
Efficiency through Eavesdropping:
Link-layer Packet Caching

Mikhail Afanasyev, David G. Andersen†, and Alex C. Snoeren
University of California, San Diego and †Carnegie Mellon University

{mafanasyev,snoeren}@cs.ucsd.edu, dga@cs.cmu.edu

Abstract
The broadcast nature of wireless networks is the source
of both their utility and much of their complexity. To turn
what would otherwise be unwanted interference into an
advantage, this paper examines an entirely backwards-
compatible extension to the 802.11 link-layer protocol for
making use of overheard packets, called RTS-id. RTS-id
operates by augmenting the standard 802.11 RTS/CTS
process with a packet ID check, so that if the receiver
of an RTS message has already received the packet in
question, it can inform the sender and bypass the data
transmission entirely.

We present the design, implementation, and evaluation
of RTS-id on a real hardware platform that provides a
DSP-programmable 802.11 radio. While limited in scale
due to restricted availability of the CalRadio platform, our
testbed experiments demonstrate that RTS-id can reduce
air time usage by 25.2% in simple 802.11b infrastruc-
ture deployments on real hardware, even when taking
into account all of the protocol overhead. Additionally,
we present trace-based simulations demonstrating the po-
tential savings on the MIT Roofnet mesh network. In
particular, RTS-id provides a 12% decrease in the number
of expected data transmissions for a median path, and over
25% reduction for more than 10% of Roofnet paths.

1 Introduction
Multi-hop wireless networks are becoming a popular
mechanism for providing Internet access, both in urban
areas [5] and in rural and developing settings [17]. By
reducing the need for a fixed wired infrastructure, they of-
fer the hope of providing cheaper connectivity and faster
deployment. These networks, however, face a number
of challenges not shared by their wired counterparts: in-
terference, multi-path losses, and rapidly changing, un-
predictable connectivity patterns. Wireless networks are
by nature broadcast: a transmission from one node may
interfere with or be received by multiple other nodes. The
broadcast nature of these networks and the requirement

that nodes forward traffic on behalf of one another is one
of the primary scaling limitations of multi-hop wireless
networks [16].

The question we ask in this paper is: how can we turn
the broadcast nature of wireless to our advantage, instead
of leaving it purely an interference-causing liability. Past
approaches to doing so include caching opportunistically
overheard objects (e.g., in satellite-based distribution sys-
tems [2]); by modifying ad hoc routing protocols to en-
able them to acknowledge packets received later in the
forwarding chain [6]; by using network coding on bi-
directional traffic streams [14]; and, most recently, by
using network coding to achieve similar benefits without
explicit coordination [9]. We examine instead a simple
per-hop link-layer modification, that we call RTS-id, that
takes advantage of overheard packets in a protocol and
topology-independent manner that requires only the co-
operation of adjacent nodes in a path.

While previous systems like ExOR and MORE have
demonstrated dramatic performance improvements, rang-
ing up to throughput factors of 2–10 [6, 9], it is important
to note that these improvements do not apply to interactive
and highly asymmetric TCP connections common in ac-
cess networks. Even the most recent opportunistic routing
techniques in MORE require batching packets together
for transmission, which interacts poorly with TCP’s con-
gestion control. Furthermore, to realize these gains, the
entire network must be upgraded to support the enhanced
routing and forwarding architecture. In contrast, RTS-id
is backwards compatible with existing 802.11 hardware:
individual nodes can be upgraded by replacing the 802.11
driver and/or firmware, yet they will continue to inter-
operate with legacy nodes. We verify that the RTS-id ex-
tensions are ignored by hardware that does not support it
with no ill effects. Furthermore, while substantially more
modest than the bulk transfer improvements demonstrated
by other systems, the gains we report are independent of
transport-layer protocol: they are equally applicable to
UDP and TCP. Finally, we demonstrate that significant
gains can be had in typical infrastructure deployments as
well.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 105

The key property that we build upon is that wireless
delivery is probabilistic. Two nearby nodes may hear
90% of each others’ transmissions, and two nodes farther
away may hear only 20%. This highly variable, unreliable
packet reception is the critical challenge to the design of
practical ad hoc routing protocols; to minimize metrics
such as the expected transmission count [11] or expected
transmission time [4] protocols will often select paths in
which there is a non-zero chance that packets could be
overheard farther along the forwarding chain.

Like previous schemes [14], we argue that all nodes
should optimistically cache recently received packets re-
gardless of their destination. Rather than require addi-
tional coordination, however, we propose to extend the
normal 802.11 RTS/CTS exchange to include a packet ID.
If a receiver already has a packet cached, it can respond to
an RTS directly with an ACK. Our RTS-id mechanism has
the potential to elegantly optimize at least three distinct
common occurrences in wireless 802.11 networks:

• “Node-to-node via access point”. When two nodes
on the same wireless LAN communicate, they must
do so through the AP(s) to which they are associated,
even if they can directly hear each others commu-
nication. RTS-id allows the AP to avoid relaying
packets to the receiver if the receiver heard the initial
transmission.

• “Hop-over” transmission. More generally, when
sending packets through a series of nodes A → B →
C, the probability of C hearing A’s initial broadcast
is often non-zero. When B then attempts to relay the
packet to C, RTS-id allows it to immediately respond
“I already have this packet.”

• Packet retransmissions. If a link-layer ACK is lost,
RTS-id prevents spurious retransmissions by short-
circuiting the retransmission.

The key contributions of the current work are the de-
sign of RTS-id and a backwards-compatible implementa-
tion on a real 802.11 hardware platform, CalRadio. We
show that RTS-id can decrease air time usage by 25.2%
when two nodes communicate to each other through an
access point in our testbed. Moreover, we demonstrate
via simulation the potential performance improvement
in a large-scale multi-hop deployment. Using publicly
available data from the MIT Roofnet community network,
we show that RTS-id can decrease by 12% the expected
number of data packet transmissions for the median route
when compared to Roofnet’s existing routing protocol,
and by over 40% for the most-improved routes. Even
if a network does not normally use RTS/CTS, RTS-id
decreases by up to 15% the air time for fully optimized
Roofnet routes after accounting for the additional over-
head (and without considering any potential benefits from

avoided hidden terminal collisions). Perhaps most im-
portantly, we show that RTS-id can significantly enhance
the performance of much simpler routing algorithms—so
much so that they out-perform Roofnet’s complex routing
algorithm that requires maintaining accurate, up-to-date
loss information about all node pairs.

The remainder of this paper is organized as follows. We
begin in Section 2 with an overview of previous schemes
that leverage overhearing. Section 3 presents the design
of RTS-id, and we describe our prototype CalRadio im-
plementation in Section 4. We systematically evaluate
the potential performance improvement in both infras-
tructure networks (Section 5) and the MIT Roofnet mesh
network (Section 6) before discussing security concerns
(Section 7) and future work in Section 8.

2 Related work

The work philosophically most related to ours is ExOR [6,
7] and the more recent MORE [9]. Both protocols es-
sentially define new, bulk-transfer transport protocols to
increase efficiency. ExOR aggressively batches packet
transmissions together to take advantage of overheard
transmissions. It substantially increases packet through-
put, but to do so it requires a redesigned ad hoc routing
protocol, and its large batch sizes render ExOR function-
ally incompatible with traditional transport protocols like
TCP and latency-sensitive applications. (The aggressive
batching can increase latency by up to 3.5 seconds [6];
its authors acknowledge that “ExOR’s batches are likely
to interact poorly with TCP’s window mechanism” [7].)
MORE’s operation is similar, but it uses random network
coding to avoid the need for ExOR’s scheduler. Mostly by
increasing opportunities for spatial reuse, MORE achieves
unicast throughput 22–45% higher than ExOR’s.

In contrast, RTS-id targets the operation of legacy rout-
ing and transport protocols, sacrificing some of their im-
pressive performance gains as the price of broader appli-
cability. RTS-id can reduce the number of transmissions
required by any existing transport protocol; no changes to
applications or operating systems are required.

An alternative technique proposed to harness broad-
cast is network coding, e.g., COPE [14]. Network coding
does not target opportunistic overhearing; rather, it takes
advantage of the fact that a sender in the middle of a three-
node chain can be heard by both of the nearby nodes
during a single transmission, allowing bidirectional traf-
fic to be sent using three transmissions instead of four.
Because COPE exploits a different property of broadcast,
we believe that its benefits are orthogonal to—and quite
possibly compatible with—those from RTS-id. We defer
an analysis of this complex interaction for future work.
We note, however, that many coding-based approaches

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association106

System Coding Batch size (packets) Per-packet overhead Median improvement
ExOR [6] none 32 44–114 bytes 60%
MORE [9] intra-flow 32 <70 bytes 95%
COPE [14] inter-flow variable variable 25–70%
RTS-id none 1 4 bytes (in RTS) 15–25%∗

Table 1: A comparison of mechanisms that leverage the broadcast nature of the wireless channel. Improvement values for
ExOR and MORE are taken from the three-node topologies extracted from [9, Figure 6]. COPE numbers reflect TCP and
UDP, but require bi-directional communication in this simplistic topology. More modest performance gains are possible for
uni-directional flows in more complex topologies. ∗Due to hardware issues, we report savings in terms of air time usage as
opposed to throughput; we improve UDP throughput by 26.1% compared to a network with RTS/CTS enabled.

also provide relatively modest gains for the legacy traf-
fic that RTS-id targets, performing optimally only with
symmetric UDP traffic. Depending on the degree of asym-
metry, the performance improvement may be as low as
5–15%—for UDP. The best case TCP improvement for
COPE was 38%, but this is only for networks that do not
require RTS/CTS (i.e., do not have any hidden terminals).

Table 1 attempts to summarize the various features of
each of these systems. Recognizing that comparing per-
formance claims across implementations and testbeds is
problematic, we attempt to give a flavor of the order of
magnitude of performance gains offered by each system.
We use Roofnet’s routing protocol, Srcr, as a baseline,
and include the median performance gain over Srcr re-
ported by each system’s authors in a three-hop topology.
While only MORE and COPE incur coding overhead, the
per-packet overhead can be substantial in many cases, ren-
dering the techniques inappropriate for small flows. We
were unable to determine the COPE packet header size
from [14], but it appears to be of similar order to ExOR
and MORE.

A key distinction of RTS-id is its independence from
the routing protocol. In particular, we show it can improve
the performance of any routing protocol—not just Srcr.
Considerable previous work has examined techniques
for selecting routes to leverage opportunistic forwarding
opportunities in multi-hop networks [10, 15]. Some prior
protocols may be easier to implement than Srcr in certain
networks; others may be so computationally expensive
that it could be more efficient to use simple routes and
allow RTS-id to optimize them on-the-fly.

In some ways, RTS-id’s packet cache is reminiscent
of the duplicate-suppression cache used in the original
DARPA packet radio network [13]. That mechanism
lacked RTS-id’s query mechanism, however, only en-
abling receivers to avoid re-sending packets if they were
incorrectly retransmitted or looped.

More generally, Santos and Wetherall proposed a com-
pression mechanism for suppressing long-range packet du-
plication on wired links [18], later extended to sub-packet
duplication by Spring and Wetherall [20]. Unfortunately,
these mechanisms do not directly translate to opportunis-

tic wireless: they rely on a near-perfect synchronization
of the sender and receivers’ “dictionaries,” exactly the
knowledge that does not exist in our target environment.
However, these techniques suggest promising ways (e.g.,
combining header compression with RTS-id) for RTS-id
to exploit cross-flow and longer-term overhearing. We
plan to examine such extensions in future work.

3 RTS-id
Our proposed technique, RTS-id, adds a small exchange
before packet transmission to ask the receiver if it al-
ready has the packet in question. Receivers maintain a
small cache of recently observed packets that they check
during this exchange. To reduce overhead and ensure
backwards-compatibility, RTS-id piggy-backs this query
on the existing 802.11 request-to-send (RTS) frames.

RTS/CTS is normally used to reserve the medium for
a packet transmission to prevent hidden terminal prob-
lems [3]. It operates by having senders broadcast a “re-
quest to send” (to a particular receiver) specifying the
expected duration of the frame exchange. In accordance
with the 802.11 standard, if the receiver determines the
channel to be idle, it will reply with a “clear to send”
(CTS) frame containing the expected remaining duration
of the frame exchange, permitting the sender to begin
transmission and informing nearby nodes to remain silent.
RTS-id adds a second possibility: the receiver can directly
“ACK” the packet with a special CTS-ACK frame.

This section first examines the roles of senders and
receivers in RTS-id, then discusses the design alternatives
to identify packets. Finally, because RTS-id increases the
size of RTS frames (or necessitates their use in a system
that does not use them), we discuss how senders and
receivers can dynamically enable RTS-id based upon an
on-line determination of whether it would benefit them.

3.1 Sender and receiver operation

RTS-id senders operate as shown in Figure 1: they first
decide whether to use RTS-id for a packet. If so, they

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 107

Receive RTS−id

Cached?

Send data packet

Done

Send RTS−id

ReceiverSender

No Yes

Yes

No

Send CTS

Send ACK

Use RTS−id?

Sending Data Packet

Figure 1: RTS-id operation. For clarity, this figure assumes
that the sender does not fall back to normal RTS/CTS use.

transmit an RTS-id frame to the receiver, and expect to
receive either a CTS-ACK (the receiver has the packet
already) or a normal CTS (the receiver does not have the
packet; the sender must transmit). An RTS-id frame is
simply a standard RTS frame extended to include a packet
ID. With RTS-id, however, rather than setting the duration
field to the standard value, it sets it only to the time in
microseconds required to transmit the CTS frame and
one SIFS (short inter-frame space) interval. This way,
nodes overhearing the RTS will only consider the channel
reserved for the RTS-id/CTS exchange at this point.

Upon reception of an RTS-id frame, the receiver checks
its local packet cache for a packet whose ID matches that
in the RTS frame. If present, the receiver sends a CTS-
ACK and processes the frame as if it had been received
normally. A CTS-ACK is simply a normal CTS frame
with the remaining duration field set to zero. This both
signals to the sender that the packet was already received,
and resets the network allocation vector (NAV) for other
stations in the contention domain. If the packet was not
found, the receiver sets the CTS duration field to be the
same value that would have been used in response to a
normal RTS frame, reserving the channel for the time
expected to transmit the pending frame, plus one ACK
frame and two SIFS intervals.

When a node receives a normal data frame, it oper-
ates according to the flowchart in Figure 2. It inserts
into a small FIFO cache all received packets larger than
cache_thresh bytes, regardless of the packet’s source
or destination. The cache_thresh avoids wasting
cache entries on small packets such as TCP ACKs. If
the packet was previously cached, the receiver informs
the sender that the transmission could have been avoided,
which enables the adaptive enabling scheme below.

if larger than cache_thresh bytes

Destined For Me? Done
No

Yes

Previously Cached?
No

Yes

Send ACK with "cache−hit"

Send
Normal
ACK

Received Data Packet

Add To Cache

Figure 2: Received packet processing.

3.2 Choice of hash and collisions

RTS-id uses a 32-bit hash of the IP packet contents—not
the link-layer frame—as the packet ID. Such a small hash
is acceptable if it provides three properties:

Low drop and duplication rate: A hash collision re-
sults in both a drop (of the transmitted packet) and a
duplication (of the cached packet it collides with). A 32-
bit hash with a 64-packet cache will drop about 1 in 67
million packets due to hash collisions. This rate is much
lower than typical end-to-end loss on wireless networks.

Independent collisions for transport-layer retrans-
missions: If the drop probability is non-negligible, then a
collision that prevented a particular frame exchange must
not cause the end-to-end retransmission of that packet to
also be dropped with high probability. This property is
provided as long as 1) the hash of the retransmitted packet
is different from that of the original; or 2) the contents of
the cache differ during the retransmission. Fortunately,
both conditions are likely to hold, as several fields in the
packet typically change when a packet is retransmitted at
the transport or application layers, such as the IP ID, TCP
timestamps, DNS query IDs, etc.

Resistant to attacks: The hash should ensure that a
non-local attacker cannot guess the ID of a packet and
that no attacker can easily craft a packet that will collide
with a target packet. We assume that an attacker who
transmits on the order of 232 packets over the course of
a few seconds has at his command a more effective way
of denying service than causing packet collisions. We
discuss the security implications of RTS-id, with and
without strong hash functions, in Section 7.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association108

3.3 Adaptively enabling RTS-id

RTS-id adds 32 bits of overhead to the small RTS packets.
On links in which RTS-id does not provide benefit, this
cost may loom large, because 802.11 transmits RTS/CTS
packets at the lowest possible rate, 1 Mbps, while the data
may be sent at higher rates. Moreover, for networks that
would not otherwise use RTS/CTS, the insertion of an
entirely new frame exchange comes at considerable cost.
Each sender therefore dynamically determines whether or
not to use RTS-id when communicating with a particular
receiver, based on its past history of cache hits and the
size of the packet it is about to transmit.

First, RTS-id processing only considers packets larger
than cache_thresh ≈ 500 bytes. Smaller packets
are transmitted directly (they may, however use normal
RTS/CTS depending on the station configuration). For
large packets, every participating receiver maintains an
RTS-id cache, regardless of whether senders choose to
use it. On receiving a packet, the receiver checks its cache
to see if the packet had already been heard. If it had, the
receiver sets a bit in the ACK packet it sends in response
to the packet arrival. Otherwise, it leaves this bit unset.
The sender thus is able to determine which packets would
have resulted in a cache hit had it used RTS-id.1

On each packet, the sender calculates the (possibly
negative) time saved, Ts, by using RTS-id. In the calcula-
tion that follows, Trtscts is the time required for a normal
RTS-CTS exchange, or zero if RTS-CTS is not enabled.

Bs = The bytes saved

=
{

0 if no cache hit
Packet size if cache hit

Ts =
Bs

ratetx
− (Trtsid −Trtscts) .

The sender maintains for each (link-level) receiver an
exponential weighted moving average with parameter
w ≈ 1/200 of the time saved for each packet:

savings = (1−w) · savings+w ·Ts.

If the estimated time savings for a particular receiver is
large enough, the sender will enable RTS-id. It is not
necessary to explicitly enable RTS-id on the receiver:
it can promiscuously cache packets whenever sufficient
memory and power are available, and may always respond
to an RTS-id packet with a normal CTS frame.

4 Implementation

We have implemented RTS-id in a backwards-compatible
fashion. RTS-id stations inter-operate seamlessly with

1To avoid the need to redefine the ACK packet in practice, we
overload the “retry” bit. In our experience, current 802.11 devices do
not set the retry bit on ACK frames.

RTS:
FC
(2)

Dur
(2)

Source
(6)

Dest
(6)

FCS
(4)

RTS-id:
FC
(2)

Dur
(2)

Source
(6)

Dest
(6)

FCS
(4)

ID
(4)

Figure 3: RTS and RTS-id packet formats.

non-RTS-id stations, enabling enhanced performance be-
tween adjacent RTS-id capable stations. Our implemen-
tation uses the CalRadio 1.0 platform designed and man-
ufactured by CalIT2 [8]. The CalRadio is a low-cost
software radio platform consisting of an ARM processor,
an on-board Texas Instruments DSP, and a Prism 802.11b
baseband processor. The salient feature of the CalRadio
for our purposes is that the MAC protocol is implemented
almost entirely in C, which allows us to change the format
and contents of the RTS and CTS packets. The ARM has
access to 4 MB of flash ROM, 2 MB of static RAM and
16 MB of SDRAM, while the DSP operates with 512 KB
of RAM. The 802.11 MAC protocol is implemented on
the DSP, while the operating system (μCLinux 2.4.19)
and user-level programs run on the ARM.

4.1 Packet details

The RTS-id packet is a simple extension to the standard
802.11 RTS packet as shown in Figure 3. Note that the
new ID field is sent after the normal RTS frame fields,
including the frame check sequence (FCS). Furthermore,
when transmitting the RTS-id frame, the length field of
the PLCP header is set to the length of the standard
RTS frame, not including the new ID field. Hence, spec-
compliant 802.11 stations that do not support RTS-id will
not even decode the hash field, and the frame will look
like a normal, well-formed RTS frame.2 RTS-id capable
stations, however, expecting an RTS-id frame, will know
to decode the additional field.

It is important to note that the use of RTS-id does not
interfere with the normal ability of RTS/CTS to prevent
hidden terminals. The duration specified by the sender’s
RTS-id frame will reserve the channel until the end of
the RTS-id/CTS exchange. If the data frame is eventually
sent, its duration field will update the NAV for all stations
in range of the sender. Nodes that hear only the CTS
frame will obey its duration field. Because, however, we
insert a different value into the RTS-id duration field, the
receiver no longer knows how long the pending packet
will take to transmit, and is unable to accurately fill out
the duration field in the corresponding CTS frame.

To resolve this problem, stations sending a CTS can
estimate the appropriate duration based upon a packet size

2The Atheros chip sets we have tested properly decode the RTS-id
frame as an RTS. Due to time constraints, we have not yet conducted an
exhaustive test of other 802.11 devices. In the worst case, non-compliant
stations will simply discard the seemingly mal-formed RTS-id frame
with no ill effects.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 109

of cache_thresh (smaller packets would not have in-
stigated an RTS-id exchange) and the previous transmis-
sion speed used by the sender. (Over-estimating the size
prevents hidden terminal problems, but potentially waste
air time. Under-estimating creates a small window where
a collision may occur that normal RTS/CTS would have
prevented.) If greater accuracy is needed, the low-order
bits of the RTS-id duration field can be used to encode
the approximate size of the pending data packet. Our pro-
totype, however, does not yet implement this extension.

While the ID field is not covered by the FCS (in order
to preserve backwards compatibility), a corrupt ID field
has little effect. All nodes in our implementation recom-
pute the ID of received packets before insertion into the
cache or local delivery, so there is no danger of cache
or data corruption. Hence, there are only two issues of
concern: First, an ID that should hit in an overhearer’s
cache is corrupted so that it misses. In this case, an avoid-
able transmission occurs, resulting in a slight performance
decrease. The second, somewhat more expensive case
occurs when an ID is corrupted so that it collides with
that of a previously overheard case. This situation is no
different than a normal hash collision, and occurs (assum-
ing a binary symmetric channel) with equal probability.
Such a collision results in a drop (of the corrupted packet)
and retransmission (of the packet the ID collided with),
impairing performance but not correctness.

4.2 Packet caching and RTS-id
According to the 802.11 specification, a station must re-
spond within 10 microseconds to an RTS request. To inter-
operate with legacy stations, RTS-id nodes should con-
form to this response time requirement for both CTS and
CTS-ACK packets. We therefore implement the packet
cache on the DSP. Due to the tight cycle budget, our im-
plementation uses the CRC32 checksum of invariant [19]
packet contents (including the transport layer header and
a portion of the payload) as its ID. This choice is obvi-
ously deficient with respect to attack resilience; a future
implementation will use the low-order 32 bits of a strong
cryptographic hash.

4.3 Test-bed deployment
Our current test-bed consists of three CalRadio devices.
While CalIT2 distributes CalRadio with basic 802.11b
PHY code, the publicly available MAC code is far from
complete. We have extended the provided code base to
support the core of the 802.11b MAC protocol, including
data, ACK, RTS/CTS, and RTS-id/CTS-ACK frames as
well as link-layer retransmission and collision avoidance.
Due to a hardware defect with the CalRadio platform,
however, we are not able to faithfully implement carrier

sense. Our implementation is sufficient to exchange pack-
ets both between CalRadios and with other, Atheros-based
802.11b devices in our lab, but suffers from an unusually
high loss rate due to lack of carrier sense. We have at-
tempted to ameliorate this issue by introducing a fixed,
per-station delay after the completion of a previous trans-
mission to avoid frequent collisions. While this slotting
mechanism does not interfere with the operation of RTS-
id, it has the unfortunate effect of decreasing the effective
channel utilization. When RTS(-id)/CTS is enabled, how-
ever, this limitation impacts only the RTS/CTS exchange,
as the successful completion of such an exchange will
reserve the channel for data transmission.

5 Infrastructure networks
We use our testbed to show RTS-id’s ability to optimize
“node-to-node” transmissions between nodes communi-
cating through the same access point, finding that RTS-
id reduces the number of data frame transmissions by
50.7% and improves bulk UDP throughput by 26.1% in
our testbed configuration. These results translate into a
25–46% reduction (depending on data rate) in air time
usage compared to a network that does not use RTS/CTS.

5.1 Node-to-node transmission

When two nodes on the same infrastructure-based wire-
less network communicate with each other, they must
relay their packets through an AP with which they are
associated, even if they are within transmission range
of each other. RTS-id provides a natural mechanism to
optimize this communication by allowing the AP to short-
circuit its retransmission of the packet.

We are not aware of empirical data quantifying the over-
hearing prevalence in typical access point deployments.
Hence, we attempt to emulate realistic situations such
as meetings or office collaborations by setting up three
nodes in a controlled topology. We physically connect
three nodes together through a series of splitters and vari-
able attenuators so that the path loss between A and B is
L dB, B and C is 20 dB, and the loss between A and C
is (50 + L) dB. We have found that our CalRadios can
tolerate path loss of approximately 100 dB in our noise-
free configuration, so we can control the prevalence of
overhearing by adjusting the value of L.

Node A is configured to use node B as its first-hop
router. Node B plays the role of an access point by for-
warding A’s packets on to node C. We use the ttcp
application to send 1100-byte UDP packets and report our
results both in terms of individual frame exchanges and
path throughput. To reduce the impact of external nodes,
we set the CalRadios to channel nine, a relatively quiet

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association110

Node Tx success CTS-ACK CTS ACK
A 99.3% 0% 56.6% 99.9%
B 98.6% 0% 45.0% 99.9%

110-dB path loss : 2.05 data frames per packet, 29.13 KBps
A 99.7% 0.1% 96.6% 99.8%
B 99.9% 97.6% 1.1% 100%

100-dB path loss: 1.01 data frames per packet, 36.74 KBps

Table 2: Experimental results from the CalRadio test-bed.

channel in our building. All three nodes support RTS-
id. Node A first sends the packet to node B. The Linux
networking stack on node B then forwards the packet to
node C. Meanwhile, node C is promiscuously listening
to all packets; since all three nodes are in close physical
proximity, C frequently overhears A’s transmissions to
B. In such cases, it caches the packet and records the
packet ID. When B subsequently sends an RTS-id frame
to C requesting to transmit a packet with an ID that C just
overheard, C delivers the cached copy to the Linux kernel
and responds with a CTS-ACK preventing the transmis-
sion of the data frame. If C did not overhear the original
transmission, it sends a CTS, and B transmits the data
frame to C, which acknowledges its receipt and delivers
the packet to the application.

5.2 Transmission reduction

To demonstrate the effectiveness of RTS-id, we conduct
two separate experiments with drastically different over-
hearing rates. In the first, we set the variable attenuator to
L = 60 dB, resulting in a path loss from A to C of 110 dB,
effectively preventing overhearing. In the second, we ad-
just the attenuator to 50 dB, giving an effective path loss
of 100 dB which results in significant overhearing. Both
experiments attempt to transmit a train of UDP packets
from A to C at 1 Mbps with RTS-id enabled. We set the
link-layer retransmission count to ten, meaning a sender
will attempt the RTS-id/CTS/data/ACK frame exchange
at most ten times for each packet.

Table 2 presents the results of these experiments. For
each node, we show the fraction of attempted packet trans-
missions successfully completed by that node, as well as
the fraction of RTS attempts that were met with either
a CTS-ACK (and therefore avoided) or a regular CTS
(and therefore transmitted). Finally, we show the per-
centage of transmitted data frames that were successfully
acknowledged by the receiver.

Due to lack of carrier sense, RTS/CTS exchanges fail
relatively frequently in our experiment, especially with-
out overhearing. Recall that the frame exchange will be
attempted up to ten times for each packet, so the overall
transmission success rate is still quite high. In contrast,
almost no data frames are dropped. The stark difference

in RTS/CTS success rates between the two experiments
is due to the fact that node B rarely needs to transmit
data frames in the overhearing case, so there is far less
contention for the channel.

As expected, node C overhears a large fraction of the
transmissions from A to B when L = 50 dB; hence, it is
able to prevent all but 1.1% of the packets from being
forwarded by B. Comparing the overhearing case with
the non-overhearing case, RTS-id provides dramatic sav-
ings, reducing the number of data frames transmitted per
successfully delivered packet from just over 2.05 (recall
that 2.0 is the best case without overhearing if there is
no data frame loss) to 1.01, a 50.7% reduction in trans-
mission rate, which resulted in a 26.1% improvement in
end-to-end bandwidth in our testbed configuration.

5.3 RTS/CTS overhead

Most infrastructure deployments do not enable RTS/CTS
by default; as a result, using our adaptive algorithm an AP
will only enable RTS-id if the expected savings outweigh
the additional overhead (Section 3.3). Due to the lack of
carrier sense, we are unable to effectively measure the
performance improvement in this scenario. Using statis-
tics collected from the experiments depicted in Table 2,
however, we can calculate the air time usage for a non-
RTS-id network from the non-overhearing case by simply
summing the amount of air time used by the data transmis-
sions (DIFS + data + SIFS + ACK), as RTS/CTS frames
would not be used in this case. Conversely, we can calcu-
late the total air time usage for an adaptive RTS-id deploy-
ment by summing the air time used by the data transmis-
sions from A to B in the overhearing case and combining
that with the data transmissions and RTS-id/CTS frames
from B to C (DIFS + RTS-id + SIFS + CTS-ACK) or
(DIFS + RTS-id + SIFS + CTS + SIFS + data + SIFS +
ACK). Considering the 1100-byte packets transmitted at
1 Mbps in the previous experiment, an RTS-id enabled
network would use 46.1% less air time than one not us-
ing RTS/CTS at all. The savings reduce to 25.2% if one
considers MTU-sized packets at 11 Mbps.

6 Mesh networks

Due to the limited availability of CalRadios, we use trace-
based simulation to evaluate the effectiveness of RTS-id
in a multi-hop mesh network. Its benefits in this scenario
range from a 20% savings for the median route at 1 Mbps
to a 12% savings for the median route at 11 Mbps. In gen-
eral, we find that RTS-id benefits even highly optimized
routing mechanisms, but that its benefit is somewhat in-
versely proportional to how optimal the route choice and—
more significantly—rate and power selection is. This

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 111

60%

65%

70%

75%

80%

85%

90%

95%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

of

 n
od

e
pa

irs

Probability of overhearing

Lost but overheard
Delivered and overheard

(a) 1 Mbps

60%

65%

70%

75%

80%

85%

90%

95%

100%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

of

 n
od

e
pa

irs

Probability of overhearing

Lost but overheard
Delivered and overheard

(b) 11 Mbps

Figure 4: Overhearing in Roofnet. We plot the probability that any transmission along an ETT path is overheard by a node
further along the path. We plot two mutually exclusive cases: when intended destination does and does not also receive the
packet. Both y axes start at 60%.

follows intuitively: a large amount of overhearing along
a transmission path is a possible signal that the sender
is transmitting “too well” to reach the receiver, and so
could perhaps spend that extra signal/noise ratio by using
a faster transmission rate or lower power.

Our mesh evaluation first considers how often a node
can overhear transmissions in realistic environments at
fixed rates, and how that impacts the number of trans-
missions required to forward a packet using the popular
ETT routing metric [1]. We then evaluate the effect of
rate adaptation and alternate traffic patterns. Next, we
examine how RTS-id provides greater benefit to less so-
phisticated route selection metrics, and then evaluate the
savings provided by RTS-id in an environment that does
not use RTS/CTS by default.

Dataset: Our analysis uses the Roofnet mesh network
dataset [1]. The dataset contains the fraction of MTU-
sized packets transmitted at each node that are received
at every other node. In other words, the dataset speci-
fies Prr[A → B] ∀ A,B ∈ G,r ∈ {1,2,5.5,11} Mbps. The
dataset was collected on the 38-node MIT Roofnet net-
work as follows:

Each node in turn sends 1500-byte 802.11
broadcast packets as fast as it can, while the
rest of the nodes passively listen. Each sender
sends for 90 seconds at each of the 802.11b
bit-rates. The experiment uses 802.11 broad-
cast packets because they involve no link-level
acknowledgments or retransmissions. [1]

The reception rates were measured with only one
Roofnet node was transmitting at a time—though there
likely were other 802.11 sources during the experiment.
It is possible that simultaneous Roofnet transmissions

would decrease the rate of overhearing as the load on
the network increases, but it unclear how significant this
effect would be. Unfortunately, there are no published
Roofnet datasets under such conditions.

Route computation: Unless specified otherwise, we
compute routes using a modified ETT metric [4], which
roughly approximates the expected transmission time
(including acknowledgments, retries, and back-offs) re-
quired to successfully transmit a packet across a given
link. ETT is derived from the expected transmission count
(ETX) [11], which has been shown to outperform previ-
ous routing metrics [12]. The ETX metric is defined for
each pair of nodes at rate r, and is computed as 1/(p f · pr),
where p f is the transmission success rate in the forward
direction (i.e., Prr[A → B]), and pr is the success rate
in the reverse direction (Prr[B → A]). A key distinction
between traditional ETX and ETT is that, in ETT, pr is
based upon the measured delivery rate of 60-byte ACK
packets transmitted at one Mbps. Unfortunately, the 2004
dataset does not include the 60-byte loss data necessary to
calculate ETT; hence, we modify ETT slightly to always
consider the delivery rate on the reverse channel at one
Mbps, but are forced to use the rate for 1500-byte packets,
which is likely to be lower. We then use a shortest-path
algorithm to find the path between each pair of nodes that
minimizes the total ETT metric.

6.1 Overhearing prevalence
Overhearing is common in the Roofnet topology, par-
ticularly at lower speeds. We compute the probability
of overhearing by all node pairs that occur together on
some valid source-destination route in the topology. To do
so, we create a superset distribution of packet reception
Prr[A → {B,C}],Prr[A → {B,C,D}] . . ., the probability

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association112

that a packet transmitted by A to B at rate r is received by
all possible combinations of receivers {B,C},{B,C,D},
etc.

Figure 4 shows the CDF of the overhearing probabili-
ties for paths between each pair of nodes in the network.
We consider all ETT paths P ∈ G longer than one hop,
where P := X1 → X2 → . . .Xn, and compute the probabil-
ity that any transmission along the path is overheard by
a node further along the path. That is, Xi’s transmission
to Xi+1 is overheard by Xj, j > i+1. There are two cases
of interest: where Xi+1 does not and does also receive the
transmission. Our current implementation of RTS-id does
not immediately assist in the first case where the packet
is overheard but not delivered to its intended next hop.
The packet will need to be retransmitted by the sender
until it has been received at the next-hop—although the
subsequent transmission by the next-hop will be avoided.
While it may be possible to extend RTS-id to prevent
these retransmissions, doing so would require knowledge
of the intended route, and the situation is unlikely to occur
frequently in practice with reasonable route selection. In-
deed, it occurs only rarely in the Roofnet dataset. Hence,
for simplicity, we forgo the seemingly minimal poten-
tial performance improvement and only act upon packets
that are both overheard and successfully received by their
intended recipient. Transmissions between a fifth of all
node pairs are overheard more than 20% of the time at 1
Mbps. Overhearing is less common at higher speeds. At
11 Mbps, only 5% of node pairs are overheard more than
20% of the time. In an outdoor environment like Roofnet,
however, nodes frequently transmit at lower link rates, so
ample opportunity exists to exploit overhearing.

6.2 Transmission reduction
To evaluate whether RTS-id can exploit overhearing and
ACK loss to avoid transmissions, we construct a statistical
model to estimate the expected number of transmissions
along each path. We examine each source/destination pair
individually, and for each pair:

1. Create a state machine in which each state corre-
sponds to the set of nodes that have heard a given
packet. For example, if a route has three hops:
A → B → C → D, the initial state is A and the fi-
nal state is ABCD.

2. Next, calculate the probability for each state transi-
tion under normal 802.11 and using RTS-id. Initially,
we neglect the RTS/CTS exchange, and consider
only data packets and link-layer ACKs. Transitions
exist between a node and itself (self-loops due to
failed transmissions, regardless of overhearing), ad-
jacent nodes on the path (successful normal trans-
missions) and, for RTS-id, a node and all subsequent

nodes in the path (due to overhearing). For the base
802.11 case, we consider a transmission successful
if the packet reaches the receiver and the correspond-
ing ACK reaches the sender; the probabilities are
drawn from the Roofnet data set. For RTS-id, we
ignore the ACK delivery rate because any spurious
retransmission attempts will be bypassed by RTS-id,
and compute state transition probabilities based upon
the overhearing distribution. For simplicity, in each
state we assume that the packet is only transmitted
by the node furthest along the path.

3. Finally, calculate the expected number of transitions
(i.e., packet transmissions) required to reach the last
state (where the destination has received the packet)
from the first state. We compute the expected num-
ber of transmissions twice, once using the RTS-id
transitions and probabilities, and once using only the
on-path A → AB and AB → ABC base-case 802.11
transitions.

Without overhearing, only two transitions leave each
state: AB → ABC for successful delivery, and AB → AB
for failure. With overhearing, the picture is far more inter-
esting. Figure 5 shows four state machines corresponding
to actual paths in the Roofnet dataset. Figure 5(a) depicts
a path with no overhearing; that is, C never overhears
A’s transmission, therefore the only possible transition
is from A to AB, which occurs 92.65% of the time (the
other 7.35% of the time the packet is lost and must be
resent). The link from B to C is much worse, and succeeds
less than 60% of the time. Figure 5(b) shows a simple
overhearing scenario, where 12.85% percent of the time
A’s transmission to B is overheard by C.

The remaining two examples depict more complicated
transitions that occur with longer paths. Figure 5(c) shows
a case in which roughly 20% of the time, a packet can be
transmitted directly from A to D, obviating the need to
forward through B or C. The careful reader may wonder
why ETT selected B rather than C as the first hop in
the path, as A → C appears to have the higher success
probability. In this case, the return path (not shown) from
C to A is quite lossy, so ETT correctly avoids this hop
because the ACKs will be lost. RTS-id, on the other hand,
benefits from this overhearing because it does not need
to ACK directly from C to A. Finally, Figure 5(d) shows
three distinct overhearing paths from A to E: A → B →
E,A → D → E, and A →C → D → E.

Figure 6(a) plots the expected number of transmissions
for all-pairs paths of length greater than one. We omit the
one-hop paths for clarity, although we note that the sav-
ings is non-zero due to avoided spurious retransmissions.
Without RTS-id, each path requires at least as many trans-
missions as there are hops, sometimes many more due to
failed transmissions. RTS-id is able to significantly de-

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 113

ABC

A 7.35%

AB

 92.65%

 58.91%

 41.09%

(a) No overhearing

ABC

A

 12.85%

 0.22%

AB

 86.92%

 82.82%

 17.18%

(b) Simple overhearing

ABCD

A

 20.47%

 1.13%

AB

 28.31%

ABC

 50.09% 8.23%

 91.77%

 98.48%

 1.52%

(c) Multi-hop overhearing

ABCDE

A 2.39%

AB

 65.92%

ABC

 28.77%

ABCD

 2.92%

 1.22%

 12.39%

 86.39%

 10.22%

 89.78%

 99.82%

 0.18%

(d) Complex overhearing

Figure 5: Actual RTS-id scenarios from the Roofnet dataset. Self-loops represent complete packet loss events. All probabil-
ities are based upon a 1-Mbps transmission rate.

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12 14

of

 p
at

hs

Transmissions per path

2 hops
RTS-id 2 hops

3 hops
RTS-id 3 hops

4 hops
RTS-id 4 hops

>4 hops
RTS-id >4 hops

(a) 1 Mbps

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12 14

of

 p
at

hs

Transmissions per path

2 hops
RTS-id 2 hops

3 hops
RTS-id 3 hops

4 hops
RTS-id 4 hops

>4 hops
RTS-id >4 hops

(b) 11 Mbps

Figure 6: The expected number of packet transmissions per ETT path with and without RTS-id.

0%

20%

40%

60%

80%

100%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

of

 p
at

hs

Transmission savings

Overall
2 hops
3 hops
4 hops

>4 hops

(a) 1 Mbps

0%

20%

40%

60%

80%

100%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

of

 p
at

hs

Transmission savings

Overall
2 hops
3 hops
4 hops

>4 hops

(b) 11 Mbps

Figure 7: RTS-id performance improvement versus ETT on the Roofnet dataset. The graphs plot the CDF of the fraction
of transmissions saved per path for 1 and 11 Mbps transmission rates.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association114

crease the number of transmissions required, often quite
dramatically. To clearly illustrate the performance im-
provement of RTS-id, Figure 7 plots both the relative
performance improvement for various path lengths at 1
Mbps and 11 Mbps. At 1 Mbps, RTS-id is able to save
over 20% of path transmissions for the median path, and
more than 40% (i.e., turn a 5-hop path into a 3-hop path)
for over 10% of the paths. Due to the restricted overhear-
ing at 11 Mbps, however, RTS-id provides at least 20%
savings for only a quarter of all paths.

6.2.1 Rate adaptation

As the previous results showed, RTS-id is more effective
with lower transmission rates that can reach more nodes.
Choosing transmission rates on a per-node basis is com-
plex: higher rates have smaller reception distances, and
so may require more hops through the ad hoc network.
Here, we model Roofnet’s “SampleRate” technique for
rate selection [? 4]. For each link, SampleRate selects
the bit-rate with the lowest instantaneous ETT metric.
While Roofnet can adjust transmission rates on a per-
packet basis, it constructs routes using long-term aver-
ages. Hence, we compute an ETT-based path for each
source/destination pair as before, except that each hop
uses the bit-rate selected by SampleRate. The resulting
routes approximate those used by the current version of
Roofnet except that we again use the 1500-byte 1-Mbps
loss rate for the return channel.

Figure 8 plots both the overhearing prevalence (c.f. Fig-
ure 4) and the relative performance improvement versus
ETT (c.f. Figure 7) with dynamic rate adaptation. It turns
out that most links in our dataset select the 11 Mbps trans-
mit rate, so the overhearing is closer to that observed with
a constant 11-Mbps transmit rate than a 1-Mbps transmit
rate, resulting in similar savings.3 In particular, RTS-id
provides more than 20% savings for one quarter of all
routes, and over 35% savings for the most-improved 5%.

6.2.2 Actual traffic patterns

So far, we have considered all source/destination pairs,
which is reasonable for many mesh networks. Some mesh
networks (e.g., Roofnet), however, rarely route traffic
between internal nodes; instead, they forward traffic to
and from a few gateway nodes that transfer packets to
the Internet. To confirm that our results are not biased
by poorly-performing internal routes, and, instead, are
representative of the paths traversed by actual traffic, we
restrict ourselves to only those paths connecting each
Roofnet node to each of the four Roofnet gateway nodes.

3Interestingly, its designers note that Roofnet generally transmits
at 5.5 Mbps in practice [4], so we are likely understating the potential
savings.

0%

20%

40%

60%

80%

100%

 0 0.1 0.2 0.3 0.4 0.5 0.6

of

 p
at

hs

Transmission savings

Overall
2 hops
3 hops
4 hops

>4 hops

Figure 9: The relative performance improvement versus
ETT for paths leading to or from a Roofnet gateway.

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12

of

 p
at

hs

Transmissions per path

Shortest Path
RTS-id Shortest Path

ETX
RTS-id ETX

ETT
RTS-id ETT

Figure 10: A variety of routing protocols with and with-
out RTS-id, all using SampleRate to select link transmission
rates.

Because we do not have a traffic matrix, we consider
paths to all four gateways from every node, although only
one of them is likely used at any point in time. Figure 9
shows the same data as Figure 8(b), except that it contains
only gateway routes. The overall distribution of savings
is roughly unchanged.

6.3 Improving other routing protocols
In general, RTS-id improves the performance of routing
more if those routing protocols do not select routes op-
timally. Our evaluation of RTS-id using ETT (currently
the best-performing routing protocol available for mesh-
based networks) gives ETT a large advantage, assuming
that ETT has perfect knowledge of link loss rates and
that those loss rates are stationary. Our ETT routes are
computed as the optimal value over the entire 90-second
measurement. In practice, however, networks cannot de-
vote all of their resources to measurement.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 115

60%

65%

70%

75%

80%

85%

90%

95%

100%

 0 0.2 0.4 0.6 0.8 1

of

 p
at

hs

Probability of overhearing
(a) Overhearing frequency

0%

20%

40%

60%

80%

100%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

of

 p
at

hs

Transmission savings

Overall
2 hops
3 hops
4 hops

>4 hops

(b) Relative performance improvement

Figure 8: The impact of rate adaptation. The first graph shows the overhearing prevalence (c.f. Figure 4), and the second
shows the relative performance improvement versus ETT.

For example, the Roofnet network computes its metrics
using only 10 measurement packets sent every five min-
utes, leading to less accurate information for route con-
struction. Furthermore, many networks currently operate
with much simpler protocols that do not need to collect
such fine-grained loss information. Here, we demon-
strate that not only does RTS-id substantially improve the
performance of these routing protocols, but that RTS-id,
operating only on a local per-link basis, raises the per-
formance of other routing protocols above and beyond
ETT’s performance.

Figure 10 shows the performance of three routing pro-
tocols, ETT (c.f. Figure 8), ETX, and shortest path, where
shortest path simply selects the path between source and
destination with fewest hops, assuming the link deliv-
ery rate is above 80%. (80% is arbitrary, and results are
similar for other cut-offs.) Note that not all node pairs
are connected by paths consisting entirely of links with
greater than 80% delivery rates, so the shortest path algo-
rithm constructs fewer routes. For each routing protocol,
we plot the absolute number of expected transmissions
per path with and without RTS-id. Note that any rout-
ing protocol with RTS-id is generally superior to the best
protocol (ETT) without it.

6.4 RTS/CTS overhead

As noted earlier, RTS/CTS is not commonly used in in-
frastructure deployments (though in some, CTS-to-Self
packets are sent for 802.11b/g compatibility). While it
was designed for multi-hop scenarios, some mesh net-
works also eschew its use [4], particularly those with
infrequent contention. As in the single AP study, enabling
RTS-id in these scenarios also requires an extra RTS/CTS
exchange, so we again quantify the transmission time
required for all packets in the transmission.

0%

20%

40%

60%

80%

100%

 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

of

 p
at

hs

Normalized Air Time

Shortest Path (vs RTS/CTS)
ETT (vs RTS/CTS)
Shortest Path (vs normal)
ETT (vs normal)

Figure 11: The normalized total path transmission time for
RTS-id, with and without RTS/CTS.

We measure this overhead in the Roofnet dataset by
examining the path transmission time (the sum of all
transmission times along the path). We plot this transmis-
sion time normalized against two baselines: a network
using no RTS/CTS at all, and a network that already uses
RTS/CTS. Note that in this simulation, there is no con-
tending traffic, and so no opportunity for RTS/CTS to
provide any benefit. Figure 11 shows the CDF of this
normalized transmission time when we do not adaptively
enable or disable RTS-id and simply leave it enabled on
all links. The two lines on the left of the graph show
that RTS-id improves transmission times greatly when the
network already uses RTS/CTS; the two lines on the right
of the graph show the overhead of enabling RTS/CTS
and show that in some cases, blindly enabling RTS-id can
reduce performance over the base network. Some of the
paths, however, still benefit from RTS-id, by up to 20%.
(The left pair of lines are represent the same data as the
ETT and shortest-path lines from Figure 10.)

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association116

20%

40%

60%

80%

100%

 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

%
 o

f p
at

hs

Normalized Air Time

Adaptive RTS-id savings

Figure 12: The normalized air time of adaptive RTS-id vs.
a network that does not natively use RTS/CTS.

Adaptively enabling RTS-id as described in Section 3.3
avoids the slowdown on links where RTS-id does not pro-
vide benefits. To evaluate adaptation, we enable RTS-id
only for those link-layer senders who benefit in expecta-
tion. Figure 12 shows the fraction of the path transmission
time for adaptive RTS-id vs. a network that does not use
RTS/CTS at all. The higher overhead of the RTS/CTS
exchange means that RTS-id is used on many fewer links
than in a network that natively uses RTS/CTS. As a re-
sult, its benefits are smaller, but it still provides a 10%
reduction in air time for about 5% of the paths, with signif-
icantly larger reduction for some paths. Unlike the equiv-
alent lines in Figure 11, adaptive RTS-id never harms
transmission time.

7 Security implications
The deployment of RTS-id would have a number of po-
tential security implications.

Confidentiality: RTS-id may permit an attacker to
perform a rough “traceback” to the source of a packet via
timing analysis that determines if a packet was already
present in a node’s cache. The effects of such an attack
seem minor, as the attacker would already have to be
well-placed in order to conduct the inquiry.

Integrity: RTS-id introduces no new attacks against in-
tegrity, but the availability attacks discussed below might
permit an attacker to prevent legitimate packets from
reaching their destination, enhancing the effectiveness
of existing spoofing attacks.

Availability: If an attacker knows the hash of the
packet it wishes to stop and can generate a packet that
collides with this hash, then the attacker can transmit this
packet before the real packet, causing the attack packet
to take the place of the original packet. This attack may
require less power than a jamming attack, and the packet

loss would not be detected at link layer, but only end-
to-end. A second attack, with similar effect, is that an
attacker can spoof a CTS-ACK response to an RTS-id
packet, making the sender believe the packet has been
transmitted. All of these attacks require that an attacker
be able to transmit packets with very tight timing require-
ments, which today requires programmable hardware
such as the CalRadio. While these attacks are somewhat
more effective than jamming, an attacker who can mount
them is already well-positioned to jam and snoop.

Per-pair keys could help resist these attacks, but their
use would require significant modification to the 802.11
protocol: current encryption mechanisms such as WPA
only encrypt the data payload, not the packet header.

8 Future work

Our immediate next step is to extend RTS-id to support
longer-duration, cross-flow caching. In particular, we
would like to integrate Santos and Wetherall-style packet
caching with header compression into RTS-id. While
existing header compression techniques can compress
TCP/IP headers down to a few bytes, they typically rely
on tight sender-receiver synchronization; adapting those
techniques to the lossy wireless environment poses an
interesting challenge. Such extensions could exploit either
long-term caching between different flows, or could use
small caches to enable efficient simulcast of data over a
wireless mesh network without native multicast support.

Our initial evaluation of RTS-id using the Roofnet data
leaves several issues unexplored. For instance, how might
the performance of RTS-id change in the face of mobil-
ity? In particular, the effectiveness of receiver caches may
be impacted as the set of overhearing nodes continually
changes. Similarly, senders may adjust their transmis-
sion power as nodes move, which may increase the need
to adaptively enable RTS-id. 802.11 deployments with
high levels of mobility, however, may also require higher
densities to ensure pervasive connectivity, which could
increase overhearing opportunities.

Additionally, our current deployment is restricted to
802.11b. The availability of additional speeds in 802.11g
and 802.11a may affect overhearing depending on senders’
rate adjustment algorithms. Moreover, it could be possible
to improve the performance of rate adaptation algorithms
by integrating information from RTS-id. In particular, it
may be beneficial to transmit at a lower rate with signifi-
cantly higher overhearing; conversely, a sender may not
want to decrease its send rate even in the face of significant
link-layer loss if overhearing is able to compensate for a
large enough portion of the losses. We hope to explore
these issues with increasing capability and availability of
CalRadio.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 117

RTS-id need not operate independent of other advances
that leverage wireless broadcast. Like the batching in
ExOR, RTS-id might be able to operate more efficiently
if it could batch queries when multiple packets are in its
queue, without increasing end-to-end latency. We believe
that there are also interesting possibilities for merging
RTS-id’s opportunistic overhearing benefits with the ex-
ploitation of omni-directional reception by network cod-
ing techniques.

9 Conclusion

RTS-id is a simple, backwards-compatible, link layer
mechanism for eliminating redundant packet transmis-
sions in wireless networks. Its goal is to turn broadcast
reception from a handicap into an advantage, and our
evaluation shows that it succeeds at this goal. RTS-id can
improve performance by 5% to 30% in existing networks.
Perhaps the most important facets of RTS-id, however, is
that it boosts the performance of simpler ad hoc routing
schemes so that they match the performance of more so-
phisticated (and complex) schemes, and that it optimizes
a common case of same-LAN data transmission.

In addition to our simulation results using the Roofnet
data, we have implemented and conducted a preliminary
evaluation of RTS-id on real, interoperable 802.11 hard-
ware. While necessarily limited by the limited availability
of this hardware and its relative immaturity, our implemen-
tation shows that RTS-id can be practically implemented
to meet the timing constraints of 802.11 hardware and
can reduce redundant packet transmissions in a real-world
setting.

Acknowledgments
The authors wish to thank Jeff Pang and Yu-Chung Cheng
for comments on earlier drafts. This work is supported
in part by Ericsson Research and Qualcomm through the
UCSD Center for Networked Systems (CNS) and the UC
Discovery program, and by NSF award CNS-0546551.

References
[1] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris.

Link-level measurements from an 802.11b mesh network.
In Proc. ACM SIGCOMM, Portland, OR, Aug. 2004.

[2] A. Armon and H. Levy. Cache satellite distribution sys-
tems: Modeling, analysis, and efficient operation. IEEE
JSAC, 22(2), Feb. 2004.

[3] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang.
MACAW: A Media-Access Protocol for Packet Radio. In
Proc. ACM SIGCOMM, London, England, Aug. 1994.

[4] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. Architec-
ture and evaluation of an unplanned 802.11b mesh network.
In Proc. ACM Mobicom, Cologne, Germany, Sept. 2005.

[5] S. Biswas and R. Morris. Opportunistic routing in multi-
hop wireless networks. In Proc. 2nd ACM Workshop on
Hot Topics in Networks (Hotnets-II), Cambridge, MA, Nov.
2003.

[6] S. Biswas and R. Morris. ExOR: opportunistic multi-hop
routing for wireless networks. In Proc. ACM SIGCOMM,
Philadelphia, PA, Aug. 2005.

[7] S. Z. Biswas. Opportunistic routing in multi-hop wire-
less networks. Master’s thesis, Massachusetts Institute of
Technology, Mar. 2005.

[8] California Institute of Telecommunications and Infor-
mation Technology (CalIT2). CalRadio 1.0. http:
//calradio.calit2.net/calradio1.htm.

[9] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trad-
ing structure for randomness in wireless opportunistic rout-
ing. In Proc. ACM SIGCOMM, Kyoto, Japan, Aug. 2007.

[10] R. R. Choudhury and N. Vaidya. MAC layer anycasting
in wireless networks. In Proc. 2nd ACM Workshop on Hot
Topics in Networks (Hotnets-II), Cambridge, MA, Nov.
2003.

[11] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing.
In Proc. ACM Mobicom, San Diego, CA, Sept. 2003.

[12] R. Draves, J. Padhye, and B. Zill. Comparison of routing
metrics for static multi-hop wireless networks. In Proc.
ACM SIGCOMM, Portland, OR, Aug. 2004.

[13] J. Jubin and J. Tarnow. The DARPA Packet Radio Network
Protocols. Proc. of the IEEE, 75(1):21–32, Jan. 1987.

[14] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Mèdard, and
J. Crowcroft. XORs in the air: practical wireless network
coding. In Proc. ACM SIGCOMM, pages 243–254, Pisa,
Italy, Aug. 2006.

[15] P. Larsson. Selection diversity forwarding in a multihop
packet radio network with fading channel and capture.
ACM SIGMOBILE Mobile Computing and Communica-
tions Review, 5(4):47–54, 2001.

[16] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morris.
Capacity of ad hoc wireless networks. In Proc. ACM
Mobicom, pages 61–69, Rome, Italy, July 2001.

[17] B. Raman and K. Chebrolu. Revisiting MAC design for an
802.11-based mesh network. In Proc. 3nd ACM Workshop
on Hot Topics in Networks (Hotnets-III), San Diego, CA,
Nov. 2004.

[18] J. Santos and D. Wetherall. Increasing effective link band-
width by suppressing replicated data. In Proc. USENIX
Annual Technical Conference, New Orleans, LA, June
1998.

[19] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones,
F. Tchakountio, B. Schwartz, S. T. Kent, and W. T. Strayer.
Single-packet IP traceback. IEEE/ACM Transactions on
Networking, 10(6), Dec. 2002.

[20] N. T. Spring and D. Wetherall. A protocol-independent
technique for eliminating redundant network traffic. In
Proc. ACM SIGCOMM, Stockholm, Sweden, Sept. 2000.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association118

