinux policy to an sthread,
one specifies the SID in the form of user:role:type with
sc sel context.

Callgate-related Calls sc cgate add adds permission
to invoke a callgate at entry point cgate with permissions
cgsc and trusted argument arg to a security policy. The
callgate entry point, permissions and trusted argument
are stored in the kernel, so that the user may not tam-
per with them, and are retrieved upon callgate invoca-
tion. When a parent adds permission to invoke a callgate
to a security policy, that callgate is implicitly instantiated

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 313

when the parent binds that security policy to a newly cre-
ated sthread.

To invoke a callgate, an sthread uses the cgate call,
giving additional permissions perms and an argument
arg. This argument will normally be created using smal-
loc, and the additional permissions are necessary so that
the callgate may read it, as by default it cannot. Upon
callgate invocation, the kernel checks that the specified
entry point is valid, and that the sthread has permission
to invoke the callgate. The permissions and trusted argu-
ment are retrieved from the kernel, and the kernel vali-
dates that the argument-accessing permissions are a sub-
set of the sthread’s current permissions.

Callgates are implemented as separate sthreads so that
the caller cannot tamper with the callee (and vice-versa).
Upon invocation, the calling sthread will block until the
callgate’s termination. Because the callgate runs using a
different memory map (as a different sthread), the caller
cannot exploit it by, e.g., invalidating dynamic loader re-
locations to point to shellcode, or by other similar at-
tacks. Any signals delivered during the callgate’s execu-
tion will be handled by the callgate. A caller may only
influence a callgate through the callgate’s untrusted ar-
gument.

We currently implement recycled callgates directly as
long-lived sthreads. To invoke a recycled callgate, one
copies arguments to memory shared between the caller
and underlying sthread, wakes the sthread through a fu-
tex [3], and waits on a futex for the sthread to indicate
completion.

4.2 Crowbar
Crowbar consists of two parts: cb-log traces memory ac-
cess behavior at run-time, and cb-analyze queries the
trace for summarized data. We only describe cb-log,
as cb-analyze is essentially a text-search tool, and is
thus straightforward. cb-log uses Pin [11]’s run-time in-
strumentation functionality. cb-log has two main tasks:
tracking the current backtrace, and determining the orig-
inal allocation site for each memory access.

To compute the backtrace, we instrument every func-
tion entry and exit point, and walk the saved frame point-
ers and return addresses on the stack, much as any debug-
ger does. We thus rely on the code’s compilation with
frame pointers.

To identify original memory allocations, we instru-
ment memory loads and stores. We also keep a list of seg-
ments (base and limit), and determine whether a memory
access lies within a certain segment, and report the seg-
ment if so. There are three types of segments: globals,
heap, and stack. For globals, we use debugging symbols
to obtain the base and limit of each variable. For the heap,
we instrument every malloc and free, and create a seg-
ment for each allocated buffer. For the stack, we use a

function’s stack frame as the segment. Upon access, to-
gether with the segment name, we also log the offset be-
ing accessed within the segment. This offset allows the
programmer to calculate and determine the member of a
global or heap structure being accessed, or the variable
within a stack frame being touched.

Our implementation handles fork and pthreads cor-
rectly; it clones the memory map and keeps separate
backtraces for the former, and keeps a single memory
map but different backtraces for the latter. cb-log also
supports the sthread emulation library, by logging any
memory accesses by an sthread for which insufficient
permissions would normally have caused a protection vi-
olation. Because the sthread emulation library works by
replacing sthreads by standard pthreads, our current im-
plementation does not yet support copy-on-write mem-
ory permissions for emulated sthreads.

5 Applications
To validate the utility of Wedge, we apply it to introduce
fine-grained, reduced-privilege compartments into two
applications: the Apache/OpenSSL web server, and the
OpenSSH remote login server. Because SELinux already
provides a mechanism to limit system call privileges for
sthreads, we focus instead on memory privileges in this
paper. Thus, when we partition these two applications,
we specify SELinux policies for all sthreads that explic-
itly grant access to all system calls.

5.1 Apache/OpenSSL
Our end-to-end goal in introducing compartments into
Apache/OpenSSL is to preserve the confidentiality and
integrity of SSL connections—that is, to prevent one user
from obtaining the cleartext sent over another user’s SSL
connection, or from injecting content into another user’s
SSL connection.

We consider two threat models. In the first, simpler
one, the attacker can eavesdrop on entire SSL connec-
tions, and can exploit any unprivileged compartment in
the Apache/OpenSSL server. In the second, subtler one,
the attacker can additionally interpose himself as a man-
in-the-middle between an innocent client and the server.
Let us consider each in turn. In what follows, we only
discuss the SSL handshake as performed with the RSA
cipher, but we expect the defenses we describe apply
equally well to SSL handshakes with other ciphers.

5.1.1 Simple model (no interposition)

Perhaps the most straightforward isolation goal for
Apache/OpenSSL is to protect the server’s RSA pri-
vate key from disclosure to an attacker; holding this key
would allow the attacker to recover the session key for
any eavesdropped session, past or future. (We presume
here that ephemeral, per-connection RSA keys, which

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association314

Figure 2: Partitioning to protect against disclosure of private key and
arbitrary session key generation.

provide forward secrecy, are not in use—they are rarely
used in practice because of their high computational
cost.)

We must also prevent an attacker from using the RSA
private key to decrypt ciphertext of his choosing, and
learning the resulting cleartext; such a decryption ora-
cle would serve the attacker equally well for recovering
session keys for past or future sessions.

Once the RSA private key is put out of reach for the
attacker, how else might he recover a session key that
matches one used in an eavesdropped connection? Note
that the server must include code that generates SSL ses-
sion keys—if it does not, it cannot complete SSL hand-
shakes. If the attacker can somehow influence this code
so as to force the server to generate the same session key
that was used for a past connection he has eavesdropped,
and learn the resulting session key, he will still achieve
his goal.

The SSL session key derives from three inputs that tra-
verse the network: random values supplied by the server
and client, both sent in clear over the network during
the SSL handshake, and another random value supplied
by the client, sent over the network encrypted with the
server’s public key [15]. Note that by eavesdropping, the
attacker learns all three of these values (the last in cipher-
text form).

We observe that it is eminently possible to prevent an
attacker who exploits the server from usefully influenc-
ing the output of the server’s session key generation code.
In particular, we may deny the network-facing compart-
ment of the server the privilege to dictate the server’s
random contribution to the session key. Instead, a priv-
ileged compartment, isolated from the unprivileged one,
may supply the server’s random contribution (which is,
after all, generated by the server itself).

To meet the above-stated goals, we partitioned Apache
1.3.19 (OpenSSL 0.9.6) as shown in Figure 2. We create
one worker sthread per connection, which encapsulates
unprivileged code. This sthread terminates after serving
a single request, to isolate successive requests from one
another. We allocate the RSA private key in tagged mem-

Figure 3: Man-in-the-middle defense: top-level compartmentalization
of Apache.

ory. Although the worker has no direct access to the pri-
vate key, it can still complete the SSL handshake and es-
tablish a session key via the setup session key callgate.
This callgate returns the established session key, which
does not yield any information regarding the private key.
Thus, the only way to obtain the private key is to exploit
the callgate itself; we have thus reduced the application’s
trusted code base with respect to the private key to the
callgate’s contents. In order to prevent an attacker who
exploits the worker from influencing session key gener-
ation, we ensure that the setup session key callgate itself
generates the server random input to session key genera-
tion, rather than accepting this input as an argument from
the worker. Because the session key is a cryptographic
hash over three inputs, one of which is random from the
attacker’s perspective, he cannot usefully influence the
generated session key.

5.1.2 Containing man-in-the-middle attacks

We now consider the man-in-the-middle threat model,
wherein the attacker interposes himself between a le-
gitimate client and the server, and can eavesdrop on,
forward, and inject messages between them. First, ob-
serve that the partitioning described for the previous
threat model does not protect a legitimate client’s session
key in this stronger model. If the attacker exploits the
server’s worker, and then passively passes messages as-
is between the client and server, then this compromised
worker will run the attacker’s injected code during the
SSL handshake with the legitimate client. The attacker
may then allow the legitimate client to complete the SSL
handshake, and leak the legitimate client’s session key
(readable by the worker) to the attacker. The defense
against this subtler attack, as one might expect, is finer-
grained partitioning of Apache/OpenSSL with Wedge.

Recall that there are two phases to an SSL session. The
first phase consists of the SSL handshake and authenti-
cation. After this first phase, the client has authenticated
the server, by verifying that the server can decrypt ran-
dom data encrypted with the server’s public key. In ad-
dition, the client and server have agreed on a session key
to use as the basis for an encrypted and MAC’ed channel

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 315

Figure 4: SSL handshake compartmentalization.

between them. In the second phase, application requests
and responses traverse this channel.

For privilege separation, there are different threat
models for the two phases, so we treat them sepa-
rately. Figure 3 shows the high-level partitioning needed
to implement this two-phase approach. The master ex-
ists purely to start and stop two sthreads, and enforce
that they only execute sequentially. The SSL handshake
sthread handles the first phase. This sthread must be able
to read and write cleartext to the network to perform the
handshake, and while it must be able to call callgates to
generate the session key, it should not have access to the
resulting key. As this cleartext-reading, network-facing
sthread may be exploited, its privileges are limited to
those needed for the handshake.

Once the SSL handshake sthread completes the hand-
shake, it terminates. The master, which waits for this
sthread to terminate, only then starts the client handler
sthread to handle the second phase. If the attacker at-
tempts to mount a man-in-the-middle attack during the
first phase, there are only two possible outcomes: either
the handshake fails to complete, and no harm is done, or
it does complete, and generates a session key that is not
known to the attacker. The client handler sthread, how-
ever, does have access to this session key, and thus it is
connected via the SSL-encrypted and -MAC’ed channel
to the legitimate client. Despite the man-in-the-middle
attack during the first phase, the attacker ends up on the
outside of this protected channel.

Man-in-the-middle attacks during the second phase
are much more difficult for the attacker, because of the
MAC protection on the channel. Data injected by the at-
tacker will be rejected by the client handler sthread, and
not reach further application code. The attacker’s only
recourse now is to attempt to exploit the symmetric key
decryption code itself. This code is much simpler to audit
for vulnerabilities, but as we shall show, further partition-
ing is also possible to provide defense in depth. We now
describe the details of these two phases.

First stage: SSL Handshake Figure 4 shows the par-
titioning for the SSL handshake stage. The private key

memory region contains the server’s private key, and the
session key memory region stores the session key. The
network-facing SSL handshake sthread coordinates the
SSL handshake and establishes the session key, without
being able to read or write it directly; as shown in Fig-
ure 4, SSL handshake holds neither read nor write per-
missions for the session key tagged memory region. Nev-
ertheless, during the SSL handshake protocol, the server
must decrypt one message and encrypt one message with
the session key. SSL handshake cannot be permitted to
invoke callgates that simply encrypt or decrypt their ar-
guments, either; if SSL handshake were exploited, the at-
tacker could use them as encryption and decryption ora-
cles, to decrypt ciphertext from the legitimate client.

To understand how one may partition the server to
deny SSL handshake access to an encryption or decryp-
tion oracle for the session key, yet still allow the uses of
the session key required by the SSL handshake, one must
examine more closely how the SSL handshake protocol
uses the session key. After the server and client agree
on the session key, they exchange session-key-encrypted
SSL Finish messages, to verify that both parties agree
on the content of all prior messages exchanged during
the handshake. Each SSL Finish message includes a hash
derived from all prior messages sent and received by its
sender.

We instantiate two callgates, both of which SSL hand-
shake may invoke: receive finished, which processes the
client’s SSL Finish, and send finished, which generates
the server’s SSL Finish. Receive finished takes a hash
derived from all past messages and the client’s SSL Fin-
ished message as arguments, and must decrypt the SSL
Finished message in order to verify it. Once verification
is complete, receive finished hashes the resulting cleart-
ext together with the hash of past messages, to prepare
the payload of the server’s SSL Finished message. It
stores this result in finished state, tagged memory acces-
sible only to the receive finished and send finished call-
gates. The only return value seen by SSL handshake is a
binary success/failure indication for the validation of the
client’s SSL Finished message. Thus, if SSL handshake is
exploited, and passes ciphertext from the innocent client
to receive finished in place of an SSL Finished message,
receive finished will not reveal the ciphertext.

Send finished simply uses the content of finished state
to prepare the server’s SSL Finished message, and takes
no arguments from SSL handshake. Data does flow from
SSL handshake into finished state, via receive finished.
But as receive finished hashes this data, an attacker who
has exploited SSL handshake cannot choose the input
that send finished encrypts, by the hash function’s non-
invertibility.

We conclude that if the attacker exploits the SSL hand-
shake sthread, he will have no direct access to the session

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association316

Figure 5: Client handler compartmentalization.

key and, equally important, no access to an encryption or
decryption oracle for the session key.

Our implementation fully supports SSL session
caching, which varies the final message exchanges in the
SSL handshake slightly; we omit those details in the in-
terest of brevity.

Second stage: SSL Client Handler After SSL hand-
shake completes the handshake, it exits. The master, pre-
viously awaiting this event, then starts client handler to
process the client’s requests. (If SSL handshake is ex-
ploited, and does not exit, the master will not start the
client handler.)

Figure 5 depicts the compartmentalization of the client
handler phase. Here we use two callgates, SSL read and
SSL write, to perform encryption and decryption oper-
ations using the session key, respectively. Since client
handler does not have direct access to the network, an
attacker must inject correctly MAC’ed and encrypted
ciphertext into the user’s connection to compromise
client handler; otherwise, the injected messages will be
dropped by SSL read (because the MAC will fail). Be-
cause of the partitioning of SSL handshake, though, the
attacker cannot learn the session key, which includes the
MAC key. And thus, the attacker will not be able to ex-
ploit client handler, and so won’t be able to leak users’
cleartext data (stored in the user data memory region).

One unique aspect of the partitioning in Figure 5 is
that the unprivileged client handler sthread does not have
write access to the network. This design choice is an
instance of defense-in-depth. In the extremely unlikely
event that the attacker manages to exploit SSL read, he
cannot directly leak the session key or user data to the
network, as SSL read does not have write access to the
network. If, however, the attacker next exploits client
handler by passing it a maliciously constructed return
value, he will still have no direct network access. He will
only be able to leak sensitive data as ciphertext encrypted
by SSL write, and thus only over a covert channel, such
as by modulating it over the time intervals between sent
packets.

Partitioning Metrics A partitioning’s value is great-
est when the greatest fraction of code that processes
network-derived input executes in sthreads, and the least
fraction in callgates. The latter (man-in-the-middle) par-
titioning of Apache/OpenSSL we’ve described contains
≈16K lines of C code that execute in callgates, and
≈45K lines of C code that execute in sthreads, in-
cluding comments and empty lines. As all code in ei-
ther category ran as privileged originally, this partition-
ing reduces the quantity of trusted, network-facing code
in Apache/OpenSSL by just under two-thirds. To im-
plement the partitioning, we made changes to ≈1700
lines of code, which comprise only 0.5% of the total
Apache/OpenSSL code base.

We note in closing that we relied heavily on Crowbar
during our partitioning of Apache/OpenSSL. For exam-
ple, enforcing a boundary between Apache/OpenSSL’s
worker and master sthreads required identifying 222
heap objects and 389 globals. Missing even one of these
results in a protection violation and crash under Wedge’s
default-deny model. Crowbar greatly eased identifying
these memory regions and their allocation sites, and the
sthreads that needed permissions for them.

5.2 OpenSSH
OpenSSH provides an interesting test case for Wedge.
Not only was it written by security-conscious program-
mers, but it is also a leading example of process-level
privilege separation [13].

The application-dictated goals for partitioning
OpenSSH are:

• Minimize the code with access to the server’s private
key.

• Before authentication, run with minimal privilege, so
that exploits are contained.

• After authentication, escalate to full privileges for the
authenticated user.

• Prevent bypassing of authentication, even if the mini-
mally privileged code is exploited.

When partitioning OpenSSH, we started from scratch
with OpenSSH version 3.1p1, the last version prior to
the introduction of privilege separation. Clearly, an un-
privileged sthread is a natural fit for the network-facing
code during authentication. As sthreads do not inherit
memory, there is no need to scrub, as when creating a
slave with fork in conventional privilege separation. We
explicitly give the sthread read access to the server’s pub-
lic key and configuration options, and read/write access
to the connection’s file descriptor. We further restrict the
sthread by running it as an unprivileged user and setting
its filesystem root to an empty directory.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 317

Figure 6: OpenSSH compartmentalization.

The server’s private key is sensitive data, and so
must be protected behind a callgate. In our implemen-
tation, this callgate contains only 280 lines of C, a small
fraction of the total OpenSSH code base, all of which
could access the private key in monolithic OpenSSH.
To allow authentication, we implemented three more
callgates—one each for password, DSA key-based, and
S/Key challenge-response authentication. The resulting
compartmentalization of OpenSSH appears in Figure 6.

The master sthread (not shown) will spawn one worker
for each connection. The worker sthread has no way of
tampering with the master, as it cannot write to any mem-
ory shared with it. It also cannot tamper with other con-
nections, as sthreads share no memory by default. Thus,
all workers (connections) are isolated from each other
and from the rest of the OpenSSH daemon.

The worker needs access to the public key in order to
reveal its identity to the client. It needs access to the con-
figuration data to supply version strings, supported ci-
phers, &c. to the client. It has no direct access to sensitive
data such as the server’s private key or user credentials,
and can only make use of these data via callgates.

When the server authenticates itself to the client, it
must sign data using its private key. The DSA sign call-
gate takes a data stream as input, and returns its signed
hash. The worker cannot sign arbitrary data, and there-
fore possibly decrypt data, since only the hash computed
by the callgate is signed. Exploiting this callgate is the
only way that the worker can obtain the private key.

When the user authenticates himself to the server, the
Password, DSA auth or S/Key callgate will be invoked,
depending on the authentication mechanism negotiated.
The password authentication callgate needs access to the
configuration data to check whether the user is allowed
to login, whether empty passwords are permitted, and
whether password authentication is allowed at all. It also
needs access to the shadow password file, which is read
directly from disk; it has these privileges because it in-
herits the filesystem root of its creator, not of its caller.
The DSA authentication callgate can determine this in-
formation by inspecting the user’s allowed keys in the file
system, and the S/Key callgate can by checking whether

the user has an entry in the S/Key database.
The only way for the worker to change its user ID,

and thus effectively let the user log in, is for it to suc-
cessfully authenticate via a callgate. If the authentica-
tion is “skipped” by simply not invoking the callgate, the
worker will remain unprivileged. The callgate, upon suc-
cessful authentication, changes the worker’s user ID and
filesystem root—an idiom previously applied by Priv-
trans [1]. Thus, the only way to log in without knowing
the user’s credentials is to exploit one of the authentica-
tion callgates.

We gleaned two important lessons by comparing
the Wedge-partitioned OpenSSH with today’s privilege-
separated OpenSSH. The first concerns the importance of
avoiding subtle information leaks from a privileged to an
unprivileged compartment. Consider password authen-
tication in (non-Wedge) privilege-separated OpenSSH,
which proceeds in two steps. First, the unprivileged slave
process sends the username to the privileged monitor
process, which either returns NULL if that username
does not exist, or the passwd structure for that username.
Second, the slave sends the password to the monitor,
which authenticates the user. The result of the first inter-
action with the monitor is in fact an information leak—it
would allow an exploited slave to invoke the monitor at
will to search for valid usernames. This vulnerability re-
mains in today’s portable OpenSSH 4.7. The Wedge par-
titioning keeps OpenSSH’s two-step authentication for
ease of coding reasons, but the password callgate in Fig-
ure 6 returns a dummy passwd struct (rather than NULL)
when the username doesn’t exist; this way, even an ex-
ploited worker cannot use the password callgate to search
for usernames. A prior version of OpenSSH contained a
similar vulnerability, wherein an S/Key challenge would
only be returned if a valid username had been supplied by
the remote client [14]. In this case, the OpenSSH mon-
itor and slave leak sensitive information directly to the
network; an attacker needn’t exploit the slave.

The second lesson concerns the value of default-deny
permissions. A past version of OpenSSH suffered from
a vulnerability in which the PAM library (not written by
the OpenSSH authors, but called by OpenSSH) kept sen-
sitive information in scratch storage, and did not scrub
that storage before returning [8]. If a slave that inherited
this memory via fork were exploited, it could disclose
this data to an attacker. A PAM callgate would not be
subject to this vulnerability; any scratch storage allocated
with malloc within the callgate would be inaccessible by
the worker.

Partitioning Metrics In the Wedge-partitioned ver-
sion of OpenSSH, ≈3300 lines of C (including com-
ments and whitespace) execute in callgates, and ≈14K
execute in sthreads; as all of these lines of code would

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association318

have executed in a single, privileged compartment in
monolithic OpenSSH, partitioning with Wedge has re-
duced the quantity of privileged code by over 75%.
Achieving this isolation benefit required changes to 564
lines of code, only 2% of the total OpenSSH code base.

6 Performance
In evaluating Wedge’s performance, we have three chief
aims. First, we validate that Wedge’s isolation primitives
incur similar costs to those of the isolation and concur-
rency primitives commonly used in UNIX. Second, we
assess whether applications instrumented with the Crow-
bar development tool generate traces tolerably quickly.
Finally, we quantify the performance penalty that fine-
grained partitioning with Wedge’s primitives incurs for
Apache/OpenSSL’s throughput and OpenSSH’s interac-
tive latency.

All experiments ran on an eight-core 2.66 GHz In-
tel Xeon machine with 4 GB of RAM, apart from the
Apache experiments, which ran on a single-core 2.2GHz
AMD Opteron machine with 2 GB of RAM, to ease sat-
uration.

Wedge primitives: Microbenchmarks To examine
the cost of creating and running an sthread, we mea-
sured the time elapsed between requesting the creation
of an sthread whose code immediately calls exit and
the continuation of execution in the sthread’s parent.
This interval includes the time spent on the kernel trap
for the sthread creation system call; creating the new
sthread’s data structures, scheduling the new sthread, ex-
ecuting exit in the new sthread, destroying the sthread,
and rescheduling the parent sthread (whose timer then
stops). We implemented analogous measurements for
pthreads, recycled callgates, sthreads, standard callgates,
and fork. In all these experiments, the originating process
was of minimal size.

Figure 7 compares the latencies of these primitives.
Sthreads and callgates are of similar cost to fork, and re-
cycled callgates are of similar cost to pthread creation.
Thus, overall, Wedge’s isolation primitives incur simi-
lar overhead to familiar isolation and concurrency prim-
itives, but support finer-grained control over privilege.

Callgates perform almost identically to sthreads be-
cause they are implemented as separate sthreads. Recy-
cled callgates outperform callgates by a factor of eight,
as they reuse an sthread, and thus save the cost of cre-
ating a new sthread per callgate invocation. For parents
with small address spaces, sthread creation involves sim-
ilar overhead to that of fork. For parents with large page
tables, however, we expect sthread creation to be faster
than fork, because only those entries of the page table and
those file descriptors specified in the security policy are
copied for a new sthread; fork must always copy these

in their entirety. Sthreads are approximately 8x slower
than pthreads, which incur minimal creation cost (no re-
source copying) and low context switch overhead (no
TLB flush).

Figure 8 shows the cost of creating tags. Allocat-
ing memory from a tagged region using smalloc costs
roughly the same as standard malloc, as the two alloca-
tors are substantially the same. The difference in over-
head between the two lies in tag creation, which is es-
sentially an mmap operation, followed by initialization of
malloc data structures. We manage to outperform mmap
by caching and reusing previously deleted tags, as de-
scribed in Section 4.1. The tag new result shown con-
siders the best case, where reuse is always possible; in
this case, the operation is approximately 4x slower than
malloc. In the worst case, when no reuse is possible,
tag creation costs similarly to mmap, and is hence 22x
slower than malloc. We expect reuse to be common in
network applications, as the master typically creates tags
on a per-client basis, so new client sthreads can benefit
from completing ones. Indeed, this mechanism improved
the throughput of our partitioned Apache server by 20%.

Crowbar: Run-time Overhead Figure 9 shows the
elapsed time required to run OpenSSH, Apache, and
most of the C-language SPECint2006 benchmark appli-
cations under cb-log (we omit three of these from the fig-
ure in the interest of brevity, as they performed similarly
to others). We compare these elapsed times against those
required to run each application under Pin with no instru-
mentation (i.e., the added cost of Pin alone), and those
required to run the “native” version of each application,
without Pin. We do not report performance figures for
cb-analyze, as it consistently completes in seconds. All
experiments were conducted using Pin version 2.3.

All applications we measured under cb-log (SPEC
benchmarks, OpenSSH, and Apache) produced traces in
less than ten minutes, and in a mean time of 76 seconds.
For the range of applications we examined, cb-log’s in-
strumentation overhead is tolerable. Trace generation oc-
curs only during the development process, and a sin-
gle trace reveals much of the memory access behavior
needed to partition the application. Absolute completion
time is more important than relative slowdown for a de-
velopment tool. Indeed, obtaining a trace from OpenSSH
incurs an average 46x slowdown vs. native OpenSSH,
(2.4x vs. Pin without instrumentation), yet the trace for
a single login takes less than four seconds to generate.

Pin instruments each fetched basic block of a pro-
gram once, and thereafter runs the cached instrumented
version. From Figure 9, we see that Pin on average ex-
ecutes the applications we measured approximately 7x
slower than they execute natively. Note that Pin’s over-
head is least for applications that execute basic blocks

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 319

0
10
20
30
40
50
60
70

pthread recycled sthread callgate fork

O
pe

ra
tio

n
tim

e
(u

s)

Figure 7: Sthread calls.

0
200
400
600
800

1000
1200

malloc tag_new mmap

O
pe

ra
tio

n
tim

e
(n

s)

Figure 8: Memory calls.

Experiment Vanilla Wedge Recycled
Apache sessions 1238 238 339
cached (req/s)
Apache sessions 247 132 170
not cached (req/s)
ssh login delay (s) 0.145 0.148
10MB scp delay (s) 0.376 0.370

Table 2: OpenSSH and Apache performance.

0.01

0.1

1

10

100

1000

ssh mcf gobmk apache quantum hmmer sjeng bzip2 h264ref

Co
m

pl
et

io
n

tim
e

(s
)-

lo
gs

ca
le

2.4x 7.1x
8.7x 8.8x 29x 42x 51x

53x

90xCrowbar
Pin

Native

Figure 9: Overhead of cb-log. The number above an application’s bars
indicates the ratio between run time under Pin without instrumentation
and the run time under Pin with Crowbar.

many times, as do many of the SPEC benchmarks. For
OpenSSH and Apache, which do not repeatedly exe-
cute basic blocks to the extent the SPEC benchmarks do,
caching of instrumented code pays less of a dividend.

Cb-log must of course execute added instrumentation
instructions in each basic block, and hence it slows ap-
plications much more than Pin alone does. On average,
applications run 96x more slowly under cb-log than they
do natively, and 27x more slowly under cb-log than they
do under Pin with no instrumentation.

Applications: End-to-end Performance The top half
of Table 2 shows the maximum throughput that the
Wedge-partitioned version of Apache and the original
version of Apache can sustain, in requests per sec-
ond. We consider two Wedge-partitioned implementa-
tions: one with standard callgates (“Wedge”), and one
with recycled callgates (“Recycled”). We also measured
Apache’s performance with and without session caching.
In these experiments, four client machines request static
web pages using SSL, across a 1 Gbps Ethernet.

The isolation benefits Wedge offers Apache come at
a performance cost that depends on the client workload.
When all client SSL sessions are cached (and thus, the
server need not execute the cryptographic operations in
the SSL handshake), Wedge-partitioned Apache with re-
cycled sthreads achieves only 27% of the throughput
of unpartitioned Apache. When no SSL sessions are
cached, however, Wedge-partitioned Apache with recy-
cled sthreads reaches 69% of unpartitioned Apache’s
throughput. The all-sessions-cached workload is entirely

unrealistic; we include it only to show the worst-case
overhead that partitioning Apache with Wedge incurs.

Because SSL session caching allows clients to reuse
session keys, it eliminates the significant SSL hand-
shake cost that the server incurs once per connection in
the non-session-cached workload. Thus, Wedge-induced
overhead is a greater fraction of the total computation
required when the server accepts a connection for a
cached session. This overhead is directly proportional
to the number of sthreads and callgates created and in-
voked per request. Each request creates two sthreads
and invokes eight callgates (nine, for non-session-cached
clients)—a few callgates are invoked more than once per
request. Vanilla Apache instead uses a pool of (reused)
workers, so it does not pay process creation overhead
on each request; it thus provides no isolation between
successive requests executed by the same worker, but is
faster. Recycled callgates are an effective optimization—
they increase Wedge-partitioned Apache’s throughput by
42% and 29% for workloads with and without session
caching, respectively.

The bottom half of Table 2 compares the latencies
of operations in pre-privilege-separated OpenSSH and
in the Wedge-partitioned version, for a single OpenSSH
login and for uploading a single 10 MB file using scp.
Wedge’s primitives introduce negligible latency into the
interactive OpenSSH application.

7 Discussion
We now briefly discuss a few of Wedge’s limitations,
and topics that bear further investigation. Several of these
limitations concern callgates. First, we rely on their not
being exploitable. Second, the interface to a callgate
must not leak sensitive data: neither through its return
value, nor through any side channel. If a return value
from a callgate does so, then the protection within the
callgate is of no benefit. More subtly, callgates that return
values derived from sensitive data should be designed
with great care, as they may be used by an adversary who
can exploit an unprivileged caller of the callgate either
to derive the sensitive data, or as an oracle, to compute
using the sensitive data without being able to read it di-
rectly.

We trust the kernel support code for sthreads and call-
gates. As this code is of manageable size—less than 2000

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association320

lines—we believe that it can be audited. Perhaps more
worryingly, we must also trust the remainder of the Linux
kernel, though like Flume [7], we also inherit Linux’s
support for evolving hardware platforms and compatibil-
ity with legacy application code.

Crowbar is an aid to the programmer; not a tool that
automatically determines a partitioning by taking secu-
rity decisions on its own. We believe that automation
could lead to subtle vulnerabilities, such as those de-
scribed in Section 5.1.2, that are not apparent from data
dependencies alone. Similarly, one must use Crowbar
with caution. That is, one must assess which permissions
should be granted to an sthread, and which need to be
wrapped around a callgate. The tool alone guarantees
no security properties; it merely responds to programmer
queries as a programming aid, and it is the programmer
who enforces correct isolation.

Wedge does not deny read access to the text segment;
thus, a programmer cannot use the current Wedge im-
plementation to prevent the code for an sthread (or in-
deed, its ancestors) from being leaked. Wedge provides
no direct mechanism to prevent DoS attacks, either; an
exploited sthread may maliciously consume CPU and
memory.

We intend to explore static analysis as an alternative
to runtime analysis. Static analysis will yield a super-
set of the required permissions for an sthread, as some
code paths may never execute in practice. Static analy-
sis would report the exhaustive set of permissions for an
sthread not to encounter a protection violation. Yet these
permissions could well include privileges for sensitive
data that could allow an exploit to leak that data. By us-
ing run-time analysis of the application running on an
innocuous workload, the programmer learns which priv-
ileges are used when an exploit does not occur, but only
those required for correct execution for that workload.

8 Related Work
Many have recognized the practical difficulty of parti-
tioning applications in accordance with least privilege.
OKWS [5] showed that with appropriate contortions,
UNIX’s process primitives can be used to build a web
server of compartments with limited privileges. Krohn et
al. [6] lament that UNIX is more of an opponent than an
ally in the undertaking, with the result that programmers
create single-compartment, monolithic designs, wherein
all code executes with the union of all privilege required
across the entire application.

A trio of Decentralized Information Flow Control
(DIFC) systems, Asbestos, HiStar, and Flume [2, 7, 18]
offer a particularly general approach to fine-grained iso-
lation. DIFC allows untrusted code to observe sensi-
tive data, but without sufficient privilege to disclose that
data. Wedge does not provide any such guarantees for

untrusted code. In its all-or-nothing privilege model, a
compartment is either privileged or unprivileged with re-
spect to a resource, and if a privileged compartment is
exploited, the attacker controls that compartment’s re-
sources with that compartment’s privileges. Our expe-
rience thus far suggests that when applying Wedge to
legacy, monolithic code, only a small fraction of the orig-
inal code need run in privileged compartments. The price
of DIFC is heightened concern over covert channels, and
mechanisms the programmer must employ to attempt to
eliminate them [18]—once one allows untrusted code
to see sensitive data, one must restrict that code’s com-
munication with the outside world. Because Wedge is
not a DIFC system, it does not share this characteristic.
Wedge still may disclose sensitive information through
covert channels, but only from compartments that are
privileged with respect to sensitive information. DIFC
systems leave the daunting challenge of designing an ef-
fective partitioning entirely to the programmer. Wedge’s
Crowbar tools focus largely on helping him solve this
complementary problem; we believe that similar tools
may prove useful when partitioning applications for As-
bestos, HiStar, and Flume, as well.

Jif [12] brings fine-grained control of information flow
to the Java programming language. Its decentralized la-
bel model directly inspired DIFC primitives for operat-
ing systems. Jif uses static analysis to track the prop-
agation of labels on data through a program, and vali-
date whether the program complies with a programmer-
supplied information flow control policy. The Wedge iso-
lation primitives do not track the propagation of sensi-
tive data; they use memory tags only to allow the pro-
grammer to grant privileges across compartment bound-
aries. Wedge’s Crowbar development tool, however, pro-
vides simple, “single-hop” tracking of which functions
use which memory objects in legacy C code, whose lack
of strong typing and heavy use of pointers make accu-
rate static analysis a challenge. Jif uses static analysis to
detect prohibited information flows, while Crowbar uses
dynamic analysis to reveal to the programmer what are
most often allowed information flows, to ease develop-
ment for Wedge’s default-deny model.

Jif/split [17] extends labeled information flow for Java
to allow automated partitioning of a program across dis-
tributed hosts, while preserving confidentiality and in-
tegrity across the entire resulting ensemble. Because it al-
lows principals to express which hosts they trust, Jif/split
can partition a program such that a code fragment that ex-
ecutes on a host only has access to data owned by prin-
cipals who trust that host. Wedge targets finer-grained
partitioning of an application on a single host. In cases
where robustness to information leakage depends on the
detailed semantics of a cryptographic protocol, such as in
the defense against man-in-the-middle attacks on SSL in

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 321

Section 5.1, Jif/split would require careful, manual place-
ment of declassification, based on the same programmer
knowledge of the protocol’s detailed semantics required
when using Wedge’s primitives.

Provos proposes privilege separation [13], a special
case of least-privilege partitioning targeted specifically
for user authentication, in which a monolithic process is
split into a privileged monitor and one (or more) unprivi-
leged slaves, which request one of a few fixed operations
from the monitor using IPC. Privman [4] is a reusable li-
brary for use in implementing privilege-separated appli-
cations. Privilege separation allows sharing of state be-
tween the monitor and slave(s), but does not assist the
programmer in determining what to share; Crowbar ad-
dresses this complementary problem. Privtrans [1] uses
programmer annotations of sensitive data in a server’s
source code and static analysis to automatically derive
a two-process, privilege-separated version of that server.
Wedge arguably requires more programmer effort to use
than Privtrans, but also allows much richer partitioning
and tighter permissions than these past privilege separa-
tion schemes; any number of sthreads and callgates may
exist within an application, interconnected in whatever
pattern the programmer specifies, and they may share
disjoint memory regions with one another at a single-
byte granularity.

9 Conclusion

Programmers know that monolithic network applications
are vulnerable to leakage or corruption of sensitive infor-
mation by bugs and remote exploits. Yet they still per-
sist in writing them, because they are far easier to write
than carefully least-privilege-partitioned ones. Introduc-
ing tightly privileged compartments into a legacy mono-
lithic server is even harder, because memory permissions
are implicit in monolithic code, and even a brief fragment
of monolithic code often uses numerous scattered mem-
ory regions. The Wedge system represents our attempt
to exploit the synergy between simple, default-deny iso-
lation primitives on the one hand, and tools to help the
programmer reason about the design and implementa-
tion of the partitioning, on the other. Our experience ap-
plying Wedge to Apache/OpenSSL and OpenSSH sug-
gests that it supports tightly privileged partitioning of
legacy networking applications well, at acceptable per-
formance cost. Above all, we are particularly encouraged
that Wedge has proven flexible and powerful enough to
protect Apache against not only simple key leakage, but
also against complex man-in-the-middle attacks.

Wedge is publicly available at:
http://nrg.cs.ucl.ac.uk/wedge/

Acknowledgments
We thank our shepherd Eddie Kohler and the anony-
mous reviewers for their insightful comments, and David
Mazières and Robert Morris for illuminating discussions
during the course of this work.

Mark Handley and Brad Karp are supported by Royal
Society-Wolfson Research Merit Awards. Karp is further
supported by funding from Intel Corporation.

References
[1] D. Brumley and D. Song. Privtrans: Automatically partitioning

programs for privilege separation. In USENIX Security, 2004.
[2] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,

D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and R. Mor-
ris. Labels and event processes in the asbestos operating system.
In SOSP, 2005.

[3] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and fur-
wocks: Fast userlevel locking in Linux. In Ottawa Linux Sympo-
sium, 2002.

[4] D. Kilpatrick. Privman: A library for partitioning applications. In
USENIX Security, FREENIX Track, 2003.

[5] M. Krohn. Building secure high-performance web services with
OKWS. In USENIX, Boston, MA, June 2004.

[6] M. Krohn, P. Efstathopoulos, C. Frey, F. Kaashoek, E. Kohler,
D. Mazières, R. Morris, M. Osborne, S. VanDeBogart, and
D. Ziegler. Make least privilege a right (not a privilege). In
HotOS, 2005.

[7] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for standard
OS abstractions. In SOSP, 2007.

[8] M. Kuhn. OpenSSH PAM conversation memory scrubbing weak-
ness, 2003. http://www.securityfocus.com/bid/
9040.

[9] D. Lea. A memory allocator by Doug Lea. http://g.
oswego.edu/dl/html/malloc.html.

[10] P. Loscocco and S. Smalley. Integrating flexible support for secu-
rity policies into the Linux operating system. In USENIX, 2001.

[11] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building cus-
tomized program analysis tools with dynamic instrumentation. In
PLDI, 2005.

[12] A. Myers and B. Liskov. Protecting privacy using the decentral-
ized label model. ACM TOSEM, 9(4):410–442, 2000.

[13] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege
escalation. In USENIX Security, 2003.

[14] Rembrandt. OpenSSH S/Key remote information disclosure
vulnerability, 2002. http://www.securityfocus.com/
bid/23601.

[15] E. Rescorla. SSL and TLS: Designing and Building Secure Sys-
tems. Addison-Wesley Professional, 2000.

[16] J. Saltzer and M. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278–1308,
1975.

[17] S. Zdancewic, L. Zheng, N. Nystrom, and A. Myers. Untrusted
hosts and confidentiality: Secure program partitioning. In SOSP,
2001.

[18] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In OSDI, 2007.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association322

