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Abstract
Ricochet is a low-latency reliable multicast protocol de-
signed for time-critical clustered applications. It uses IP
Multicast to transmit data and recovers from packet loss in
end-hosts using Lateral Error Correction (LEC), a novel
repair mechanism in which XORs are exchanged be-
tween receivers and combined across overlapping groups.
In datacenters and clusters, application needs frequently
dictate large numbers of fine-grained overlapping multi-
cast groups. Existing multicast reliability schemes scale
poorly in such settings, providing latency of packet recov-
ery that depends inversely on the data rate within a single
group: the lower the data rate, the longer it takes to re-
cover lost packets. LEC is insensitive to the rate of data in
any one group and allows each node to split its bandwidth
between hundreds to thousands of fine-grained multicast
groups without sacrificing timely packet recovery. As a
result, Ricochet provides developers with a scalable, reli-
able and fast multicast primitive to layer under high-level
abstractions such as publish-subscribe, group communi-
cation and replicated service/object infrastructures. We
evaluate Ricochet on a 64-node cluster with up to 1024
groups per node: under various loss rates, it recovers al-
most all packets using LEC in tens of milliseconds and the
remainder with reactive traffic within 200 milliseconds.

1 Introduction
Clusters and datacenters play an increasingly important
role in the contemporary computing spectrum, providing
back-end computing and storage for a wide range of appli-
cations. The modern datacenter is typically composed of
hundreds to thousands of inexpensive commodity blade-
servers, networked via fast, dedicated interconnects. The
software stack running on a single blade-server is a brew
of off-the-shelf software: commercial operating systems,
proprietary middleware, managed run-time environments
and virtual machines, all standardized to reduce complex-
ity and mitigate maintenance costs.

The last decade has seen the migration of time-critical
applications to commodity clusters. Application domains
ranging from computational finance to air-traffic control
and military communication have been driven by scala-
bility and cost concerns to abandon traditional real-time

environments for COTS datacenters. In the process, they
give up conservative - and arguably unnecessary - guaran-
tees of real-time performance for the promise of massive
scalability and multiple nines of timely availability, all at
a fraction of the running cost. Delivering on this promise
within expanding and increasingly complex datacenters is
a non-trivial task, and a wealth of commercial technology
has emerged to support clustered applications.

At the heart of commercial datacenter software is reli-
able multicast — used by publish-subscribe and data dis-
tribution layers [5, 7] to spread data through clusters at
high speeds, by clustered application servers [1, 4, 3] to
communicate state, updates and heartbeats between server
instances, and by distributed caching infrastructures [2, 6]
to rapidly update cached data. The multicast technology
used in contemporary industrial products is derivative of
protocols developed by academic researchers over the last
two decades, aimed at scaling metrics like throughput or
latency across dimensions as varied as group size [10, 17],
numbers of senders [9], node and network heterogeneity
[12], or geographical and routing distance [18, 21]. How-
ever, these protocols were primarily designed to extend
the reach of multicast to massive networks; they are not
optimized for the failure modes of datacenters and may
be unstable, inefficient and ineffective when retrofitted to
clustered settings. Crucially, they are not designed to cope
with the unique scalability demands of time-critical fault-
tolerant applications.

We posit that a vital dimension of scalability for clus-
tered applications is the number of groups in the system.
All the uses of multicast mentioned above induce large
numbers of overlapping groups. For example, a compu-
tational finance calculator that uses a topic-based pub-sub
system to subscribe to a fraction of the equities on the
stock market will end up belonging in many multicast
groups. Multiple such applications within a datacenter
- each subscribing to different sets of equities - can re-
sult in arbitrary patterns of group overlap. Similarly, data
caching or replication at fine granularity can result in a
single node hosting many data items. Replication driven
by high-level objectives such as locality, load-balancing
or fault-tolerance can lead to distinct overlapping replica
sets - and hence, multicast groups - for each item.

In this paper, we propose Ricochet, a time-critical re-
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liable multicast protocol designed to perform well in the
multicast patterns induced by clustered applications. Ric-
ochet uses IP Multicast [15] to transmit data and recov-
ers lost packets using Lateral Error Correction (LEC), a
novel error correction mechanism in which XOR repair
packets are probabilistically exchanged between receivers
and combined across overlapping multicast groups. The
latency of loss recovery in LEC depends inversely on the
aggregate rate of data in the system, rather than the rate in
any one group. It performs equally well in any arbitrary
configuration and cardinality of group overlap, allowing
Ricochet to scale to massive numbers of groups while re-
taining the best characteristics of state-of-the-art multicast
technology: even distribution of responsibility among re-
ceivers, insensitivity to group size, stable proactive over-
head and graceful degradation of performance in the face
of increasing loss rates.

1.1 Contributions

• We argue that a critical dimension of scalability
for multicast in clustered settings is the number of
groups in the system.

• We show that existing reliable multicast protocols
have recovery latency characteristics that are in-
versely dependent on the data rate in a group, and
do not perform well when each node is in many low-
rate multicast groups.

• We propose Lateral Error Correction, a new reliabil-
ity mechanism that allows packet recovery latency to
be independent of per-group data rate by intelligently
combining the repair traffic of multiple groups. We
describe the design and implementation of Ricochet,
a reliable multicast protocol that uses LEC to achieve
massive scalability in the number of groups in the
system.

• We extensively evaluate the Ricochet implementa-
tion on a 64-node cluster, showing that it performs
well with different loss rates, tolerates bursty loss
patterns, and is relatively insensitive to grouping pat-
terns and overlaps - providing recovery character-
istics that degrade gracefully with the number of
groups in the system, as well as other conventional
dimensions of scalability.

2 System Model
We consider patterns of multicast usage where each node
is in many different groups of small to medium size (10 to
50 nodes). Following the IP Multicast model, a group is
defined as a set of receivers for multicast data, and senders
do not have to belong to the group to send to it. We ex-
pect each node to receive data from a large set of distinct
senders, across all the groups it belongs to.

Where does Loss occur in a Datacenter? Datacenter
networks have flat routing structures with no more than
two or three hops on any end-to-end path. They are typi-
cally over-provisioned and of high quality, and packet loss
in the network is almost non-existent. In contrast, dat-
acenter end-hosts are inexpensive and easily overloaded;
even with high-capacity network interfaces, the commod-
ity OS often drops packets due to buffer overflows caused
by traffic spikes or high-priority threads occupying the
CPU. Hence, our loss model is one of short packet bursts
dropped at the end-host receivers at varying loss rates.

Figure 1 strongly indicates that loss in a datacenter is
(a) bursty and (b) independent across end-hosts. In this
experiment, a receiver r1 joins two multicast groups A
and B, and another receiver r2 in the same switching seg-
ment joins only group A. From a sender located multiple
switches away on the network, we send per-second data
bursts of around 25 1KB packets to group A and simul-
taneously send a burst of 0-50 packets to group B, and
measure packet loss at both receivers. We ran this experi-
ment on two networks: a 64-node cluster at Cornell with
1.3 Ghz receivers and the Emulab testbed at Utah with 2
Ghz receivers, all nodes running Linux 2.6.12.

The top graphs in Figure 1 show the traffic bursts and
loss bursts at receiver r1, and the bottom graphs show the
same information for r2. We can see that r1 gets over-
loaded and drops packets in bursts of size 1-30 packets,
whereas r2 does not drop any packets — importantly,
around 30% of the packets dropped by r1 are in group
A, which is common to both receivers. Hence, loss is
both bursty and independent across nodes. Together, these
graphs indicate strongly that loss occurs due to buffer
overflows at receiver r1.

The example in Figure 1 is simplistic - each incoming
burst of traffic arrives at the receiver within a small num-
ber of milliseconds - but conveys a powerful message: it
is very easy to trigger significant bursty loss at datacenter
end-hosts. The receivers in these experiments were run-
ning empty and draining packets continuously out of the
kernel, with zero contention for the CPU or the network,
whereas the settings of interest to us involve time-critical,
possibly CPU-intensive applications running on top of the
communication stack.

Further, we expect multi-group settings to intrinsically
exhibit bursty incoming traffic of the kind emulated in this
experiment — each node in the system receives data from
multiple senders in multiple groups and it is likely that
the inter-arrival time of data packets at a node will vary
widely, even if the traffic rate at one sender or group is
steady. In some cases, burstiness of traffic could also oc-
cur due to time-critical application behavior - for exam-
ple, imagine an update in the value of a stock quote trig-
gering off activity in several system components, which
then multicast information to a replicated central data-
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(a) Cornell 64-node Cluster (b) Utah Emulab Testbed

Figure 1: Datacenter Loss is bursty and uncorrelated across nodes: receiver r1 (top) joins groups A and B and exhibits
bursty loss, whereas receiver r2 (bottom) joins only group A and experiences zero loss.

store. If we assume that each time-critical component
processes the update within a few hundred microseconds,
and that inter-node socket-to-socket latency is around fifty
microseconds (an actual number from our experimen-
tal cluster), the central datastore could easily see a sub-
millisecond burst of traffic. In this case, the componen-
tized structure of the application resulted in bursty traffic;
in other scenarios, the application domain could be intrin-
sically prone to bursty input. For example, a financial cal-
culator tracking a set of hundred equities with correlated
movements might expect to receive a burst of a hundred
packets in multiple groups almost instantaneously.

3 The Design of a Time-Critical Multicast
Primitive

In recent years, multicast research has focused almost
exclusively on application-level routing mechanisms, or
overlay networks ([13] is one example), designed to oper-
ate in the wide-area without any existing router support.
The need for overlay multicast stems from the lack of IP
Multicast coverage in the modern internet, which in turn
reflects concerns of administration complexity, scalabil-
ity, and the risk of multicast ‘storms’ caused by misbe-
having nodes. However, the homogeneity and compara-
tively limited size of datacenter networks pose few scala-
bility and administration challenges to IP Multicast, mak-
ing it a viable and attractive option in such settings. In
this paper, we restrict ourselves to a more traditional defi-
nition of ‘reliable multicast’, as a reliability layer over IP
Multicast. Given that the selection of datacenter hardware
is typically influenced by commercial constraints, we be-
lieve that any viable solution for this context must be able
to run on any mix of existing commodity routers and OS
software; hence, we focus exclusively on mechanisms that

act at the application-level, ruling out schemes which re-
quire router modification, such as PGM [19].

3.1 The Timeliness of (Scalable) Reliable Multicast
Protocols

Reliable multicast protocols typically consist of three log-
ical phases: transmission of the packet, discovery of
packet loss, and recovery from it. Recovery is a fairly fast
operation; once a node knows it is missing a packet, re-
covering it involves retrieving the packet from some other
node. However, in most existing scalable multicast pro-
tocols, the time taken to discover packet loss dominates
recovery latency heavily in the kind of settings we are in-
terested in. The key insight is that the discovery latency of
reliable multicast protocols is usually inversely dependent
on data rate: for existing protocols, the rate of outgoing
data at a single sender in a single group. Existing schemes
for reliability in multicast can be roughly divided into the
following categories:
ACK/timeout: RMTP [21], RMTP-II [22]. In this ap-
proach, receivers send back ACKs (acknowledgements)
to the sender of the multicast. This is the trivial exten-
sion of unicast reliability to multicast, and is intrinsically
unscalable due to ACK implosion; for each sent message,
the sender has to process an ACK from every receiver in
the group [21]. One work-around is to use ACK aggrega-
tion, which allows such solutions to scale in the number of
receivers but requires the construction of a tree for every
sender to a group. Also, any aggregative mechanism in-
troduces latency, leading to larger time-outs at the sender
and delaying loss discovery; hence, ACK trees are unsuit-
able in time-critical settings.
Gossip-Based: Bimodal Multicast [10], lpbcast [17]. Re-
ceivers periodically gossip histories of received packets
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Figure 2: SRM’s Discovery Latency vs. Groups per Node,
on a 64-node cluster, with groups of 10 nodes each. Error
bars are min and max over 10 runs.

with each other. Upon receiving a digest, a receiver com-
pares the contents with its own packet history, sending
any packets that are missing from the gossiped history
and requesting transmission of any packets missing from
its own history. Gossip-based schemes offer scalability in
the number of receivers per group, and extreme resilience
by diffusing the responsibility of ensuring reliability for
each packet over the entire set of receivers. However,
they are not designed for time-critical settings: discov-
ery latency is equal to the time period between gossip ex-
changes (a significant number of milliseconds - 100ms in
Bimodal Multicast [10]), and recovery involves a further
one or two-phase interaction as the affected node obtains
the packet from its gossip contact.
NAK/Sender-based Sequencing: SRM [18]. Senders
number outgoing multicasts, and receivers discover
packet loss when a subsequent message arrives. Loss dis-
covery latency is thus proportional to the inter-send time
at any single sender to a single group - a receiver can’t
discover a loss in a group until it receives the next packet
from the same sender to that group - and consequently de-
pends on the sender’s data transmission rate to the group.
To illustrate this point, we measured the performance of
SRM as we increased the number of groups each node be-
longed in, keeping the throughput in the system constant
by reducing the data rate within each group - as Figure 2
shows, discovery latency of lost packets degrades linearly
as each node’s bandwidth is increasingly fragmented and
each group’s rate goes down, increasing the time between
two consecutive sends by a sender to the same group.
Once discovery occurs in SRM, lost packet recovery is
initiated by the receiver, which uses IP multicast (with a
suitable TTL value); the sender (or some other receiver),
responds with a retransmission, also using IP multicast.
Sender-based FEC [20, 23]: Forward Error Correction

schemes involve multicasting redundant error correction
information along with data packets, so that receivers can
recover lost packets without contacting the sender or any
other node. FEC mechanisms involve generating c repair
packets for every r data packets, such that any r of the
combined set of r + c data and repair packets is suffi-
cient to recover the original r data packets; we term this
(r, c) parameter the rate-of-fire. FEC mechanisms have
the benefit of tunability, providing a coherent relationship
between overhead and timeliness - the more the number
of repair packets generated, the higher the probability of
recovering lost packets from the FEC data. Further, FEC
based protocols are very stable under stress, since recov-
ery does not induce large degrees of extra traffic. As in
NAK protocols, the timeliness of FEC recovery depends
on the data transmission rate of a single sender in a single
group; the sender can send a repair packet to a group only
after sending out r data packets to that group. Fast, effi-
cient encodings such as Tornado codes [11] make sender-
based FEC a very attractive option in multicast applica-
tions involving a single, dedicated sender; for example,
software distribution or internet radio.

Receiver-based FEC [9]: Of the above schemes, ACK-
based protocols are intrinsically unsuited for time-critical
multi-sender settings, while sender-based sequencing and
FEC limit discovery latency to inter-send time at a single
sender within a single group. Ideally, we would like dis-
covery latency to be independent of inter-send time, and
combine the scalability of a gossip-based scheme with the
tunability of FEC. Receiver-based FEC, first introduced
in the Slingshot protocol [9], provides such a combina-
tion: receivers generate FEC packets from incoming data
and exchange these with other randomly chosen receivers.
Since FEC packets are generated from incoming data at a
receiver, the timeliness of loss recovery depends on the
rate of data multicast in the entire group, rather than the
rate at any given sender, allowing scalability in the num-
ber of senders to the group.

Slingshot is aimed at single-group settings, recovering
from packet loss in time proportional to that group’s data
rate. Our goal with Ricochet is to achieve recovery latency
dependent on the rate of data incoming at a node across
all groups. Essentially, we want recovery of packets to
occur as quickly in a thousand 10 Kbps groups as in a sin-
gle 10 Mbps group, allowing applications to divide node
bandwidth among thousands of multicast groups while
maintaining time-critical packet recovery. To achieve
this, we introduce Lateral Error Correction, a new form
of receiver-generated FEC that probabilistically combines
receiver-generated repair traffic across multiple groups to
drive down packet recovery latencies.
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Figure 3: Ricochet Packet Structure

4 Lateral Error Correction and the Rico-
chet protocol

In Ricochet, each node belongs to a number of groups,
and receives data multicast within any of them. The ba-
sic operation of the protocol involves generating XORs
from incoming data and exchanging them with other ran-
domly selected nodes. Ricochet operates using two differ-
ent packet types: data packets - the actual data multicast
within a group - and repair packets, which contain recov-
ery information for multiple data packets. Figure 3 shows
the structure of these two packet types. Each data packet
header contains a packet identifier - a (sender, group, se-
quence number) tuple that identifies it uniquely. A repair
packet contains an XOR of multiple data packets, along
with a list of their identifiers - we say that the repair packet
is composed from these data packets, and that the data
packets are included in the repair packet. An XOR repair
composed from r data packets allows recovery of one of
them, if all the other r − 1 data packets are available; the
missing data packet is obtained by simply computing the
XOR of the repair’s payload with the other data packets.

At the core of Ricochet is the LEC engine running at
each node that decides on the composition and destina-
tions of repair packets, creating them from incoming data
across multiple groups. The operating principle behind
LEC is the notion that repair packets sent by a node to
another node can be composed from data in any of the
multicast groups that are common to them. This allows re-
covery of lost packets at the receiver of the repair packet
to occur within time that’s inversely proportional to the
aggregate rate of data in all these groups. Figure 4 illus-
trates this idea: n1 has groups A and B in common with
n2, and hence it can generate and dispatch repair packets
that contain data from both these groups. n1 needs to wait
only until it receives 5 data packets in either A or B be-
fore it sends a repair packet, allowing faster recovery of
lost packets at n2.
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Figure 4: LEC in 2 Groups: Receiver n1 can send repairs
to n2 that combine data from both groups A and B.

While combining data from different groups in outgo-
ing repair packets drives down recovery time, it tampers
with the coherent tunability that single group receiver-
based FEC provides. The rate-of-fire parameter in
receiver-based FEC provides a clear, coherent relation-
ship between overhead and recovery percentage; for ev-
ery r data packets, c repair packets are generated in the
system, resulting in some computable probability of re-
covering from packet loss. The challenge for LEC is to
combine repair traffic for multiple groups while retain-
ing per-group overhead and recovery percentages, so that
each individual group can maintain its own rate-of-fire. To
do so, we abstract out the essential properties of receiver-
based FEC that we wish to maintain:
1. Coherent, Tunable Per-Group Overhead: For every
data packet that a node receives in a group with rate-of-
fire (r, c), it sends out an average of c repair packets in-
cluding that data packet to other nodes in the group.
2. Randomness: Destination nodes for repair packets are
picked randomly, with no node receiving more or less re-
pairs than any other node, on average.

LEC supports overlapping groups with the same r com-
ponent and different c values in their rate-of-fire parame-
ter. In LEC, the rate-of-fire parameter is translated into the
following guarantee: For every data packet d that a node
receives in a group with rate-of-fire (r, c), it selects an av-
erage of c nodes from the group randomly and sends each
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1

4

Figure 5: n1 belongs to groups A, B, C: it divides them
into disjoint regions abc, ab, ac, bc, a, b, c

of these nodes exactly one repair packet that includes d. In
other words, the node sends an average of c repair pack-
ets containing d to the group. In the following section,
we describe the algorithm that LEC uses to compose and
dispatch repair packets while maintaining this guarantee.

4.1 Algorithm Overview

Ricochet is a symmetric protocol - exactly the same LEC
algorithm and supporting code runs at every node - and
hence, we can describe its operation from the vantage
point of a single node, n1.

4.1.1 Regions

The LEC engine running at n1 divides n1’s neighborhood
- the set of nodes it shares one or more multicast groups
with - into regions, and uses this information to construct
and disseminate repair packets. Regions are simply the
disjoint intersections of all the groups that n1 belongs
to. Figure 5 shows the regions in a hypothetical sys-
tem, where n1 is in three groups, A, B and C. We de-
note groups by upper-case letters and regions by the con-
catenation of the group names in lowercase; i.e, abc is
a region formed by the intersection of A, B and C. In
our example, the neighborhood set of n1 is carved into
seven regions: abc, ac, ab, bc, a, b and c, essentially the
power set of the set of groups involved. Readers may be
alarmed that this transformation results in an exponential
number of regions, but this is not the case; we are only
concerned with non-empty intersections, the cardinality
of which is bounded by the number of nodes in the sys-
tem, as each node belongs to exactly one intersection (see
Section 4.1.4). Note that n1 does not belong to group D
and is oblivious to it; it observes n2 as belonging to region
b, rather than bd, and is not aware of n4’s existence.

4.1.2 Selecting targets from regions, not groups

Instead of selecting targets for repairs randomly from the
entire group, LEC selects targets randomly from each re-

1

1

A
ab

A abc

A a

A
ac

A
x

A

A

A

Figure 6: n1 selects proportionally sized chunks of cA

from the regions of A

gion. The number of targets selected from a region is set
such that:
1. It is proportional to the size of the region
2. The total number of targets selected, across regions, is
equal to the c value of the group
Hence, for a given group A with rate-of-fire (r, cA), the
number of targets selected by LEC in a particular region,
say abc, is equal to cA ∗ |abc|

|A| , where |x| is the number of
nodes in the region or group x. We denote the number of
targets selected by LEC in region abc for packets in group
A as cabc

A . Figure 6 shows n1 selecting targets for repairs
from the regions of A.

Note that LEC may pick a different number of targets
from a region for packets in a different group; for exam-
ple, cabc

A differs from cabc
B . Selecting targets in this man-

ner also preserves randomness of selection; if we rephrase
the task of target selection as a sampling problem, where
a random sample of size c has to be selected from the
group, selecting targets from regions corresponds to strat-
ified sampling [14], a technique from statistical theory.

4.1.3 Why select targets from regions?

Selecting targets from regions instead of groups allows
LEC to construct repair packets from multiple groups;
since we know that all nodes in region ab are interested
in data from groups A and B, we can create composite
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1

Figure 7: Mappings between repair bins and regions: the
repair bin for ab selects 0.4 targets from region ab and 0.8
from abc for every repair packet. Here, cA = 5, cB = 4,
and cC = 3.

repair packets from incoming data packets in both groups
and send them to nodes in that region.

Single-group receiver-based FEC [9] is implemented
using a simple construct called a repair bin, which col-
lects incoming data within the group. When a repair bin
reaches a threshold size of r, a repair packet is generated
from its contents and sent to c randomly selected nodes
in the group, after which the bin is cleared. Extending
the repair bin construct to regions seems simple; a bin can
be maintained for each region, collecting data packets re-
ceived in any of the groups composing that region. When
the bin fills up to size r, it can generate a repair packet
containing data from all these groups, and send it to tar-
gets selected from within the region.

Using per-region repair bins raises an interesting ques-
tion: if we construct a composite repair packet from data
in groups A, B, and C, how many targets should we se-
lect from region abc for this repair packet - cabc

A , cabc
B , or

cabc
C ? One possible solution is to pick the maximum of

these values. If cabc
A ≥ cabc

B ≥ cabc
C , then we would select

cabc
A . However, a data packet in group B, when added to

the repair bin for the region abc would be sent to an aver-
age of cabc

A targets in the region; resulting in more repair
packets containing that data packet sent to the region than
required (cabc

B ), which results in more repair packets sent
to the entire group. Hence, more overhead is expended
per data packet in group B than required by its (r, cB)

value; a similar argument holds for data packets in group
C as well.

Algorithm 1 Algorithm for Setting Up Repair Bins
1: Code at node ni:

2: upon Change in Group Membership do
3: while L not empty {L is the list of regions}

do
4: Select and remove the region Ri = abc...z from

L with highest number of groups involved (break
ties in any order)

5: Set Rt = Ri

6: while Rt 6= ε do
7: set cmin to min(cRt

A , cRt

B ...), where {A,B,...}
is the set of groups forming Rt

8: Set number of targets selected by Ri’s repair
bin from region Rt to cmin

9: Remove G from Rt, for all groups G where
cRt

G = cmin

10: For each remaining group G′ in Rt, set cRt

G′ =
cRt

G′ − cmin

Instead, we choose the minimum of values; this, as ex-
pected, results in a lower level of overhead for groups A
and B than required, resulting in a lower fraction of pack-
ets recovered from LEC. To rectify this we send the addi-
tional compensating repair packets to the region abc from
the repair bins for regions a and b. The repair bin for re-
gion a would select cabc

A −cabc
C destinations, on an average,

for every repair packet it generates; this is in addition to
the ca

A destinations it selects from region a.
A more sophisticated version of the above strategy in-

volves iteratively obtaining the required repair packets
from regions involving the remaining groups; for instance,
we would have the repair bin for ab select the minimum of
cabc
A and cabc

B - which happens to be cabc
B - from abc, and

then have the repair bin for a select the remainder value,
cabc
A − cabc

B , from abc. Algorithm 1 illustrates the final ap-
proach adopted by LEC, and Figure 7 shows the output of
this algorithm for an example scenario. A repair bin se-
lects a non-integral number of nodes from an intersection
by alternating between its floor and ceiling probabilisti-
cally, in order to maintain the average at that number.

4.1.4 Complexity

The algorithm described above is run every time nodes
join or leave any of the multicast groups that n1 is part
of. The algorithm has complexity O(I · d), where I is the
number of populated regions (i.e, with one or more nodes
in them), and d is the maximum number of groups that
form a region. Note that I at n1 is bounded from above
by the cardinality of the set of nodes that share a multicast
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group with n1, since regions are disjoint and each node
exists in exactly one of them. d is bounded by the number
of groups that n1 belongs to.

4.2 Implementation Details

Our implementation of Ricochet is in Java. Below, we
discuss the details of the implementation, along with the
performance optimizations involved - some obvious and
others subtle.

4.2.1 Repair Bins

A Ricochet repair bin is a lightweight structure holding
an XOR and a list of data packets, and supporting an add
operation that takes in a data packet and includes it in the
internal state. The repair bin is associated with a particular
region, receiving all data packets incoming in any of the
groups forming that region. It has a list of regions from
which it selects targets for repair packets; each of these
regions is associated with a value, which is the average
number of targets which must be selected from that region
for an outgoing repair packet. In most cases, as shown in
Figure 7, the value associated with a region is not an inte-
ger; as mentioned before, the repair bin alternates between
the floor and the ceiling of the value to maintain the aver-
age at the value itself. For example, in Figure 7, the repair
bin for abc has to select 1.2 targets from abc, on average;
hence, it generates a random number between 0 and 1 for
each outgoing repair packet, selecting 1 node if the ran-
dom number is more than 0.2, and 2 nodes otherwise.

4.2.2 Staggering for Bursty Loss

A crucial algorithmic optimization in Ricochet is stagger-
ing - also known as interleaving [23] - which provides re-
silience to bursty loss. Given a sequence of data packets to
encode, a stagger of 2 would entail constructing one repair
packet from the 1st, 3rd, 5th... packets, and another repair
packet from the 2nd, 4th, 6th... packets. The stagger value
defines the number of repairs simultaneously being con-
structed, as well as the distance in the sequence between
two data packets included in the same repair packet. Con-
sequently, a stagger of i allows us to tolerate a loss burst
of size i while resulting in a proportional slowdown in re-
covery latency, since we now have to wait for O(i∗r) data
packets before despatching repair packets.

In conventional sender-based FEC, staggering is not a
very attractive option, providing tolerance to very small
bursts at the cost of multiplying the already prohibitive
loss discovery latency. However, LEC recovers packets
so quickly that we can tolerate a slowdown of a factor of
ten without leaving the tens of milliseconds range; addi-
tionally, a small stagger at the sender allows us to tolerate
very large bursts of lost packets at the receiver, especially
since the burst is dissipated among multiple groups and
senders. Ricochet implements a stagger of i by the sim-
ple expedient of duplicating each logical repair bin into i

instances; when a data packet is added to the logical re-
pair bin, it is actually added to a particular instance of the
repair bin, chosen in round-robin fashion. Instances of a
duplicated repair bin behave exactly as single repair bins
do, generating repair packets and sending them to regions
when they get filled up.

4.2.3 Multi-Group Views

Each Ricochet node has a multi-group view, which con-
tains membership information about other nodes in the
system that share one or more multicast groups with it. In
traditional group communication literature, a view is sim-
ply a list of members in a single group [24]; in contrast, a
Ricochet node’s multi-group view divides the groups that
it belongs to into a number of regions, and contains a list
of members lying in each region. Ricochet uses the multi-
group view at a node to determine the sizes of regions
and groups, to set up repair bins using the LEC algorithm.
Also, the per-region lists in the multi-view are used to se-
lect destinations for repair packets. The multi-group view
at n1 - and consequently the group and intersection sizes
- does not include n1 itself.

4.2.4 Membership and Failure Detection

Ricochet can plug into any existing membership and fail-
ure detection infrastructure, as long as it is provided with
reasonably up-to-date views of per-group membership by
some external service. In our implementation, we use
simple versions of Group Membership (GMS) and Fail-
ure Detection (FD) services, which execute on high-end
server machines. If the GMS receives a notification from
the FD that a node has failed, or it receives a join/leave
to a group from a node, it sends an update to all nodes
in the affected group(s). The GMS is not aware of re-
gions; it maintains conventional per-group lists of nodes,
and sends per-group updates when membership changes.
For example, if node n55 joins group A, the update sent by
the GMS to every node in A would be a 3-tuple: (Join, A,
n55). Individual nodes process these updates to construct
multi-group views relative to their own membership.

Since the GMS does not maintain region data, it has
to scale only in the number of groups in the system; this
can be easily done by partitioning the service on group id
and running each partition on a different server. For in-
stance, one machine is responsible for groups A and B,
another for C and D, and so on. Similarly, the FD can
be partitioned on a topological criterion; one machine on
each rack is responsible for monitoring other nodes on the
rack by pinging them periodically. For fault-tolerance,
each partition of the GMS can be replicated on multiple
machines using a strongly consistent protocol like Paxos.
The FD can have a hierarchical structure to recover from
failures; a smaller set of machines ping the per-rack fail-
ure detectors, and each other in a chain. We believe that
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such a semi-centralized solution is appropriate and suffi-
cient in a datacenter setting, where connectivity and mem-
bership are typically stable. Crucially, the protocol it-
self does not need consistent membership, and degrades
gracefully with the degree of inconsistency in the views;
if a failed node is included in a view, performance will
dip fractionally in all the groups it belongs to as the re-
pairs sent to it by other nodes are wasted.

4.2.5 Performance

Since Ricochet creates LEC information from each in-
coming data packet, the critical communication path that
a data packet follows within the protocol is vital in de-
termining eventual recovery times and the maximum sus-
tainable throughput. XORs are computed in each repair
bin incrementally, as packets are added to the bin. A cru-
cial optimization used is pre-computation of the number
of destinations that the repair bin sends out a repair to,
across all the regions that it sends repairs to: Instead of
constructing a repair and deciding on the number of des-
tinations once the bin fills up, the repair bin precomputes
this number and constructs the repair only if the number is
greater than 0. When the bin overflows and clears itself,
the expected number of destinations for the next repair
packet is generated. This restricts the average number of
two-input XORs per data packet to c (from the rate-of-
fire) in the worst case - which occurs when no single re-
pair bin selects more than 1 destination, and hence each
outgoing repair packet is a unique XOR.

4.2.6 Buffering and Loss Control

LEC - like any other form of FEC - works best when
losses are not in concentrated bursts. Ricochet maintains
an application-level buffer with the aim of minimizing
in-kernel losses, serviced by a separate thread that con-
tinuously drains packets from the kernel. If memory at
end-hosts is constrained and the application-level buffer
is bounded, we use customized packet-drop policies to
handle overflows: a randomly selected packet from the
buffer is dropped and the new packet is accommodated
instead. In practice, this results in a sequence of almost
random losses from the buffer, which are easy to recover
using FEC traffic. Whether the application-level buffer is
bounded or not, it ensures that packet losses in the kernel
are reduced to short bursts that occur only during peri-
ods of overload or CPU contention. We evaluate Ricochet
against loss bursts of up to 100 packets, though in practice
we expect the kind of loss pattern shown in 1, where few
bursts are greater than 20-30 packets, even with highly
concentrated traffic spikes.

4.2.7 NAK Layer for 100% Recovery

Ricochet recovers a high percentage of lost packets via the
proactive LEC traffic; for certain applications, this proba-
bilistic guarantee of packet recovery is sufficient and even

desirable in cases where data ‘expires’ and there is no util-
ity in recovering it after a certain number of milliseconds.
However, the majority of applications require 100% re-
covery of lost data, and Ricochet uses a reactive NAK
layer to provide this guarantee. If a receiver does not re-
cover a packet through LEC traffic within a timeout pe-
riod after discovery of loss, it sends an explicit NAK to
the sender and requests a retransmission. While this NAK
layer does result in extra reactive repair traffic, two fac-
tors separate it from traditional NAK mechanisms: firstly,
recovery can potentially occur very quickly - within a few
hundred milliseconds - since for almost all lost packets
discovery of loss takes place within milliseconds through
LEC traffic. Secondly, the NAK layer is meant solely as
a backup mechanism for LEC and responsible for recov-
ering a very small percentage of total loss, and hence the
extra overhead is minimal.

4.2.8 Optimizations

Ricochet maintains a buffer of unusable repair packets
that enable it to utilize incoming repair packets better. If
one repair packet is missing exactly one more data packet
than another repair packet, and both are missing at least
one data packet, Ricochet obtains the extra data packet
by XORing the two repair packets. Also, it maintains a
list of unusable repair packets which is checked intermit-
tently to see if recent data packet recoveries and receives
have made any old repair packets usable.

4.2.9 Message Ordering

As presented, Ricochet provides multicast reliability but
does not deliver messages in the same order at all re-
ceivers. We are primarily concerned with building an ex-
tremely rapid multicast primitive that can be used by ap-
plications that require unordered reliable delivery as well
as layered under ordering protocols with stronger deliv-
ery properties. For instance, Ricochet can be used as a
reliable transport by any of the existing mechanisms for
total ordering [16] — in separate work [8], we describe
one such technique that predicts out-of-order delivery in
datacenters to optimize ordering delays.

5 Evaluation
We evaluated our Java implementation of Ricochet on a
64-node cluster, comprising of four racks of 16 nodes
each, interconnected via two levels of switches. Each
node has a single 1.3 GHz CPU with 512 Mb RAM, runs
Linux 2.6.12 and has two 100 Mbps network interfaces,
one for control and the other for experimental traffic. Typ-
ical socket-to-socket latency within the cluster is around
50 microseconds. In the following experiments, for a
given loss rate L, three different loss models are used:
· uniform - also known as the Bernoulli model [25] -
refers to dropping packets with uniform probability equal
to the loss rate L.
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Figure 8: Distribution of Recoveries: LEC + NAK for varying degrees of loss
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Figure 9: Tuning LEC : tradeoff points available between
recovery %, overhead % (left y-axis) and avg recovery
latency (right y-axis) by changing the rate-of-fire (r, c).

· bursty involves dropping packets in equal bursts of
length b. The probability of starting a loss burst is set
so that each burst is of exactly b packets and the loss rate
is maintained at L. This is not a realistic model but allows
us to precisely measure performance relative to specific
burst lengths.
· markov drops packets using a simple 2-state markov
chain, where each node alternates between a lossy and a
lossless state, and the probabilities are set so that the av-
erage length of a loss burst is m and the loss rate is L, as
described in [25].

In experiments with multiple groups, nodes are as-
signed to groups at random, and the following formula
is used to relate the variables in the grouping pattern:
n ∗ d = g ∗ s, where n is the number of nodes in the
system (64 in most of the experiments), d is the degree of
membership, i.e. the number of groups each node joins,
g is the total number of groups in the system, and s is
the average size of each group. For example, in a 16-
node setting where each node joins 512 groups and each
group is of size 8, g is set to 16∗512

8 ≈ 1024. Each node is
then assigned to 512 randomly picked groups out of 1024.
Hence, the grouping patterns for each experiment is com-
pletely represented by a (n, d, s) tuple.

For every run, we set the sending rate at a node such
that the total system rate of incoming messages is 64000
packets per second, or 1000 packets per node per second.
Data packets are 1K bytes in size. Each point in the fol-
lowing graphs - other than Figure 8, which shows distri-
butions for single runs - is an average of 5 runs. A run
lasts 30 seconds and produces ≈ 2 million receive events
in the system.

5.1 Distribution of Recoveries in Ricochet

First, we provide a snapshot of what typical packet re-
covery timelines look like in Ricochet. Earlier, we made
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Figure 10: Scalability in Groups

the assertion that Ricochet discovers the loss of almost
all packets very quickly through LEC traffic, recovers a
majority of these instantly and recovers the remainder us-
ing an optional NAK layer. In Figure 8, we show the
histogram of packet recovery latencies for a 16-node run
with degree of membership d = 128 and group size
s = 10. We use a simplistic NAK layer that starts uni-
casting NAKs to the original sender of the multicast 100
milliseconds after discovery of loss, and retries at 50 mil-
lisecond intervals. Figure 8 shows three scenarios: under
uniform loss rates of 10%, 15%, and 20%, different frac-
tions of packet loss are recovered through LEC and the
remainder via reactive NAKs. These graphs illustrate the
meaning of the LEC recovery percentage: if this number
is high, more packets are recovered very quickly without
extra traffic in the initial segment of the graphs, and less
reactive overhead is induced by the NAK layer. Impor-
tantly, even with a recovery percentage as low as 84%
in Figure 8(c), we are able to recover all packets within
250 milliseconds with a crude NAK layer due to early
LEC-based discovery of loss. For the remaining experi-
ments, we will switch the NAK layer off and focus solely
on LEC performance; also, since we found this distribu-
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tion of recovery latencies to be fairly representative, we
present only the percentage of lost packets recovered us-
ing LEC and the average latency of these recoveries. Ex-
periment Setup: (n = 16, d = 128, s = 10), Loss Model:
Uniform, [10%, 15%, 20%].

5.2 Tunability of LEC in multiple groups

The Slingshot protocol [9] illustrated the tunability of
receiver-generated FEC for a single group; we include a
similar graph for Ricochet in Figure 9, showing that the
rate-of-fire parameter (r, c) provides a knob to tune LEC’s
recovery characteristics. In Figure 9.a, we can see that
increasing the c value for constant r = 8 increases the
recovery percentage and lowers recovery latency by ex-
pending more overhead - measured as the percentage of
repair packets to all packets. In Figure 9.b, we see the
impact of increasing r, keeping the ratio of c to r - and
consequently, the overhead - constant. For the rest of the
experiments, we set the rate-of-fire at (r = 8, c = 5). Ex-
periment Setup: (n = 64, d = 128, s = 10), Loss Model:
Uniform, 1%.
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Figure 12: Impact of Loss Rate on LEC

5.3 Scalability

Next, we examine the scalability of Ricochet to large
numbers of groups. Figure 10 shows that increasing the
degree of membership for each node from 2 to 1024 has
almost no effect on the percentage of packets recovered
via LEC, and causes a slow increase in average recovery
latency. The x-axis in these graphs is log-scale, and hence
a straight line increase is actually logarithmic with respect
to the number of groups and represents excellent scalabil-
ity. The increase in recovery latency towards the right side
of the graph is due to Ricochet having to deal internally
with the representation of large numbers of groups; we
examine this phenomenon later in this section.

For a comparison point, we refer readers back to SRM’s
discovery latency in Figure 2: in 128 groups, SRM dis-
covery took place at 9 seconds. In our experiments, SRM
recovery took place roughly 4 seconds after discovery in
all cases. While fine-tuning the SRM implementation for
clustered settings should eliminate that 4 second gap be-
tween discovery and recovery, at 128 groups Ricochet sur-
passes SRM’s best possible recovery performance of 5
seconds by between 2 and 3 orders of magnitude.

Though Ricochet’s recovery characteristics scale well

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40

R
ec

ov
er

y
Pe

rc
en

ta
ge

Burst Size

Resilience to Bursty Losses: Recovery Percentage

L=0.1%
L=1%

L=10%

15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000

5 10 15 20 25 30 35 40R
ec

ov
er

y
L

at
en

cy
(M

ic
ro

se
co

nd
s)

Burst Size

Resilience to Bursty Losses: Recovery Latency

L=0.1%
L=1%

L=10%

Figure 13: Resilience to Burstiness

in the number of groups, it is important that the compu-
tational overhead imposed by the protocol on nodes stays
manageable, given that time-critical applications are ex-
pected to run over it. Figure 11 shows the scalability of
an important metric: the time taken to process a single
data packet. The straight line increase against a log x-axis
shows that per-packet processing time increases logarith-
mically with the number of groups - doubling the num-
ber of groups results in a constant increase in processing
time. The increase in processing time towards the latter
half of the graph is due to the increase in the number of
repair bins with the number of groups. While we consid-
ered 1024 groups adequate scalability, Ricochet can po-
tentially scale to more groups with further optimization,
such as creating bins only for occupied regions. In the
current implementation, per-packet processing time goes
from 160 microseconds for 2 groups to 300 microsec-
onds for 1024, supporting throughput exceeding a thou-
sand packets per second. Figure 11 also shows the aver-
age number of XORs per incoming data packet. As stated
in section 4.2.2, the number of XORs stays under 5 - the
value of c from the rate-of-fire (r, c). Experiment Setup:
(n = 64, d = ∗, s = 10), Loss Model: Uniform, 1%.
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5.4 Loss Rate and LEC Effectiveness

Figure 12 shows the impact of the Loss Rate on LEC re-
covery characteristics, under the three loss models. Both
LEC recovery percentages and latencies degrade grace-
fully: with an unrealistically high loss rate of 25%, Ric-
ochet still recovers 40% of lost packets at an average of
60 milliseconds. For uniform and bursty loss models, re-
covery percentage stays above 90% with a 5% loss rate;
markov does not fare as well, even at 1% loss rate, primar-
ily because it induces bursts much longer than its average
of 10 - the max burst in this setting averages at 50 pack-
ets. Experiment Setup: (n = 64, d = 128, s = 10), Loss
Model: *.

5.5 Resilience to Bursty Losses

As we noted before, a major criticism of FEC schemes
is their fragility in the face of bursty packet loss. Fig-
ure 13 shows that Ricochet is naturally resilient to small
loss bursts, without the stagger optimization - however,
as the burst size increases, the percentage of packets re-
covered using LEC degrades substantially. Experiment
Setup: (n = 64, d = 128, s = 10), Loss Model: Bursty.

However, switching on the stagger optimization de-
scribed in Section 4.2.2 increases Ricochet’s resilience to
burstiness tremendously, without impacting recovery la-
tency much. Figure 14 shows that setting an appropriate
stagger value allows Ricochet to handle large bursts of
loss: for a burst size as large as 100, a stagger of 6 en-
ables recovery of more than 90% lost packets at an aver-
age latency of around 50 milliseconds. Experiment Setup:
(n = 64, d = 128, s = 10), Loss Model: Bursty, 1%.

5.6 Effect of Group and System Size

What happens to LEC performance when the average
group size in the cluster is large compared to the total
number of nodes? Figure 15 shows that recovery per-
centages are almost unaffected, staying above 99% in this

scenario, but recovery latency is impacted by more than
a factor of 2 as we triple group size from 16 to 48 in a
64-node setting. Note that this measures the impact of the
size of the group relative to the entire system; receiver-
based FEC has been shown to scale well in a single iso-
lated group to hundreds of nodes [9]. Experiment Setup:
(n = 64, d = 128, s = ∗), Loss Model: Uniform, 1%.

While we could not evaluate to system sizes beyond 64
nodes, Ricochet should be oblivious to the size of the en-
tire system, since each node is only concerned with the
groups it belongs to. We ran 4 instances of Ricochet on
each node to obtain an emulated 256 node system with
each instance in 128 groups, and the resulting recovery
percentage of 98% - albeit with a degraded average re-
covery latency of nearly 200 milliseconds due to network
and CPU contention - confirmed our intuition of the pro-
tocol’s fundamental insensitivity to system size.

6 Future Work
One avenue of research involves embedding more com-
plex error codes such as Tornado [11] in LEC; however,
the use of XOR has significant implications for the design
of the algorithm, and using a different encoding might re-
quire significant changes. LEC uses XOR for its simplic-
ity and speed, and as our evaluation showed, we obtain
properties on par with more sophisticated encodings, in-
cluding tunability and burst resilience. We plan on replac-
ing our simplistic NAK layer with a version optimized
for bulk transfer, providing an efficient backup for LEC
when sustained bursts occur of hundreds of packets or
more. Another line of work involves making the param-
eters for LEC - such as rate-of-fire and stagger - adap-
tive, reacting to meet varying load and network character-
istics. We are currently working with industry partners to
layer Ricochet under data distribution, publish-subscribe
and web-service interfaces, as well as building protocols
with stronger ordering and atomicity properties over it.
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Figure 15: Effect of Group Size

7 Conclusion
We believe that the next generation of time-critical ap-
plications will execute on commodity clusters, using the
techniques of massive redundancy, fault-tolerance and
scalable communication currently available to distributed
systems practitioners. Such applications will require a
multicast primitive that delivers data at the speed of hard-
ware multicast in failure-free operation and recovers from
packet loss within milliseconds irrespective of the pattern
of usage. Ricochet provides applications with massive
scalability in multiple dimensions - crucially, it scales in
the number of groups in the system, performing well un-
der arbitrary grouping patterns and overlaps. A clustered
communication primitive with good timing properties can
ultimately be of use to applications in diverse domains not
normally considered time-critical - e-tailers, online web-
servers and enterprise applications, to name a few.
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